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Appendix to the Statutes of the International Physics Olympiads 

General

a. The extensive use of the calculus (differentiation and integration) and the use of complex
numbers or solving differential equations should not be required to solve the theoretical
and practical problems.

b. Questions may contain concepts and phenomena not contained in the Syllabus but
sufficient information must be given in the questions so that candidates without previous
knowledge of these topics would not be at a disadvantage.

c. Sophisticated practical equipment likely to be unfamiliar to the candidates should not
dominate a problem. If such devices are used then careful instructions must be given to the
candidates.

d. The original texts of the problems have to be set in the SI units.

A. Theoretical Part 

The first column contains the main entries while the second column contains comments and
remarks if necessary.

1. Mechanics

a) Foundation of kinematics of a point mass Vector description of the position of the point
mass, velocity and acceleration as vectors

b) Newton's laws, inertial systems Problems may be set on changing mass

c) Closed and open systems, momentum and
energy, work, power

 

d) Conservation of energy, conservation of
linear momentum, impulse

 

e) Elastic forces, frictional forces, the law of
gravitation, potential energy and work in a
gravitational field

Hooke's law, coefficient of friction (F/R =
const), frictional forces, static and kinetic,
choice of zero of potential energy

f) Centripetal acceleration, Kepler's laws  
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2. Mechanics of Rigid Bodies

a) Statics, center of mass, torque Couples, conditions of equilibrium of bodies

b) Motion of rigid bodies, translation, rotation,
angular velocity, angular acceleration,
conservation of angular momentum

Conservation of angular momentum about
fixed axis only

c) External and internal forces, equation of
motion of a rigid body around the fixed axis,
moment of inertia, kinetic energy of a rotating
body

Parallel axes theorem (Steiner's theorem),
additivity of the moment of inertia

d) Accelerated reference systems, inertial
forces

Knowledge of the Coriolis force formula is not
required

 

3. Hydromechanics 

No specific questions will be set on this but students would be expected to know the elementary
concepts of pressure, buoyancy and the continuity law.

 

4. Thermodynamics and Molecular Physics

a) Internal energy, work and heat, first and
second laws of thermodynamics

Thermal equilibrium, quantities depending on
state and quantities depending on process

b) Model of a perfect gas, pressure and
molecular kinetic energy, Avogadro's number,
equation of state of a perfect gas, absolute
temperature

Also molecular approach to such simple
phenomena in liquids and solids as boiling,
melting etc.

c) Work done by an expanding gas limited to
isothermal and adiabatic processes

Proof of the equation of the adiabatic process
is not required

d) The Carnot cycle, thermodynamic
efficiency, reversible and irreversible
processes, entropy (statistical approach),
Boltzmann factor

Entropy as a path independent function,
entropy changes and reversibility, quasistatic
processes

 

5. Oscillations and waves

a) Harmonic oscillations, equation of harmonic
oscillation

Solution of the equation for harmonic motion,
attenuation and resonance -qualitatively

b) Harmonic waves, propagation of waves,
transverse and longitudinal waves, linear
polarization, the classical Doppler effect,
sound waves

Displacement in a progressive wave and
understanding of graphical representation of
the wave, measurements of velocity of sound
and light, Doppler effect in one dimension
only, propagation of waves in homogeneous



and isotropic media, reflection and refraction,
Fermat's principle

c) Superposition of harmonic waves, coherent
waves, interference, beats, standing waves

Realization that intensity of wave is
proportional to the square of its amplitude.
Fourier analysis is not required but candidates
should have some understanding that
complex waves can be made from addition of
simple sinusoidal waves of different
frequencies. Interference due to thin films and
other simple systems (final formulae are not
required), superposition of waves from
secondary sources (diffraction)

 

6. Electric Charge and Electric Field

a) Conservation of charge, Coulomb's law  

b) Electric field, potential, Gauss' law Gauss' law confined to simple symmetric
systems like sphere, cylinder, plate etc.,
electric dipole moment

c) Capacitors, capacitance, dielectric constant,
energy density of electric field

 

 

7. Current and Magnetic Field

a) Current, resistance, internal resistance of
source, Ohm's law, Kirchhoff's laws, work and
power of direct and alternating currents,
Joule's law

Simple cases of circuits containing non-ohmic
devices with known V-I characteristics

b) Magnetic field (B) of a current, current in a
magnetic field, Lorentz force

Particles in a magnetic field, simple
applications like cyclotron, magnetic dipole
moment

c) Ampere's law Magnetic field of simple symmetric systems
like straight wire, circular loop and long
solenoid

d) Law of electromagnetic induction, magnetic
flux, Lenz's law, self-induction, inductance,
permeability, energy density of magnetic field

 

e) Alternating current, resistors, inductors and
capacitors in AC-circuits, voltage and current
(parallel and series) resonances

Simple AC-circuits, time constants, final
formulae for parameters of concrete
resonance circuits are not required

 

8. Electromagnetic waves



a) Oscillatory circuit, frequency of oscillations,
generation by feedback and resonance

 

b) Wave optics, diffraction from one and two
slits, diffraction grating,resolving power of a
grating, Bragg reflection,

 

c) Dispersion and diffraction spectra, line
spectra of gases

 

d) Electromagnetic waves as transverse
waves, polarization by reflection, polarizers

Superposition of polarized waves

e) Resolving power of imaging systems  

f) Black body, Stefan-Boltzmanns law Planck's formula is not required

 

9. Quantum Physics

a) Photoelectric effect, energy and impulse of
the photon

Einstein's formula is required

b) De Broglie wavelength, Heisenberg's
uncertainty principle

 

 

10. Relativity

a) Principle of relativity, addition of velocities,
relativistic Doppler effect

 

b) Relativistic equation of motion, momentum,
energy, relation between energy and mass,
conservation of energy and momentum

 

 

11. Matter

a) Simple applications of the Bragg equation  

b) Energy levels of atoms and molecules
(qualitatively), emission, absorption, spectrum
of hydrogen like atoms

 

c) Energy levels of nuclei (qualitatively), alpha-
, beta- and gamma-decays, absorption of
radiation, halflife and exponential decay,
components of nuclei, mass defect, nuclear
reactions

 

 

B. Practical Part 



The Theoretical Part of the Syllabus provides the basis for all the experimental problems. The
experimental problems given in the experimental contest should contain measurements.

Additional requirements:

1. Candidates must be aware that instruments affect measurements.
2. Knowledge of the most common experimental techniques for measuring physical quantities

mentioned in Part A.
3. Knowledge of commonly used simple laboratory instruments and devices such as calipers,

thermometers, simple volt-, ohm- and ammeters, potentiometers, diodes, transistors,
simple optical devices and so on.

4. Ability to use, with the help of proper instruction, some sophisticated instruments and
devices such as double-beam oscilloscope, counter, ratemeter, signal and function
generators, analog-to-digital converter connected to a computer, amplifier, integrator,
differentiator, power supply, universal (analog and digital) volt-, ohm- and ammeters.

5. Proper identification of error sources and estimation of their influence on the final result(s).
6. Absolute and relative errors, accuracy of measuring instruments, error of a single

measurement, error of a series of measurements, error of a quantity given as a function of
measured quantities.

7. Transformation of a dependence to the linear form by appropriate choice of variables and
fitting a straight line to experimental points.

8. Proper use of the graph paper with different scales (for example polar and logarithmic
papers).

9. Correct rounding off and expressing the final result(s) and error(s) with correct number of
significant digits.

10. Standard knowledge of safety in laboratory work. (Nevertheless, if the experimental set-up
contains any safety hazards the appropriate warnings should be included into the text of
the problem.)



Problems of the 1st International Physics Olympiad1

(Warsaw, 1967) 
  

 
Waldemar Gorzkowski 

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland2

 
 

Abstract 
 

The article contains the competition problems given at he 1st International Physics 
Olympiad (Warsaw, 1967) and their solutions. Additionally it contains comments of historical 
character. 
 

Introduction 
 

 One of the most important points when preparing the students to the International 
Physics Olympiads is solving and analysis of the competition problems given in the past. 
Unfortunately, it is very difficult to find appropriate materials. The proceedings of the 
subsequent Olympiads are published starting from the XV IPhO in Sigtuna (Sweden, 1984). It 
is true that some of very old problems were published (not always in English) in different 
books or articles, but they are practically unavailable. Moreover, sometimes they are more or 
less substantially changed.  

The original English versions of the problems of the 1st IPhO have not been conserved. 
The permanent Secretariat of the IPhOs was created in 1983. Until this year the Olympic 
materials were collected by different persons in their private archives. These archives as a rule 
were of amateur character and practically no one of them was complete. This article is based 
on the books by R. Kunfalvi [1], Tadeusz Pniewski [2] and Waldemar Gorzkowski [3]. 
Tadeusz Pniewski was one of the members of the Organizing Committee of the Polish 
Physics Olympiad when the 1st IPhO took place, while R. Kunfalvi was one of the members 
of the International Board at the 1st IPhO. For that it seems that credibility of these materials 
is very high. The differences between versions presented by R. Kunfalvi and T. Pniewski are 
rather very small (although the book by Pniewski is richer, especially with respect to the 
solution to the experimental problem).  

As regards the competition problems given in Sigtuna (1984) or later, they are 
available, in principle, in appropriate proceedings. “In principle” as the proceedings usually 
were published in a small number of copies, not enough to satisfy present needs of people 
interested in our competition. It is true that every year the organizers provide the permanent 
Secretariat with a number of copies of the proceedings for free dissemination. But the needs 
are continually growing up and we have disseminated practically all what we had. 

The competition problems were commonly available (at least for some time) just only 
from the XXVI IPhO in Canberra (Australia) as from that time the organizers started putting 
the problems on their home pages. The Olympic home page www.jyu.fi/ipho contains the 
problems starting from the XXVIII IPhO in Sudbury (Canada). Unfortunately, the problems 
given in Canberra (XXVI IPhO) and in Oslo (XXVII IPhO) are not present there. 

The net result is such that finding the competition problems of the Olympiads 
organized prior to Sudbury is very difficult. It seems that the best way of improving the 
situation is publishing the competition problems of the older Olympiads in our journal. The 

                                                 
1 This is somewhat extended version of the article sent for publication in Physics Competitions in July 2003. 
2 e-mail: gorzk@ifpan.edu.pl 
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question arises, however, who should do it. According to the Statutes the problems are created 
by the local organizing committees. It is true that the texts are improved and accepted by the 
International Board, but always the organizers bear the main responsibility for the topics of 
the problems, their structure and quality. On the other hand, the glory resulting of high level 
problems goes to them. For the above it is absolutely clear to me that they should have an 
absolute priority with respect to any form of publication. So, the best way would be to publish 
the problems of the older Olympiads by representatives of the organizers from different 
countries. 

Poland organized the IPhOs for thee times: I IPhO (1967), VII IPhO (1974) and XX 
IPhO (1989). So, I have decided to give a good example and present the competition problems 
of these Olympiads in three subsequent articles. At the same time I ask our Colleagues and 
Friends from other countries for doing the same with respect to the Olympiads organized in 
their countries prior to the XXVIII IPhO (Sudbury). 
 

I IPhO (Warsaw 1967) 
 

The problems were created by the Organizing Committee. At present we are not able 
to recover the names of the authors of the problems. 
 

Theoretical problems 
 
Problem 1 
 
 A small ball with mass M = 0.2 kg rests on a vertical column with height h = 5m. A 
bullet with mass m = 0.01 kg, moving with velocity v0 = 500 m/s, passes horizontally through 
the center of the ball (Fig. 1). The ball reaches the ground at a distance s = 20 m. Where does 
the bullet reach the ground? What part of the kinetic energy of the bullet was converted into 
heat when the bullet passed trough the ball? Neglect resistance of the air. Assume that g = 10 
m/s2. 
 

 Fig. 1 

M 
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m    v0 



Solution 
 

 
 

 
 

Fig. 2 
 
 We will use notation shown in Fig. 2.  
 
 As no horizontal force acts on the system ball + bullet, the horizontal component of 
momentum of this system before collision and after collision must be the same: 
 

.0 MVmvmv +=  
 

So,  
 

V
m
Mvv −= 0 . 

 
From conditions described in the text of the problem it follows that 
 

.Vv >  
 
 After collision both the ball and the bullet continue a free motion in the gravitational 
field with initial horizontal velocities v and V, respectively. Motion of the ball and motion of 
the bullet are continued for the same time: 
 

.2
g
ht =  

d 

M 

s 

h 
 

m    v0 v – horizontal component of the velocity 
of the bullet after collision 
V – horizontal component of the velocity 
of the ball after collision 



 
It is time of free fall from height h. 
 The distances passed by the ball and bullet during time t are: 
 

Vts =    and   vtd = , 
 
respectively. Thus 
 

.
2h
gsV =  

 
Therefore 
 

h
gs

m
Mvv

20 −= . 

 
Finally: 
 

s
m
M

g
hvd −=

2
0 . 

 
Numerically: 

d = 100 m. 
 
 The total kinetic energy of the system was equal to the initial kinetic energy of the 
bullet: 
 

2

2
0

0
mvE = . 

 
Immediately after the collision the total kinetic energy of the system is equal to the 

sum of the kinetic energy of the bullet and the ball: 
 

2

2mvEm = ,     
2

2MVEM = . 

 
Their difference, converted into heat, was 
 

)(0 Mm EEEE +−=∆ . 
 
It is the following part of the initial kinetic energy of the bullet: 
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00 E
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E
Ep Mm +−=

∆
=  

By using expressions for energies and velocities (quoted earlier) we get 
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Numerically: 

 p = 92,8%. 
 

Problem 2 
 
 Consider an infinite network consisting of resistors (resistance of each of them is r) 
shown in Fig. 3. Find the resultant resistance ABR  between points A and B. 
  
 
 
 
 
 
 
 
 

Fig. 3 
 
Solution 
 
 It is easy to remark that after removing the left part of the network, shown in Fig. 4 
with the dotted square, then we receive a network that is identical with the initial network (it 
is result of the fact that the network is infinite).  
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 

 
Thus, we may use the equivalence shown graphically in Fig. 5. 
 
 
 
 
 

 
 
 

Fig. 5 
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Algebraically this equivalence can be written as 
 

AB

AB

Rr

rR 11
1

+
+= . 

 
Thus 
 

022 =−− rrRR ABAB . 
 
This equation has two solutions: 
 

rRAB )51(2
1 ±= . 

 
 The solution corresponding to “-“ in the above formula is negative, while resistance 
must be positive. So, we reject it. Finally we receive 
 

rRAB )51(2
1 += . 

 
Problem 3 
 
 Consider two identical homogeneous balls, A and B, with the same initial 
temperatures. One of them is at rest on a horizontal plane, while the second one hangs on a 
thread (Fig. 6). The same quantities of heat have been supplied to both balls. Are the final 
temperatures of the balls the same or not? Justify your answer. (All kinds of heat losses are 
negligible.) 
 
 
 
 
 
 
 
 

Fig. 6 
Solution 
 
 
 
 
 
 
 
 
 

Fig. 7 
 
 As regards the text of the problem, the sentence “The same quantities of heat have 
been supplied to both balls.” is not too clear. We will follow intuitive understanding of this 

B 

A 

B 

A 

B 

A 



sentence, i.e. we will assume that both systems (A – the hanging ball and B – the ball resting 
on the plane) received the same portion of energy from outside. One should realize, however, 
that it is not the only possible interpretation. 
 When the balls are warmed up, their mass centers are moving as the radii of the balls 
are changing. The mass center of the ball A goes down, while the mass center of the ball B 
goes up. It is shown in Fig. 7 (scale is not conserved). 

Displacement of the mass center corresponds to a change of the potential energy of the 
ball in the gravitational field.  
 In case of the ball A the potential energy decreases. From the 1st principle of 
thermodynamics it corresponds to additional heating of the ball. 
 In case of the ball B the potential energy increases. From the 1st principle of 
thermodynamics it corresponds to some “losses of the heat provided” for performing a 
mechanical work necessary to rise the ball. The net result is that the final temperature of the 
ball B should be lower than the final temperature of the ball A. 
 The above effect is very small. For example, one may find (see later) that for balls 
made of lead, with radius 10 cm, and portion of heat equal to 50 kcal, the difference of the 
final temperatures of the balls is of order 10-5 K. For spatial and time fluctuations such small 
quantity practically cannot be measured. 
 Calculation of the difference of the final temperatures was not required from the 
participants. Nevertheless, we present it here as an element of discussion. 
 We may assume that the work against the atmospheric pressure can be neglected. It is 
obvious that this work is small. Moreover, it is almost the same for both balls. So, it should 
not affect the difference of the temperatures substantially. We will assume that such quantities 
as specific heat of lead and coefficient of thermal expansion of lead are constant (i.e. do not 
depend on temperature). 
 The heat used for changing the temperatures of balls may be written as 
 

BAitmcQ ii or       where, =∆= , 
 

Here: m  denotes the mass of ball, c  - the specific heat of lead and it∆  - the change of the 
temperature of ball. 
 

The changes of the potential energy of the balls are (neglecting signs): 
 

BAitmgrE ii or         where, =∆=∆ α . 
 
Here: g  denotes the gravitational acceleration, r  - initial radius of the ball, α  - coefficient of 
thermal expansion of lead. We assume here that the thread does not change its length. 
  
 Taking into account conditions described in the text of the problem and the 
interpretation mentioned at the beginning of the solution, we may write: 
 

AEAQQ AA  ball for the   ,∆−= , 
BEAQQ BB  ball for the   ,∆+= . 

 

A  denotes the thermal equivalent of work: 
J

cal24.0≈A . In fact, A  is only a conversion ratio 

between calories and joules. If you use a system of units in which calories are not present, you 
may omit A  at all. 



 Thus 
 

AtAmgrmcQ A  ball for the   ,)( ∆−= α , 
BtAmgrmcQ B  ball for the   ,)( ∆+= α  

 
and 
 

αAmgrmc
QtA −

=∆ ,      
αAmgrmc

QtB +
=∆ . 

 
Finally we get 
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2
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2
mc
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m
Q

Agrc
Agrttt BA

α
α
α

≈
−

=∆−∆=∆ . 

 
(We neglected the term with 2α  as the coefficient α  is very small.) 
 
 Now we may put the numerical values: =Q 50 kcal, 24.0≈A cal/J, 8.9≈g m/s2, 

≈m 47 kg (mass of the lead ball with radius equal to 10 cm), =r 0.1 m, 031.0≈c cal/(g⋅K), 
≈α 29⋅10-6 K-1. After calculations we get ≈∆t 1.5⋅10-5 K. 

 
Problem 4 
 
Comment: The Organizing Committee prepared three theoretical problems. Unfortunately, at 
the time of the 1st Olympiad the Romanian students from the last class had the entrance 
examinations at the universities. For that Romania sent a team consisting of students from 
younger classes. They were not familiar with electricity. To give them a chance the 
Organizers (under agreement of the International Board) added the fourth problem presented 
here. The students (not only from Romania) were allowed to chose three problems. The 
maximum possible scores for the problems were: 1st problem – 10 points, 2nd problem – 10 
points, 3rd problem – 10 points and 4th problem – 6 points. The fourth problem was solved by 
8 students. Only four of them solved the problem for 6 points. 
 
 A closed vessel with volume V0 = 10 l contains dry air in the normal conditions (t0 = 
0°C, p0  = 1 atm). In some moment 3 g of water were added to the vessel and the system was 
warmed up to t = 100°C. Find the pressure in the vessel. Discuss assumption you made to 
solve the problem. 
 
Solution 
 
 The water added to the vessel evaporates. Assume that the whole portion of water 
evaporated. Then the density of water vapor in 100°C should be 0.300 g/l. It is less than the 
density of saturated vapor at 100°C equal to 0.597 g/l. (The students were allowed to use 
physical tables.) So, at 100°C the vessel contains air and unsaturated water vapor only 
(without any liquid phase). 
 Now we assume that both air and unsaturated water vapor behave as ideal gases. In 
view of Dalton law, the total pressure p in the vessel at 100°C is equal to the sum of partial 
pressures of the air pa and unsaturated water vapor pv: 
 



va ppp += . 
 
 As the volume of the vessel is constant, we may apply the Gay-Lussac law to the air. 
We obtain: 
 







 +

=
273

273
0

tppa . 

 
 The pressure of the water vapor may be found from the equation of state of the ideal 
gas: 

 

Rm
t

Vpv

µ
=

+273
0 , 

 
where m denotes the mass of the vapor, µ - the molecular mass of the water and R – the 
universal gas constant. Thus, 
 

0

273
V

tRmpv
+

=
µ

 

 
and finally 
 

0
0

273
273

273
V

tRmtpp +
+

+
=

µ
. 

Numerically: 
 

atm. 88.1 atm )516.0366.1( ≈+=p  
 
Experimental problem 
 

The following devices and materials are given: 
 

1. Balance (without weights) 
2. Calorimeter 
3. Thermometer 
4. Source of voltage 
5. Switches 
6. Wires 
7. Electric heater 
8. Stop-watch 
9. Beakers 
10. Water 
11. Petroleum 
12. Sand (for balancing) 

 
Determine specific heat of petroleum. The specific heat of water is 1 cal/(g⋅°C). The 

specific heat of the calorimeter is 0.092 cal/(g⋅°C). 
Discuss assumptions made in the solution. 



 
Solution 
 
 The devices given to the students allowed using several methods. The students used 
the following three methods: 
 

1. Comparison of velocity of warming up water and petroleum; 
2. Comparison of cooling down water and petroleum; 
3. Traditional heat balance. 

 
As no weights were given, the students had to use the sand to find portions of petroleum 

and water with masses equal to the mass of calorimeter.  
 
First method: comparison of velocity of warming up 
 
If the heater is inside water then both water and calorimeter are warming up. The heat 

taken by water and calorimeter is: 
 

111 tcmtcmQ ccww ∆+∆= , 
 

where: wm  denotes mass of water, cm - mass of calorimeter, wc - specific heat of water, cc - 
specific heat of calorimeter, 1t∆ - change of temperature of the system water + calorimeter. 
 On the other hand, the heat provided by the heater is equal: 
 

1

2

2 τ
R

UAQ = , 

 
where: A – denotes the thermal equivalent of work, U – voltage, R – resistance of the heater, 
τ1 – time of work of the heater in the water. 
 Of course, 
 

21 QQ = . 
 

Thus 
 

111

2

tcmtcm
R

UA ccww ∆+∆=τ . 

 
For petroleum in the calorimeter we get a similar formula: 
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2

tcmtcm
R

UA ccpp ∆+∆=τ . 

 
where: pm  denotes mass of petroleum, pc - specific heat of petroleum, 2t∆ - change of 
temperature of the system water + petroleum, τ2 – time of work of the heater in the petroleum. 
 

By dividing the last equations we get 
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1
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τ
τ . 

 
It is convenient to perform the experiment by taking masses of water and petroleum equal 

to the mass of the calorimeter (for that we use the balance and the sand). For 
cpw mmm ==  

 
the last formula can be written in a very simple form: 
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where 
 

1

1
1 τ

tk ∆
=     and    

2

2
2 τ

tk ∆
=  

 
denote “velocities of heating” water and petroleum, respectively. These quantities can be 
determined experimentally by drawing graphs representing dependence 1t∆ and 2t∆  on time 
(τ). The experiment shows that these dependences are linear. Thus, it is enough to take slopes 
of appropriate straight lines. The experimental setup given to the students allowed 
measurements of the specific heat of petroleum, equal to 0.53 cal/(g°⋅C), with accuracy about 
1%. 
 Some students used certain mutations of this method by performing measurements at 

1t∆ = 2t∆  or at 21 ττ = . Then, of course, the error of the final result is greater (it is additionally 
affected by accuracy of establishing the conditions 1t∆ = 2t∆  or at 21 ττ = ). 

 
Second method: comparison of velocity of cooling down 
 
Some students initially heated the liquids in the calorimeter and later observed their 

cooling down. This method is based on the Newton’s law of cooling. It says that the heat Q 
transferred during cooling in time τ  is given by the formula: 

 
τϑ sthQ )( −= , 

 
where: t denotes the temperature of the body, ϑ  - the temperature of surrounding, s – area of 
the body, and h – certain coefficient characterizing properties of the surface. This formula is 



correct for small differences of temperatures ϑ−t  only (small compared to t  and ϑ  in the 
absolute scale). 
 
 This method, like the previous one, can be applied in different versions. We will 
consider only one of them. 
 
 Consider the situation when cooling of water and petroleum is observed in the same 
calorimeter (containing initially water and later petroleum). The heat lost by the system water 
+ calorimeter is 
 

tcmcmQ ccww ∆+=∆ )(1 , 
 
where t∆  denotes a change of the temperature of the system during certain period 1τ . For the 
system petroleum + calorimeter, under assumption that the change in the temperature t∆  is 
the same, we have 
 

tcmcmQ ccpp ∆+=∆ )(2 . 
 

Of course, the time corresponding to t∆  in the second case will be different. Let it be 2τ . 
 From the Newton's law we get 
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τ
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∆
∆

Q
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Thus 
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If we conduct the experiment at 

cpw mmm == , 
 
then we get 
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T
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c
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2 1 . 

 
 As cooling is rather a very slow process, this method gives the result with definitely 
greater error. 
 

Third method: heat balance 
 
This method is rather typical. The students heated the water in the calorimeter to certain 

temperature 1t  and added the petroleum with the temperature 2t . After reaching the thermal 
equilibrium the final temperature was t. From the thermal balance (neglecting the heat losses) 
we have 

 



)())(( 21 ttcmttcmcm ppccww −=−+ . 
 

If, like previously, the experiment is conducted at 
 

cpw mmm == , 
then 

 

2

1)(
tt
tt

ccc cwp −
−

+= . 

 
In this methods the heat losses (when adding the petroleum to the water) always played a 

substantial role.  
 

The accuracy of the result equal or better than 5% can be reached by using any of the 
methods described above. However, one should remark that in the first method it was easiest. 
The most common mistake was neglecting the heat capacity of the calorimeter. This mistake 
increased the error additionally by about 8%. 

 
Marks 
 
 No marking schemes are present in my archive materials. Only the mean scores are 
available. They are: 
 
 Problem # 1   7.6 points 
 Problem # 2   7.8 points (without the Romanian students) 
 Problem # 3   5.9 points 
 Experimental problem 7.7 points 
 
Thanks 
 
 The author would like to express deep thanks to Prof. Jan Mostowski and Dr. Yohanes 
Surya for reviewing the text and for valuable comments and remarks. 
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Abstract 
 

After a short introduction the problems of the 2nd and the 9th International Physics Olympiad, organized 
in Budapest, Hungary, 1968 and 1976, and their solutions are presented. 
 
 
 

Introduction 
 

 
Following the initiative of Dr. Waldemar Gorzkowski [1] I present the problems and 

solutions of the 2nd and the 9th International Physics Olympiad, organized by Hungary. I have 
used Prof. Rezső Kunfalvi’s problem collection [2], its Hungarian version [3] and in the case 
of the 9th Olympiad the original Hungarian problem sheet given to the students (my own 
copy). Besides the digitalization of the text, the equations and the figures it has been made 
only small corrections where it was needed (type mistakes, small grammatical changes). I 
omitted old units, where both old and SI units were given, and converted them into SI units, 
where it was necessary. 

If we compare the problem sheets of the early Olympiads with the last ones, we can 
realize at once the difference in length. It is not so easy to judge the difficulty of the problems, 
but the solutions are surely much shorter. 

The problems of the 2nd Olympiad followed the more than hundred years tradition of 
physics competitions in Hungary. The tasks of the most important Hungarian theoretical 
physics competition (Eötvös Competition), for example, are always very short. Sometimes the 
solution is only a few lines, too, but to find the idea for this solution is rather difficult. 

Of the 9th Olympiad I have personal memories; I was the youngest member of the 
Hungarian team. The problems of this Olympiad were collected and partly invented by 
Miklós Vermes, a legendary and famous Hungarian secondary school physics teacher. In the 
first problem only the detailed investigation of the stability was unusual, in the second 
problem one could forget to subtract the work of the atmospheric pressure, but the fully 
“open” third problem was really unexpected for us. 

The experimental problem was difficult in the same way: in contrast to the Olympiads 
of today we got no instructions how to measure. (In the last years the only similarly open 
experimental problem was the investigation of “The magnetic puck” in Leicester, 2000, a 
really nice problem by Cyril Isenberg.) The challenge was not to perform many-many 
measurements in a short time, but to find out what to measure and how to do it. 

Of course, the evaluating of such open problems is very difficult, especially for several 
hundred students. But in the 9th Olympiad, for example, only ten countries participated and 
the same person could read, compare, grade and mark all of the solutions. 
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2nd IPhO (Budapest, 1968) 
 
 
Theoretical problems 
 
Problem 1 
 

On an inclined plane of 30° a block, mass m2 = 4 kg, is joined by a light cord to a solid 
cylinder, mass m1 = 8 kg, radius r = 5 cm (Fig. 1). Find the acceleration if the bodies are 
released. The coefficient of friction between the block and the inclined plane µ = 0.2. Friction 
at the bearing and rolling friction are negligible. 
 

 
 
Solution 
 
 If the cord is stressed the cylinder and the block are moving with the same 
acceleration a. Let F be the tension in the cord, S the frictional force between the cylinder and 
the inclined plane (Fig. 2). The angular acceleration of the cylinder is a/r. The net force 
causing the acceleration of the block: 
 

  Fgmgmam +−= αµα cossin 222 , 
 

and the net force causing the acceleration of the cylinder: 
 

  FSgmam −−= αsin11 . 
 

The equation of motion for the rotation of the cylinder: 
 

  I
r
arS ⋅= . 

 

(I is the moment of inertia of the cylinder, S⋅r is the torque of the frictional force.) 
Solving the system of equations we get: 
 

  ( )
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⋅=
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⋅⋅=

αµα ,       (2) 
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Figure 1 
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Figure 2 
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 +
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ααµ
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The moment of inertia of a solid cylinder is 
2

2
1rmI = . Using the given numerical values: 

 

  ( ) 2sm3.25==
+
−+

⋅= g
mm

mmmga 3317.0
5.1

cossin

21

221 αµα , 

  ( ) N13.01=
+
−+

⋅=
21

2211

5.1
cossin

2 mm
mmmgmS αµα , 

  ( ) N0.192=
+

−
⋅=

21

1
2 5.1

sin5.0cos5.1
mm

mgmF ααµ . 

 
Discussion (See Fig. 3.) 
 
 The condition for the system to start moving is a > 0. Inserting a = 0 into (1) we 
obtain the limit for angle α1: 
 

  0667.0
3

tan
21

2
1 ==

+
⋅=

µµα
mm

m ,   °= 81.31α . 
 

For the cylinder separately 01 =α , and for the block separately °== − 31.11tan 1
1 µα . 

 If the cord is not stretched the bodies move separately. We obtain the limit by 
inserting F = 0 into (3): 
 

  6.031tan
2

1
2 ==








+⋅= µµα

I
rm ,   °= 96.302α . 

 

 The condition for the cylinder to 
slip is that the value of S (calculated from 
(2) taking the same coefficient of friction) 
exceeds the value of αµ cos1gm . This gives 
the same value for α3 as we had for α2. The 
acceleration of the centers of the cylinder 
and the block is the same: 

( )αµα cossin −g , the frictional force at the 
bottom of the cylinder is αµ cos1gm , the 
peripheral acceleration of the cylinder is 

αµ cos
2

1 g
I
rm

⋅⋅ . 

 
Problem 2 
 
 There are 300 cm3 toluene of C0°  temperature in a glass and 110 cm3 toluene of 

C100°  temperature in another glass. (The sum of the volumes is 410 cm3.) Find the final 
volume after the two liquids are mixed. The coefficient of volume expansion of toluene 

( ) 1C001.0 −°=β . Neglect the loss of heat. 

β r, a 

g 

α 0° 30° 60° 90° 

F, S (N) 

α1 α2=α3 

10 

20 

F 

S 

β r 

a 

Figure 3 
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Solution 
 
 If the volume at temperature t1 is V1, then the volume at temperature C0°  is 

( )1110 1 tVV β+= . In the same way if the volume at t2 temperature is V2, at C0°  we have 
( )2220 1 tVV β+= . Furthermore if the density of the liquid at C0°  is d, then the masses are 

dVm 101 =  and dVm 202 = , respectively. After mixing the liquids the temperature is 
 

  
21

2211

mm
tmtmt

+
+

= . 
 

The volumes at this temperature are ( )tV β+110  and ( )tV β+120 . 
The sum of the volumes after mixing: 
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β
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The sum of the volumes is constant. In our case it is 410 cm3. The result is valid for any 
number of quantities of toluene, as the mixing can be done successively adding always one 
more glass of liquid to the mixture. 
 
Problem 3 
 
 Parallel light rays are falling on the plane surface of a semi-cylinder made of glass, at 
an angle of 45°, in such a plane which is perpendicular to the axis of the semi-cylinder 
(Fig. 4). (Index of refraction is 2 .) Where are the rays emerging out of the cylindrical 
surface? 

 
 
Solution 
 

 Let us use angle ϕ to describe the position of the rays in the glass (Fig. 5). According 
to the law of refraction 2sin45sin =° β , 5.0sin =β , °= 30β . The refracted angle is 30° 
for all of the incoming rays. We have to investigate what happens if ϕ changes from 0° to 
180°. 

Figure 4 Figure 5 

ϕ 

α 

β 

A 

C 

D O 

B 

E 



 5 

 It is easy to see that ϕ  can not be less than 60° ( °=∠ 60AOB ). The critical angle is 
given by 221sin == ncritβ ; hence °= 45critβ . In the case of total internal reflection 

°=∠ 45ACO , hence °=°−°−°= 754560180ϕ . If ϕ  is more than 75° the rays can emerge 
the cylinder. Increasing the angle we reach the critical angle again if °=∠ 45OED . Thus the 
rays are leaving the glass cylinder if: 
  °<<° 16575 ϕ , 
CE, arc of the emerging rays, subtends a central angle of 90°. 
 
Experimental problem 
 
 Three closed boxes (black boxes) with two plug sockets on each are present for 
investigation. The participants have to find out, without opening the boxes, what kind of 
elements are in them and measure their characteristic properties. AC and DC meters (their 
internal resistance and accuracy are given) and AC (5O Hz) and DC sources are put at the 
participants’ disposal. 
 
Solution 
 
 No voltage is observed at any of the plug sockets therefore none of the boxes contains 
a source. 
 Measuring the resistances using first AC then DC, one of the boxes gives the same 
result. Conclusion: the box contains a simple resistor. Its resistance is determined by 
measurement. 
 One of the boxes has a very great resistance for DC but conducts AC well. It contains 

a capacitor, the value can be computed as 
CX

C
ω

1
= . 

 The third box conducts both AC and DC, its resistance for AC is greater. It contains a 
resistor and an inductor connected in series. The values of the resistance and the inductance 
can be computed from the measurements. 
  



3rd International Physics Olympiad
1969, Brno, Czechoslovakia

Problem 1. Figure 1 shows a mechanical system consisting of three carts A,
B and C of masses m1 = 0.3 kg, m2 = 0.2 kg and m3 = 1.5 kg respectively.
Carts B and A are connected by a light taut inelastic string which passes over
a light smooth pulley attaches to the cart C as shown. For this problem, all
resistive and frictional forces may be ignored as may the moments of inertia
of the pulley and of the wheels of all three carts. Take the acceleration due
to gravity g to be 9.81 m s−2.

µ´
¶³

µ´
¶³

i
¡e e

e
e- C

B

A

~F

Figure 1:

1. A horizontal force ~F is now applied to cart C as shown. The size of ~F
is such that carts A and B remain at rest relative to cart C.

a) Find the tension in the string connecting carts A and B.

b) Determine the magnitude of ~F .

2. Later cart C is held stationary, while carts A and B are released from
rest.

a) Determine the accelerations of carts A and B.

b) Calculate also the tension in the string.

1



Solution:
Case 1. The force ~F has so big magnitude that the carts A and B remain
at the rest with respect to the cart C, i.e. they are moving with the same
acceleration as the cart C is. Let ~G1, ~T1 and ~T2 denote forces acting on
particular carts as shown in the Figure 2 and let us write the equations of
motion for the carts A and B and also for whole mechanical system. Note
that certain internal forces (viz. normal reactions) are not shown.
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~F

~T2

~T1

~G1

Figure 2:

The cart B is moving in the coordinate system Oxy with an acceleration
ax. The only force acting on the cart B is the force ~T2, thus

T2 = m2 ax . (1)

Since ~T1 and ~T2 denote tensions in the same cord, their magnitudes satisfy

T1 = T2 .

The forces ~T1 and ~G1 act on the cart A in the direction of the y-axis.
Since, according to condition 1, the carts A and B are at rest with respect
to the cart C, the acceleration in the direction of the y-axis equals to zero,
ay = 0, which yields

T1 −m1 g = 0 .

Consequently
T2 = m1 g . (2)

So the motion of the whole mechanical system is described by the equation

F = (m1 + m2 + m3) ax , (3)

2



because forces between the carts A and C and also between the carts B
and C are internal forces with respect to the system of all three bodies. Let
us remark here that also the tension ~T2 is the internal force with respect to
the system of all bodies, as can be easily seen from the analysis of forces
acting on the pulley. From equations (1) and (2) we obtain

ax =
m1

m2

g .

Substituting the last result to (3) we arrive at

F = (m1 + m2 + m3)
m1

m2

g .

Numerical solution:

T2 = T1 = 0.3 · 9.81 N = 2.94 N ,

F = 2 · 3

2
· 9.81 N = 29.4 N .

Case 2. If the cart C is immovable then the cart A moves with an accelera-
tion ay and the cart B with an acceleration ax. Since the cord is inextensible
(i.e. it cannot lengthen), the equality

ax = −ay = a

holds true. Then the equations of motion for the carts A, respectively B,
can be written in following form

T1 = G1 −m1 a , (4)

T2 = m2 a . (5)

The magnitudes of the tensions in the cord again satisfy

T1 = T2 . (6)

The equalities (4), (5) and (6) immediately yield

(m1 + m2) a = m1 g .

3



Using the last result we can calculate

a = ax = −ay =
m1

m1 + m2

g ,

T2 = T1 =
m2m1

m1 + m2

g .

Numerical results:

a = ax =
3

5
· 9.81 m s−2 = 5.89 m s−2 ,

T1 = T2 = 1.18 N .

Problem 2. Water of mass m2 is contained in a copper calorimeter of
mass m1. Their common temperature is t2. A piece of ice of mass m3 and
temperature t3 < 0 oC is dropped into the calorimeter.

a) Determine the temperature and masses of water and ice in the equilib-
rium state for general values of m1, m2, m3, t2 and t3. Write equilibrium
equations for all possible processes which have to be considered.

b) Find the final temperature and final masses of water and ice for m1 =
1.00 kg, m2 = 1.00 kg, m3 = 2.00 kg, t2 = 10 oC, t3 = −20 oC.

Neglect the energy losses, assume the normal barometric pressure. Specific
heat of copper is c1 = 0.1 kcal/kg·oC, specific heat of water c2 = 1 kcal/kg·oC,
specific heat of ice c3 = 0.492 kcal/kg·oC, latent heat of fusion of ice l =
78, 7 kcal/kg. Take 1 cal = 4.2 J.

Solution:
We use the following notation:

t temperature of the final equilibrium state,
t0 = 0 oC the melting point of ice under normal pressure conditions,

M2 final mass of water,
M3 final mass of ice,

m′
2 ≤ m2 mass of water, which freezes to ice,

m′
3 ≤ m3 mass of ice, which melts to water.

a) Generally, four possible processes and corresponding equilibrium states
can occur:

4



1. t0 < t < t2, m′
2 = 0, m′

3 = m3, M2 = m2 + m3, M3 = 0.
Unknown final temperature t can be determined from the equation

(m1c1 + m2c2)(t2 − t) = m3c3(t0 − t3) + m3l + m3c2(t− t0) . (7)

However, only the solution satisfying the condition t0 < t < t2 does
make physical sense.

2. t3 < t < t0, m′
2 = m2, m′

3 = 0, M2 = 0, M3 = m2 + m3.
Unknown final temperature t can be determined from the equation

m1c1(t2 − t) + m2c2(t2 − t0) + m2l + m2c3(t0 − t) = m3c3(t− t3) . (8)

However, only the solution satisfying the condition t3 < t < t0 does
make physical sense.

3. t = t0, m′
2 = 0, 0 ≤ m′

3 ≤ m3, M2 = m2 + m′
3, M3 = m3 −m′

3.
Unknown mass m′

3 can be calculated from the equation

(m1c1 + m2c2)(t2 − t0) = m3c3(t− t3) + m′
3l . (9)

However, only the solution satisfying the condition 0 ≤ m′
3 ≤ m3 does

make physical sense.

4. t = t0, 0 ≤ m′
2 ≤ m2, m′

3 = 0, M2 = m2 −m′
2, M3 = m3 + m′

2.
Unknown mass m′

2 can be calculated from the equation

(m1c1 + m2c2)(t2 − t0) + m′
2l = m3c3(t0 − t3) . (10)

However, only the solution satisfying the condition 0 ≤ m′
2 ≤ m2 does

make physical sense.

b) Substituting the particular values of m1, m2, m3, t2 and t3 to equations (7),
(8) and (9) one obtains solutions not making the physical sense (not satisfying
the above conditions for t, respectively m′

3). The real physical process under
given conditions is given by the equation (10) which yields

m′
2 =

m3c3(t0 − t3)− (m1c1 + m2c2)(t2 − t0)

l
.

Substituting given numerical values one gets m′
2 = 0.11 kg. Hence, t = 0 oC,

M2 = m2 −m′
2 = 0.89 kg, M3 = m3 + m′

2 = 2.11 kg.
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Problem 3. A small charged ball of mass m and charge q is suspended
from the highest point of a ring of radius R by means of an insulating cord of
negligible mass. The ring is made of a rigid wire of negligible cross section and
lies in a vertical plane. On the ring there is uniformly distributed charge Q of
the same sign as q. Determine the length l of the cord so as the equilibrium
position of the ball lies on the symmetry axis perpendicular to the plane of
the ring.

Find first the general solution a then for particular values Q = q =
9.0 · 10−8 C, R = 5 cm, m = 1.0 g, ε0 = 8.9 · 10−12 F/m.

Solution:
In equilibrium, the cord is stretched in the direction of resultant force of ~G =
m~g and ~F = q ~E, where ~E stands for the electric field strength of the ring
on the axis in distance x from the plane of the ring, see Figure 3. Using the
triangle similarity, one can write

x

R
=

Eq

mg
. (11)

@
@

@
@

@ -

?

@
@

@R

R

x

l

~F

~G

Figure 3:

For the calculation of the electric field strength let us divide the ring to
n identical parts, so as every part carries the charge Q/n. The electric field
strength magnitude of one part of the ring is given by

∆E =
Q

4πε0l2n
.
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Figure 4:

This electric field strength can be decomposed into the component in the
direction of the x-axis and the one perpendicular to the x-axis, see Figure 4.
Magnitudes of both components obey

∆Ex = ∆E cos α =
∆E x

l
,

∆E⊥ = ∆E sin α .

It follows from the symmetry, that for every part of the ring there exists
another one having the component ∆ ~E⊥ of the same magnitude, but however
oppositely oriented. Hence, components perpendicular to the axis cancel each
other and resultant electric field strength has the magnitude

E = Ex = n∆Ex =
Q x

4πε0 l3
. (12)

Substituting (12) into (11) we obtain for the cord length

l = 3

√
Qq R

4πε0 mg
.

Numerically

l =
3

√
9.0 · 10−8 · 9.0 · 10−8 · 5.0 · 10−2

4π · 8.9 · 10−12 · 10−3 · 9.8 m = 7.2 · 10−2 m .

Problem 4. A glass plate is placed above a glass cube of 2 cm edges in
such a way that there remains a thin air layer between them, see Figure 5.
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Electromagnetic radiation of wavelength between 400 nm and 1150 nm (for
which the plate is penetrable) incident perpendicular to the plate from above
is reflected from both air surfaces and interferes. In this range only two
wavelengths give maximum reinforcements, one of them is λ = 400 nm. Find
the second wavelength. Determine how it is necessary to warm up the cube
so as it would touch the plate. The coefficient of linear thermal expansion is
α = 8.0 · 10−6 oC−1, the refractive index of the air n = 1. The distance of the
bottom of the cube from the plate does not change during warming up.

6

?????????

d

h

Figure 5:

Solution:
Condition for the maximum reinforcement can be written as

2dn− λk

2
= kλk , for k = 0, 1, 2, . . . ,

i.e.

2dn = (2k + 1)
λk

2
, (13)

with d being thickness of the layer, n the refractive index and k maximum
order. Let us denote λ′ = 1150 nm. Since for λ = 400 nm the condition for
maximum is satisfied by the assumption, let us denote λp = 400 nm, where p
is an unknown integer identifying the maximum order, for which

λp(2p + 1) = 4dn (14)

holds true. The equation (13) yields that for fixed d the wavelength λk

increases with decreasing maximum order k and vise versa. According to the

8



assumption,
λp−1 < λ′ < λp−2 ,

i.e.
4dn

2(p− 1) + 1
< λ′ <

4dn

2(p− 2) + 1
.

Substituting to the last inequalities for 4dn using (14) one gets

λp(2p + 1)

2(p− 1) + 1
< λ′ <

λp(2p + 1)

2(p− 2) + 1
.

Let us first investigate the first inequality, straightforward calculations give
us gradually

λp(2p + 1) < λ′(2p− 1) , 2p(λ′ − λp) > λ′ + λp ,

i.e.

p >
1

2

λ′ + λp

λ′ − λp

=
1

2

1150 + 400

1150− 400
= 1. . . . (15)

Similarly, from the second inequality we have

λp(2p + 1) > λ′(2p− 3) , 2p(λ′ − λp) < 3λ′ + λp ,

i.e.

p <
1

2

3λ′ + λp

λ′ − λp

=
1

2

3 · 1150 + 400

1150− 400
= 2. . . . (16)

The only integer p satisfying both (15) and (16) is p = 2.
Let us now find the thickness d of the air layer:

d =
λp

4
(2p + 1) =

400

4
(2 · 2 + 1) nm = 500 nm .

Substituting d to the equation (13) we can calculate λp−1, i.e. λ1:

λ1 =
4dn

2(p− 1) + 1
=

4dn

2p− 1
.

Introducing the particular values we obtain

λ1 =
4 · 500 · 1
2 · 2− 1

nm = 666.7 nm .

Finally, let us determine temperature growth ∆t. Generally, ∆l = αl∆t
holds true. Denoting the cube edge by h we arrive at d = αh∆t. Hence

∆t =
d

αh
=

5 · 10−7

8 · 10−6 · 2 · 10−2
oC = 3.1 oC .
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Problems of the IV International Olympiad, Moscow, 1970  

The publication is prepared by  Prof. S. Kozel & Prof.  V.Orlov 

(Moscow Institute of Physics and Technology) 

  

The IV International Olympiad in Physics for schoolchildren took place in Moscow (USSR) in July 

1970 on the basis of Moscow State University.   Teams from 8 countries participated in the 

competition, namely Bulgaria, Hungary, Poland, Romania, Czechoslovakia, the DDR, the SFR 

Yugoslavia, the USSR.   The problems for the theoretical competition  have been prepared by the 

group from Moscow University stuff headed by professor V.Zubov. The problem for the 

experimental competition has been worked out by B. Zvorikin from the Academy of Pedagogical 

Sciences. 

It is pity that marking schemes were not preserved. 
 

Theoretical Problems 
 

Problem 1.  

A long bar with the mass M = 1 kg is placed on a smooth horizontal surface of a table where it can 

move frictionless. A carriage equipped with a motor can slide along the upper horizontal panel of 

the bar, the mass of the carriage is m = 0.1 kg. The friction coefficient of the carriage is  μ = 0.02. 

The motor is winding a thread around a shaft at a constant speed v0 = 0.1 m/s. The other end of the 

thread is tied up to a rather distant stationary support in one case (Fig.1, a), whereas in the other case 

it is attached to a picket at the edge of the bar (Fig.1, b). While holding the bar fixed one allows the 

carriage to start moving at the velocity V0 then the bar is let loose.  

    

 

 

 

   

 

Fig. 1      Fig. 2 

By the moment the bar is released the front edge of the carriage is at the distance l = 0.5 m 

from the front edge of the bar. For both cases find the laws of movement of both the bar and the 

carriage and the time during which the carriage will reach the front edge of the bar. 
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Problem 2.  

A unit cell of a crystal of natrium chloride (common salt- NaCl) is a cube with the edge length  a = 

5.6ּ10-10 m (Fig.2). The black circles in the figure stand for the position of natrium atoms whereas the 

white ones are chlorine atoms. The entire crystal of common salt turns out to be a repetition of such 

unit cells. The relative atomic mass of natrium is 23 and that of chlorine is 35,5. The density of the 

common salt    ρ = 2.22ּ103 kg/m3 . Find the mass of a hydrogen atom. 
 

Problem 3.  

Inside a thin-walled metal sphere with radius R=20 cm there is a  metal ball  with the radius r = 10 cm 

which has a common centre with the sphere. The ball is connected with a very long wire to the Earth 

via an opening in the sphere (Fig. 3). A charge Q = 10-8 C is placed onto the outside sphere. Calculate 

the potential of this sphere, electrical capacity of the obtained system of conducting bodies and draw 

out an equivalent electric scheme. 

 

 

 

 

 

 

Fig. 3     Fig. 4 

 

Problem 4.  

A spherical mirror is installed into a telescope. Its lateral diameter is D=0,5 m and the radius of the 

curvature R=2 m. In the main focus of the mirror there is an emission receiver in the form of a round 

disk. The disk is placed perpendicular to the optical axis of the mirror (Fig.7). What should the radius 

r of the receiver be so that it could receive the entire flux of the emission  reflected by the mirror? 

How would the received flux of the emission decrease if the detector’s dimensions decreased by 8 

times? 

Directions: 1) When calculating small values α (α<<1) one may perform a substitution 

2
11 αα −≈− ; 2) diffraction should not be taken into account. 
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Experimental Problem 

 

Determine the focal distances of lenses. 

List of instruments: three different lenses installed on posts, a screen bearing an image of a 

geometric figure, some vertical wiring also fixed on the posts and a ruler. 

 

Solutions of the problems of the IV International Olympiad, Moscow, 1970 

Theoretical Competition 

 

Problem 1.  

a) By the moment of releasing the bar the carriage has a velocity v0  relative to the table and continues 

to move at the same velocity. 

The bar, influenced by the friction force Ffr = μmg  from the carriage, gets an acceleration  

a = Ffr/ M = μmg/M ;   a = 0.02 m/s , while the velocity of the bar changes with time according to the 

law vb = at.                 . 

Since the bar can not move faster than the carriage then at a moment of time t = t0        its 

sliding will stop, that is   vb = v0. Let us determine this moment of time: 

s500
0 ===

mg
Mv

a
v

t
µ

 

 

By that moment the displacement of the Sb bar and the carriage Sc relative to the table will be equal to 

mg
Mv

tvS
µ

2
0

00c ==  ,    
mg
Mvat

Sb µ22

2
0

2
0 == . 

The displacement of the carriage relative to the bar is equal to 

m25.0
2

2
0

c ==−=
mg
Mv

SSS b µ
 

Since S<l, the carriage will not reach the edge of the bar until the bar is stopped by an 

immovable support. The distance to the support is not indicated in the problem condition so we can 

not calculate this time. Thus, the carriage is moving evenly at the velocity v0 = 0.1 m/s, whereas the 

bar is moving for the first 5 sec uniformly accelerated with an acceleration   a = 0.02 m/s  and then the 

bar is moving with constant velocity together with the carriage. 

b) Since there is no friction between the bar and the table surface the system of the bodies 

“bar-carriage” is a closed one. For this system one can apply the law of conservation of momentum: 

mv + Mu = mv0  (1) 
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where v and u are projections of velocities of the carriage and the bar relative to the table onto the 

horizontal axis directed along the vector of the velocity v0. The velocity of the thread winding v0 is 

equal to the velocity of the carriage relative to the bar (v-u), that is 

  v0 =  v – u   (2) 

Solving the system of equations (1) and (2) we obtain: 

u = 0 ,   v = v0 .      

Thus, being released the bar remains fixed relative to the table, whereas the carriage will be moving 

with the same velocity v0 and will reach the edge of the bar within the time t equal to 

t = l/v0 = 5 s. 

 

Problem 2.  

Let’s calculate the quantities of natrium atoms (n1) and chlorine atoms (n2) embedded in a single 

NaCl unit crystal cell (Fig.2).   

 One atom of natrium occupies the middle of the cell and it entirely belongs to the cell. 12 

atoms of natrium hold the edges of a large cube and they belong to three more cells so as 1/4 part of 

each belongs to the first cell. Thus we have 

 n1 = 1+12⋅1/4 = 4 atoms of natrium per unit cell. 

 In one cell there are 6 atoms of chlorine placed on the side of the cube and 8 placed in the 

vertices. Each atom from a side belongs to another cell and the atom in the vertex  - to seven others. 

Then for one cell we have  

    n2= 6⋅1/2 + 8⋅ 1/8 = 4 atoms of chlorine. 

 Thus 4 atoms of natriun and 4 atoms of chlorine belong to one unit cell of NaCl crystal. 

 The mass m of such a cell is equal 

 m = 4(mrNa + mrCl) (amu),     

 where  mrNa and  mrCl are relative atomic  masses of  natrium and clorine. Since  the mass of hydrogen 

atom mH is approximately  equal to one atomic mass unit: mH = 1.008 amu ≈ 1 amu then the mass of 

an unit cell of NaCl is  

m = 4(mrNa + mrCl) mH . 

On the other hand, it  is equal m  = ρa3  ,  hence  

( ) kg1067.1
4

27

rClrNa

3

H
−⋅≈

+
=

mm
am ρ . 

Problem 3.  

Having no charge on the ball the sphere has the potential  

V450
4

1

0
0s ==

R
Q

πε
ϕ . 
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     When connected with the Earth the ball inside the sphere has the potential equal to zero so there is 

an electric field between the ball and the sphere. This field moves a certain charge q from the Earth to 

the ball. Charge Q`, uniformly distributed on the sphere, doesn’t create any field inside thus the 

electric field inside the sphere is defined by the ball’s charge q. The potential difference  between the 

balls and the sphere is equal  

,
4

1

0
sb 






 −=−=∆

R
q

r
q

πε
ϕϕϕ     (1) 

Outside the sphere the field is the same as in the case when all the charges were placed in its 

center. When the ball was connected with the Earth the potential of the sphere φs is equal 

.
4

1

0
s R

Qq +
=

πε
ϕ    (2) 

Then the potential of the ball  

0
4

1
4

1

00
sb =






 +=






 −+

+
=∆+=

r
q

R
Q

R
q

r
q

R
Qq

πεπε
ϕϕϕ      (3)   

Which leads to  

R
rQq −= .    (4) 

Substituting (4) into (2) we obtain for potential of the sphere to be found: 

( ) .V225
4

1
4

1
2

00
s =

−
=

−
=

R
rRQ

R
R
rQQ

πεπε
ϕ   

The electric capacity of whole system of conductors is 

44pFF104.4
4 11

2
0

s

=⋅=
−

== −

rR
RQC

πε
ϕ

 

The equivalent electric scheme consists of two parallel capacitors: 1) a spherical one with charges 

+q and –q at the plates and 2) a capacitor “sphere – Earth” with charges +(Q-q) and 

 –(Q–q) at the  plates (Fig.5). 

 

 

 

    

 

 

Fig. 5     Fig. 6 
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Problem 4.  

As known, rays parallel to the main optical axis of a spherical mirror, passing at little distances from 

it after having been reflected, join at the main focus of the mirror F which is at the distance R/2 from 

the centre O of the spherical surface. Let us consider now the movement of the ray reflected near the 

edge of the spherical mirror of large diameter D (Fig. 6).  The angle of incidence α of the ray onto the 

surface is equal to the angle of reflection. That is why  the angle OAB within the triangle, formed by 

the radius OA of the sphere, traced to the incidence point  of the ray by the reflected ray AB and an 

intercept BO of the main optical axis, is equal to α. The angles BOA and MAO are equal, that is the 

angle BOA is equal to α. 

 Thus, the triangle AOB is isosceles with its side AB being equal to the side BO. Since the sum 

of the lengths of its two other sides exceeds the length of its third side, AB+BO>OA=R,  hence 

BO>R/2. This means that a ray parallel to the main optical axis of the spherical mirror and passing not 

too close to it, after having been reflected, crosses the main optical axis at the point B lying between 

the focus F and the mirror. The focal surface is crossed by this ray at the point C which is at a certain 

distance CF = r from the main focus. 

 Thus, when reflecting a parallel beam of rays by a spherical mirror finite in size it does not 

join at the focus of the mirror but forms a beam with radius r on the focal plane. 

 From  Δ BFC we can write : 

r =  BF tg β = BF tg 2α , 

 

where α is the maximum angle of incidence of the extreme ray onto the mirror, while sin α = D/2R:  

α
α

α cos
cos1

22cos2
−

=−=−=
RRROFBOBF . 

Thus, 
α
α

α
α

2cos
2sin

cos
cos1

2
−

=
Rr .      Let us express the values of cos α,  sin 2α, cos 2α via sin α taking 

into  account  the small value of the angle α: 

 

2
sin1sin1cos

2
2 ααα −≈−= , 

sin2α = 2sinαcosα , 

cos2α =cos2α – sin2α = 1 – 2sin2α . 

Then 

2

3
3

2

3

16
sin

2sin21
sin

2 R
DRRr ≈≈

−
= α

α
α . 

Substituting numerical data we will obtain: r ≈ 1.95∙10-3 m ≈ 2mm . 
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From the expression   3 216 rRD =  one can see that if the radius of the receiver is decreased 8 

times the transversal diameter D’ of the mirror, from which the light comes to the receiver, will be 

decreased 2 times and thus the “effective” area of the mirror will be decreased 4 times. 

The radiation flux Φ reflected by the mirror and received by the receiver will also be 

decreased twice since Φ ∼ S.  

 
 

Solution of the Experimental Problem 
 

While looking at objects through lenses it is easy to establish that there were given two 

converging lenses and a diverging one. 

The peculiarity of the given problem is the absence of a white screen on the list of  the 

equipment that is used to observe real images. The competitors were supposed to determine the 

position of the images by the parallance method observing the images with their eyes. 

The focal distance of the converging lens may be determined by the following method. 

Using a lens one can obtain a real image of a geometrical 

figure shown on the screen. The position of the real image is 

registered by the parallax method: if one places a vertical wire 

(Fig.7) to the point, in which the image is located, then at small 

displacements of the eye from the main optical axis of the lens 

  the image of this object and the wire will not diverge. 

We obtain the value of focal distance F from the formula of   thin lens by the measured 

distances d and f : 

1,2

1 1 1 ;
F d f

= +        1,2
dfF

d f
=

+
 . 

 

In this method the best accuracy is achieved in the case of  

f = d. 

 

The competitors were not asked to make a conclusion. 

The error of measuring the focal distance for each of the two converging lenses can be determined by 

multiple repeated measurements. The total number of points was given to those competitors who 

carried out not less fewer than n=5 measurements of the focal distance and estimated the mean value 

of the focal distance Fav: 

Fig. 7 
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av
1

1 n

iF F
n

= ∑  

 

and the absolute error F∆  

1

1 n

iF F
n

∆ = ∆∑ ,       avi iF F F∆ = −  

or root mean square error rmsF∆  

( )2
rms

1
iF F

n
∆ = ∆∑ . 

 

One could calculate the error by graphic method. 

 

 

 

 

 

 

 

Fig. 8 

           Determination of the focal distance of the diverging lens can be carried out by the method of 

compensation. With this goal one has to obtain a real image S’ of the object S using a converging lens. 

The position of the image can be registered using the parallax method. 

 If one places a diverging lens between the image and the converging lens the image will be 

displaced. Let us find a new position of the image S”. Using the reversibility property of the light rays, 

one can admit that the light rays leave the point S”. Then point S’ is a virtual image of the point S”, 

whereas the distances from the optical centre of the concave lens to the points S’ and S” are, 

respectively, the distances f to the image and d to the object (Fig.8). Using the formula of a thin lens 

we obtain 

 

3

1 1 1 ;
F f d

= − +        3 0fdF
d f

= − <
−

 . 

 

Here F < 0 is the focal distance of the diverging lens. In this case the error of measuring the focal 

distance can also be estimated by the method of repeated measurements similar to the case of the 
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converging lens. 

Typical results are: 

cmF )4,00,22(1 ±= , cmF )3,03,12(2 ±= , cmF )4,04,8(3 ±−= . 
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V International Physics Olympiad, 1971 

Sofia, Bulgaria 
 

The problems and the solutions are adapted by 
Victor Ivanov 

University of Sofia, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria 
 
Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High School 
Students”, eds. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian). 

Theoretical problems 

Question 1. 
 A triangular prism of mass M is placed one side on a frictionless horizontal plane as 
shown in Fig. 1. The other two sides are inclined with respect to the plane at angles α1 and α2 
respectively. Two blocks of masses m1 and m2, connected by an inextensible thread, can slide 
without friction on the surface of the prism. The mass of the pulley, which supports the thread, 
is negligible.  

• Express the acceleration a of the blocks relative to the prism in terms of the 
acceleration a0 of the prism.  

• Find the acceleration a0 of the prism in terms of quantities given and the acceleration g 
due to gravity.  

• At what ratio m1/m2 the prism will be in equilibrium? 
 
 
 
 
 
 
 
                                                                 Fig. 1 
                                                                

Question 2. 
 A vertical glass tube of cross section S = 1.0 cm2

 contains unknown amount of 
hydrogen. The upper end of the tube is closed. The other end is opened and is immersed in a 
pan filled with mercury. The tube and the pan are placed in a sealed chamber containing air at 
temperature T0 = 273 K and pressure P0 = 1.334×105 Pa. Under these conditions the height of 
mercury column in the tube above the mercury level in the pan is h0 = 0.70 m.  
 One of the walls of the chamber is a piston, which expands the air isothermally to a 
pressure of P1 = 8.00×104 Pa. As a result the height of the mercury column in the tube 
decreases to h1 = 0.40 m. Then the chamber is heated up at a constant volume to some 
temperature T2 until the mercury column rises to h2 = 0.50 m. Finally, the air in the chamber 
is expanded at constant pressure and the mercury level in the tube settles at h3 = 0.45 m above 
the mercury level in the pan. 

α1 α2 

m1 
m2 



 Provided that the system is in mechanical and thermal equilibrium during all the 
processes calculate the mass m of the hydrogen, the intermediate temperature T2, and the 
pressure P in the final state.  
 The density of mercury at temperature T0 is ρ0 = 1.36×104 kg/m3, the coefficient of 
expansion for mercury β = 1.84×10–4 K–1, and the gas constant R = 8.314 J/(mol×K). The 
thermal expansion of the glass tube and the variations of the mercury level in the pan are not 
considered.  
 Hint. If ∆T is the interval of temperature variations of the system then β∆T = x << 1 In 

that case you can use the approximation: x
x

−≈
+

1
1

1 .  

Question 3. 
 Four batteries of EMF E1 = 4 V, E2 = 8 V, E3 = 12 V, and E4 = 16 V, four capacitors 
with the same capacitance C1 = C2 = C3 = C4 = 1 µF, and four equivalent resistors are 
connected in the circuit shown in Fig. 3. The internal resistance of the batteries is negligible.  

• Calculate the total energy W accumulated on the capacitors when a steady state of the 
system is established. 

• The points H and B are short connected. Find the charge on the capacitor C2 in the 
new steady state. 

  
 
 
 
 
 
 
 
 
 
 
 
                                                       Fig. 3 
                                                       
 

Question 4. 
 A spherical aquarium, filled with water, is placed in front of a flat vertical mirror. The 
radius of the aquarium is R, and the distance between its center and the mirror is 3R. A small 
fish, which is initially at the point nearest to the mirror, starts to move with velocity v along 
the wall. An observer looks at the fish from a very large distance along a horizontal line 
passing trough the center of the aquarium.   

What is the relative velocity vrel at which the two images of the fish seen by the observer 
will move apart? Express your answer in terms of v. Assume that: 

• The wall of the aquarium is made of a very thin glass.  
• The index of refraction of water is n = 4/3.   

 
 
 
 

E1 E2 

E3 E4 

C1 

C2 

C3 

C4 

A B 

C D 

E F 

G H 



 
 
 

Experimental Problem 
Apparatus: dc source, ammeter, voltmeter, rheostat (coil of high resistance wire with sliding 
contact), and connecting wires.   
Problem: Construct appropriate circuit and establish the dependence of the electric power P 
dissipated in the rheostat as a function of the current I supplied by the dc source.  

1. Make a plot of P versus I. 
2. Find the internal resistance of the dc source. 
3. Determine the electromotive force E of the source. 
4. Make a graph of the electric power P versus resistance R of the rheostat. 
5. Make a graph of the total power Ptot dissipated in the circuit as a function of R. 
6. Make a graph of the efficiency η of the dc source versus R. 

 



Solutions to the problems of the 5-th 
International Physics Olympiad, 1971, Sofia, Bulgaria 

 
The problems and the solutions are adapted by 

Victor Ivanov 
Sofia State University, Faculty of Physics, 5 James Bourcier Blvd., 1164 Sofia, Bulgaria 
 
Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High 
School Students”, eds. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian). 

Theoretical problems 

Question 1. 
 The blocks slide relative to the prism with accelerations a1 and a2, which are 
parallel to its sides and have the same magnitude a (see Fig. 1.1). The blocks move 
relative to the earth with accelerations: 
(1.1) w1 = a1 + a0; 
(1.2)   w2 = a2 + a0. 
Now we project w1 and w2 along the x- and y-axes: 
(1.3)   011 cos aaw x −α= ; 
(1.4)   11 sinα= aw y ; 
(1.5)   022 cos aaw x −α= ; 
(1.6)   22 sinα−= aw y . 
                                                                                                        
Fig. 1.1 
 
The equations of motion for the blocks and for the prism have the following vector 
forms (see Fig. 1.2): 
(1.7)   11111 TRgw ++= mm ; 
(1.8)   22222 TRgw ++= mm ; 
(1.9)   21210 TTRRRga −−+−−= MM . 
 
 
 
 
 
 
 
 
 
                                                            Fig. 1.2 
 
The forces of tension T1 and T2 at the ends of the thread are of the same magnitude T 
since the masses of the thread and that of the pulley are negligible. Note that in equation 
(1.9) we account for the net force –(T1 + T2), which the bended thread exerts on the 

α1 α2 
x 

y 

a0 

a1 

a2 w2 

w1 

R2 

T2 R1 
T1 

R 

Mg 
m1g 

m2g 

x 

y 



prism through the pulley. The equations of motion result in a system of six scalar 
equations when projected along x and y: 
(1.10)   1110111 sincoscos α−α=−α RTamam ; 
(1.11)   gmRTam 111111 cossinsin −α+α=α ; 
(1.12)   2220222 sincoscos α+α−=−α RTamam ; 
(1.13)   gmRTam 222222 sinsinsin −α+α=α ; 
(1.14)   2122110 coscossinsin α+α−α−α=− TTRRMa ; 
(1.15)   MgRRR −α−α−= 2211 coscos0 . 
By adding up equations (1.10), (1.12), and (1.14) all forces internal to the system cancel 
each other. In this way we obtain the required relation between accelerations a and a0: 

(1.16)   
2211

21
0 coscos α+α

++
=

mm
mmMaa . 

The straightforward elimination of the unknown forces gives the final answer for a0: 

(1.17)   2
22112121

22112211
0 )coscos())((

)coscos)(sinsin(
α+α−+++

α+αα−α
=

mmmmMmm
mmmma . 

It follows from equation (1.17) that the prism will be in equilibrium (a0 = 0) if: 

(1.18)   
1

2

2

1

sin
sin

α
α

=
m
m . 

Question 2. 
 We will denote by H (H = const) the height of the tube above the mercury level 
in the pan, and the height of the mercury column in the tube by hi. Under conditions of 
mechanical equilibrium the hydrogen pressure in the tube is: 
(2.1)    iairH ghPP ρ−=

2
, 

where ρ is the density of mercury at temperature ti:  
(2.2)    ( )tβ−ρ=ρ 10  
The index i enumerates different stages undergone by the system, ρ0 is the density of 
mercury at t0 = 0 °C, or T0 = 273 K, and β its coefficient of expansion. The volume of 
the hydrogen is given by: 
(2.3)    Vi = S(H – hi). 
 Now we can write down the equations of state for hydrogen at points 0, 1, 2, and 
3 of the PV diagram (see Fig. 2): 

(2.4)    00000 )()( RT
M
mhHSghP =−ρ− ; 

(2.5)    01101 )()( RT
M
mhHSghP =−ρ− ; 

(2.6)    22212 )()( RT
M
mhHSghP =−ρ− , 

where 
0

21
2 T

TPP = , [ ])(1
)(1 020

02

0
1 TT

TT
−β−ρ≈

−β+
ρ

=ρ  since the process 1–3 is 

isochoric, and: 



(2.7)   33322 )()( RT
M
mhHSghP =−ρ−  

where [ ])(1 0302 TT −β−ρ≈ρ , 
2

3
2

2

3
23 hH

hH
T

V
V

TT
−
−

==  for the isobaric process 2–3. 

 
 
 
 
 
 
 
 
                                                
 
 
                                                              Fig. 2 
 

After a good deal of algebra the above system of equations can be solved for the 
unknown quantities, an exercise, which is left to the reader. The numerical answers, 
however, will be given for reference:  

H ≈ 1.3 m; 
    m ≈ 2.11×10–6 kg; 
    T2 ≈ 364 K; 
    P2 ≈ 1.067×105 Pa; 

T3 ≈ 546 K; 
    P2 ≈ 4.8×104 Pa. 
 

Question 3. 
 A circuit equivalent to the given one is shown in Fig. 3. In a steady state (the 
capacitors are completely charged already) the same current I flows through all the 
resistors in the closed circuit ABFGHDA. From the Kirchhoff’s second rule we obtain: 

(3.1)   
R

EEI
4

14 −= . 

Next we apply this rule for the circuit ABCDA: 
(3.2)   121 EEIRV −=+ , 
where V1 is the potential difference across the capacitor C1. By using the expression 
(3.1) for I, and the equation (3.2) we obtain: 

(3.3)   1
4

14
121 =

−
−−=

EEEEV V. 

Similarly, we obtain the potential differences V2 and V4 across the capacitors C2 and C4 
by considering circuits BFGCB and FGHEF: 

(3.4)   5
4

14
242 =

−
−−=

EEEEV V, 

P0 

P2 

P1 

P 

V0 V1= V2 V3 V 

1 

2 3 

0 



(3.5)   1
4

14
344 =

−
−−=

EEEEV V. 

Finally, the voltage V3 across C3 is found by applying the Kirchhoff’s rule for the 
outermost circuit EHDAH: 

(3.6)   5
4

14
133 =

−
−−=

EEEEV V. 

The total energy of the capacitors is expressed by the formula: 

(3.7)   ( ) 26
2

2
4

2
3

2
2

2
1 =+++= VVVVCW µJ. 

 
 
 
 
 
 
 
 
 
                                                          Fig. 3 
 

When points B and H are short connected the same electric current I’ flows 
through the resistors in the BFGH circuit. It can be calculated, again by means of the 
Kirchhoff’s rule, that: 

(3.8)   
R

EI
2

4=′ . 

The new steady-state voltage on C2 is found by considering the BFGCB circuit: 
(3.9)   242 EERIV −=′+′  
or finally: 

(3.10)   0
2 2

4
2 =−=′ EEV V. 

Therefore the charge 2q′ on C2 in the new steady state is zero. 

Question 4. 
 In a small time interval ∆t the fish moves upward, from point A to point B, at a 
small distance d = v∆t. Since the glass wall is very thin we can assume that the rays 
leaving the aquarium refract as if there was water – air interface. The divergent rays 
undergoing one single refraction, as show in Fig. 4.1, form the first, virtual, image of the 
fish. The corresponding vertical displacement A1B1 of that image is equal to the distance 
d1 between the optical axis a and the ray b1, which leaves the aquarium parallel to a. 
Since distances d and d1 are small compared to R we can use the small-angle 
approximation: sinα ≈ tanα ≈ α (rad). Thus we obtain: 
(4.1)   d1 ≈ R α; 
(4.2)   d ≈ R γ; 
(4.3)   α + γ = 2β; 
(4.4)   α ≈ nβ. 

E1 E2 E3 E4 

C1 C2 

C3 

C4 
A B 

C 
D 

E F 

G H 

R R 

R 

R 



From equations (4.1) - (4.4) we find the vertical displacement of the first image in terms 
of d: 

(4.5)   d n
n

d1 2
=

−
, 

and respectively its velocity v1 in terms of v: 

(4.6)   v n
n

v1 2
2=

−
= . 

 
 
 
 
 
 
 
 
 
 
 
 
                                                        Fig. 4.1 
 
 The rays, which are first reflected by the mirror, and then are refracted twice at 
the walls of the aquarium form the second, real image (see Fig. 4.2). It can be 
considered as originating from the mirror image of the fish, which move along the line 
A’B’ at exactly the same distance d as the fish do.  
 
 
 
 
 
 
 
 
 
 
                                                         Fig. 4.2 
 
The vertical displacement A2B2 of the second image is equal to the distance d2 between 
the optical axis a and the ray b2, which is parallel to a.  Again, using the small-angle 
approximation we have: 
(4.7) d’ ≈ 4Rδ - d, 
(4.8) d2 ≈ Rα 
Following the derivation of equation (4.5) we obtain: 

(4.9)   d n
n

d2 2
=

−
′ . 

Now using the exact geometric relations: 
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B 4R 
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(4.10)    δ = 2α – 2β 
and the Snell’s law (4.4) in a small-angle limit, we finally express d2 in terms of d: 

(4.11)   d
n

nd
1092 −

= , 

and the velocity v2 of the second image in terms of v: 

(4.12)   vv
n

nv
3
2

1092 =
−

= . 

The relative velocity of the two images is: 
(4.13) vrel = v1 – v2 
in a vector form. Since vectors v1 and v2 are oppositely directed (one of the images 
moves upward, the other, downward) the magnitude of the relative velocity is: 

(4.14)   vvvv
3
8

21rel =+= . 

 
Experimental problem 

 
 The circuit is given in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sliding the contact along the rheostat sets the current I supplied by the source. For each 
value of I the voltage U across the source terminals is recorded by the voltmeter. The 
power dissipated in the rheostat is: 

 P = UI  
provided that the heat losses in the internal resistance of the ammeter are negligible.  
1. A typical P–I curve is shown below: 
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P 
Pmax 

I0 
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E 



If the current varies in a sufficiently large interval a maximum power Pmax can be 
detected at a certain value, I0, of I. Theoretically, the P(I) dependence is given by: 
(5.1)     rIEIP 2−= , 
where E and r are the EMF and the internal resistance of the dc source respectively. The 
maxim value of P therefore is: 

(5.2)     
r

EP
4

2

max = , 

and corresponds to a current: 

(5.3)     
r

EI
20 = . 

2. The internal resistance is determined trough (5.2) and (5.3) by recording Pmax and I0 
from the experimental plot: 

     2
0

max

I
P

r =  . 

3. Similarly, EMF is calculated as: 

     
0

max2
I
P

E = . 

4. The current depends on the resistance of the rheostat as: 

     
rR

EI
+

= . 

Therefore a value of R can be calculated for each value of I: 

(5.4)     r
I
ER −= . 

The power dissipated in the rheostat is given in terms of R respectively by: 

(5.5)     2

2

)( rR
REP

+
= . 

The P–R plot is given below: 
 
 
 
 
 
 
 
 
 
 
Its maximum is obtained at R = r. 
5. The total power supplied by the dc source is: 

(5.6)  
rR

EPtot +
=

2

. 
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6. The efficiency respectively is: 

(5.7)  
rR

R
P
P

tot +
==η . 
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Problems of the 6th International Physics Olympiad 
(Bucharest, 1972) 

 
Romulus Pop 

Civil Engineering University, Physics Department1

Bucharest, Romania 
 

 
 The sixth IPhO was held in Bucharest and the participants were: Bulgaria, 
Czechoslovakia, Cuba, France, German Democratic Republic, Hungary, Poland, Romania, and 
Soviet Union.  It was an important event because it was the first time when a non-European 
country and a western country participated (Cuba), and Sweden sent one observer.  

The International Board selected four theoretical problems and an experimental 
problem. Each theoretical problem was scored from 0 to 10 and the maximum score for the 
experimental problem was 20. The highest score corresponding to actual marking system was 
47,5 points. Each team consisted in six students. Four students obtained the first prize, seven 
students obtained the second prize, ten students obtained the third prize, thirteen students had 
got honorable mentions, and two special prizes were awarded too. 

The article contains the competition problems given at the 6th International Physics 
Olympiad (Bucharest, 1972) and their solutions. The problems were translated from the book 
published in Romania concerning the first nine International Physics Olympiads2

 

, because I 
couldn’t find the original English version. 

Theoretical problems 
 

Problem 1 (Mechanics) 
 

Three cylinders with the same mass, the same length and the same external radius are 
initially resting on an inclined plane. The coefficient of sliding friction on the inclined plane, μ, 
is known and has the same value for all the cylinders. The first cylinder is empty (tube) , the 
second is homogeneous filled, and the third has a  cavity exactly like the first, but closed with 
two negligible mass lids and filled with a liquid with the same density like the cylinder’s walls. 
The friction between the liquid and the cylinder wall is considered negligible. The density of 
the material of the first cylinder is n times greater than that of the second or of the third 
cylinder. 
Determine: 

a) The linear acceleration of the cylinders in the non-sliding case. Compare all the 
accelerations. 

b) Condition for angle α of the inclined plane so that no cylinders is sliding. 
c) The reciprocal ratios of the angular accelerations in the case of roll over with 

sliding of all the three cylinders. Make a comparison between these accelerations. 
d) The interaction force between the liquid and the walls of the cylinder in the case 

of sliding of this cylinder, knowing that the liquid mass is ml.  
 

                                                 
1 E-mail: popr@tvet.ro 
2 Marius Gall and Anatolie Hristev, Probleme date la Olimpiadele de Fizica, Editura Didactica si Pedagogica – 
Bucuresti, 1978 
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Solution Problem 1 
 
 The inertia moments of the three cylinders are: 
 

( ) ,
2
1 44

11 hrRI −= πρ    24
22 2

1
2
1 mRhRI == πρ    ,  ( ) ,

2
13 44

2 hrRI −= πρ           (1) 

Because the three cylinders have  the same mass : 
 

( ) hRhrRm 2
2

22
1 πρπρ =−=                                                    (2) 

 
it results: 
 

2

12

1

222 ,111
ρ
ρ

ρ
ρ

=





 −=








−= n

n
RRr                                            (3) 

 
The inertia moments can be written:  
 

221
12 I
n

II 〉





 −=  ,    

n
I

nn
II 1

23
112 =⋅






 −=                                (4) 

 
In the expression of the inertia momentum  3I  the sum of the two factors is constant: 

2112 =+





 −

nn
 

independent of n, so that their products are maximum when these factors are equal:  

nn
112 =−  ; it results n = 1, and the products 1112 =⋅






 −

nn
. In fact n > 1, so that the products 

is les than 1. It results: 
 

I1 > I2 > I3                                (5) 
For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations: 
 

maFmg f =−αsin                                            (6) 
0cos =− αmgN  

εIRFf =                                                              (7) 
 
where ε is the angular acceleration. If the cylinder doesn’t slide we have the condition: 
 

Ra ε=                                                                 (8) 
 
Solving the equation system (6-8) we find: 
 



 3 

21

sin

mR
I

ga
+

=
α  ,    

I
mR

mgFf 2

1

sin

+
=

α                               (9) 

 
The condition of non-sliding is: 
 

Ff < μN = μmgsinα 
 

tgα  < 







+

1

2

1
I

mRµ                        (10) 

 

 
In the case of the cylinders from this problem, the condition necessary so that none of them 
slides is obtained for maximum I: 
 

12
141

1

2

−
−

=







+〈

n
n

I
mRtg µµα             (11) 

 
The accelerations of the cylinders are: 
 

)11(3

sin2
1

n

ga
−+

=
α   ,  

3
sin2

2
αga =  ,   

2
3

)11(3

sin2

n

ga
−−

=
α .                    (12) 

 
The relation between accelerations: 
 

a1 < a2 < a3                           (13) 
 
In the case than all the three cylinders slide: 

αµµ cosmgNFf ==                      (14) 
and from (7) results: 

Fig. 1.1 
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αµε cosmg
I
R

=                               (15) 

for the cylinders of the problem: 
 

n
nIII

:11:11:1:1::
321

321 





 −==εεε  

 
ε1 < ε2 <  ε3                        (16) 

 
In the case that one of the cylinders is sliding: 
 

maFmg f =−αsin ,   αµ cosmgFf = ,    (17) 
( )αµα cossin −= ga                                 (18) 

 
Let F



be the total force acting on the liquid mass ml inside the cylinder (fig.1.2), we can write: 
 

( )αµαα cossinsin −==+ gmamgmF lllx ,  0cos =− αgmF ly   (19) 

φ
αµα

cos
cos1cos 222 gmgmFFF llyx =+⋅=+=                       (20) 

where φ  is the friction angle ( )µφ =tg . 
 

 

 
 

Problem 2 (Molecular Physics) 
 

Two cylinders A and B, with equal diameters have inside two pistons with negligible 
mass connected by a rigid rod. The pistons can move freely. The rod is a short tube with a 
valve. The valve is initially closed (fig. 2.1). 
 
 

Fig. 1.2 



 5 

 
 
The cylinder A and his piston is adiabatically insulated and the cylinder B is in thermal contact 
with a thermostat which has the temperature θ = 27oC. 
Initially the piston of the cylinder A is fixed and inside there is a mass m= 32 kg of argon at a 
pressure higher than the atmospheric pressure. Inside the cylinder B there is a mass of oxygen 
at the normal atmospheric pressure. 
Liberating the piston of the cylinder A, it moves slowly enough (quasi-static) and at 
equilibrium the volume of the gas is eight times higher, and in the cylinder B de oxygen’s 
density increased two times. Knowing that the thermostat received the heat Q’=747,9.104J, 
determine: 

a) Establish on the base of the kinetic theory of the gases, studying the elastic collisions 
of the molecules with the piston, that the thermal equation of the process taking place in the 
cylinder A is TV2/3 = constant. 

b) Calculate the parameters p, V, and T of argon in the initial and final states. 
c) Opening the valve which separates the two cylinders, calculate the final pressure of the 

mixture of the gases. 
The kilo-molar mass of argon is μ = 40 kg/kmol. 
 
Solution Problem 2 
 
a) We consider argon an ideal mono-atomic gas and the collisions of the atoms with the 

piston perfect elastic. In such a collision with a fix wall the speed v  of the particle changes 
only the direction so that the speed v  and the speed 'v after collision there are in the same 
plane with the normal and the incident and reflection angle are equal.  

nn vv −=' , tt vv ='                   (1) 
In the problem the wall moves with the speed u  perpendicular on the wall. The relative speed 
of the particle with respect the wall is uv 

− . Choosing the Oz axis perpendicular on the wall in 
the sense of u , the conditions of the elastic collision give: 

( ) ( )zz uvuv 

−−=− '  , ( ) ( ) yxyx uvuv ,
'

,


−=− ; 

( )uvuv zz −−=− '  , zz vuv −= 2' , yxyx vv ,
'
, =    (2) 

The increase of the kinetic energy of the particle with mass om  after collision is: 

( ) ( ) zozozzooo uvmvuumvvmvmvm 22
2
1

2
1

2
1 22'22' −≅−=−=−    (3) 

because u is much smaller than zv . 
If kn is the number of molecules from unit volume with the speed component zkv , then the 
number of molecules with this component which collide in the time dt the area dS of the piston 
is: 

A B Fig. 2.1 
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dtdSvn zkk2
1     (4) 

These molecules will have a change of the kinetic energy: 

( ) dVvnmuvmdtdSvn zkkozkozkk
22

2
1

−=−    (5) 

 
where udtdSdV =  is the increase of the volume of gas. 
The change of the kinetic energy of the gas corresponding to the increase of volume dV is: 

dVvnmvndVmdE o
k

zkkoc
22

3
1

−=−= ∑                  (6) 

 
and: 

V
dVU

V
dVvm

NdU o

3
2

23
2 2

−=⋅−=                   (7) 

 
Integrating equation (7) results: 

.3/2 constUV =              (8) 
The internal energy of the ideal mono-atomic gas is proportional with the absolute temperature 
T and the equation (8) can be written: 

.3/2 constTV =              (9) 
b) The oxygen is in contact with a thermostat and will suffer an isothermal process. The 

internal energy will be modified only by the adiabatic process suffered by argon gas: 
TmcTCU VV ∆=∆=∆ ν   (10) 

where ν is the number of kilomoles.  For argon RCV 2
3

= . 

For the entire system L=0 and  QU =∆ . 
We will use indices 1, respectively 2, for the measures corresponding to argon from cylinder A, 
respectively oxygen from the cylinder B: 

( )











−








⋅==−⋅⋅=∆ 1
2
3

2
3

3/2

'
1

1
1

1

1
1

'
1

1

1

V
VRTmQTTRmU

µµ
              (11) 

From equation (11) results: 

K

V
VR

Q
m

T 1000

1

1
3
2

3/2

'
1

11

1
1 =

−







⋅⋅⋅=

µ                (12) 

KTT 250
4
1'

1 ==                        (13) 

For the isothermal process suffered by oxygen: 

2

'
2

2

'
2

p
p

=
ρ
ρ                                    (14) 

 
25'

2 /10026,200,2 mNatmp ⋅==  



 7 

From the equilibrium condition: 
atmpp 2'

2
'
1 ==                         (15) 

For argon: 
25

'
1

1

1

'
1'

11 /109,6464 mNatm
T
T

V
Vpp ⋅==⋅⋅=  (16) 

3
1

'
1

3

1

1

1

1
1 16,88,02,1 mVVm

p
RTmV ===⋅=

µ
   (17) 

c) When the valve is opened the gases intermix and at thermal equilibrium the final 
pressure will be 'p  and the temperature T. The total number of kilomoles is constant: 

( )
RT

VVp
RT

Vp
RT

Vp '
2

'
1

'
2

'
2

'
1

'
1

'
1'

21 , +
=+=+ ννν            (18) 

KTTTatmpp 300,2 '
22

'
2

'
1 ====+  

The total volume of the system is constant: 

,'2
'

121 VVVV +=+     '
2

2

2

'
2

ρ
ρ

=
V
V ,   32'

2 14,7
2

mVV ==     (19) 

 
From equation (18) results the final pressure: 

25'
2'

1

'
1

21

'
1 /1023,22,21 mNatmV

T
TV

VV
pp ⋅==








+⋅⋅

+
⋅=   (20) 

 
Problem 3 (Electricity) 

 
A plane capacitor with rectangular plates is fixed in a vertical position having the lower 

part in contact with a dielectric liquid (fig. 3.1) 
Determine the height, h, of the liquid between the plates and explain the phenomenon.  
The capillarity effects are neglected. 
It is supposed that the distance between the plates is much smaller than the linear dimensions 
of the plates. 
 

 
 
It is known: the initial intensity of the electric field of the charged capacitor, E, the density ρ, 
the relative electric permittivity εr of the liquid, and the height H of the plates of the capacitor. 
Discussion. 

h 

H 
Fig. 3.1  
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Solution Problem 3 

 
The initial energy on the capacitor is: 

o

o
ooo C

Q
UCW

2
2

2
1

2
1

⋅=⋅= , where   
d
Hl

C o
o

ε
=    (1) 

H is the height of the plates, l is the width of the capacitor’s plates, and d is the distance 
between the plates. 
When the plates contact the liquid’s surface on the dielectric liquid is exerted a vertical force. 
The total electric charge remains constant and there is no energy transferred to the system from 
outside. The increase of the gravitational energy is compensated by the decrease of the 
electrical energy on the capacitor: 

21 WWWo +=                  (2) 

C
Q

W o
2

1 2
1
⋅= ,  ldghW 2

2 2
1 ρ=               (3) 

( )
d

lhH
d

hl
CCC oro −

+=+=
εεε

21       (4) 

Introducing (3) and (4) in equation (2) it results: 

( ) ( )
0

1
1

2
2 =

−
−+−

g
HE

Hhh roo
r ρ

εε
ε  

The solution is: 

( )
( )











 −
±±−⋅

−
=

gH
EHh roo

r ρ
εε

ε

22

2,1
14

11
12

              (8) 

 
Discussion: Only the positive solution has sense. Taking in account that H is much more grater 
than h we obtain the final result: 

( ) 21
o

ro E
g

h ⋅
−

≈
ρ
εε      

 
 

Problem 4 (Optics) 
 

A thin lens plane-convex with the diameter 2r, the curvature radius R and the refractive 
index no is positioned so that on its left side is air (n1 =1), and on its right side there is a 
transparent medium with the refractive index n2 ≠ 1. The convex face of the lens is directed 
towards air. In the air, at the distance s1from the lens, measured on the principal optic ax, there 
is a punctual source of monochromatic light. 
a) Demonstrate, using Gauss approximation, that between the position of the image, given by 
the distance s2 from the lens, and the position of the light source, exists the relation:  

1
2

2

1

1 =+
s
f

s
f  
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where f1 and f2 are the focal distances of the lens, in air, respectively in the medium with the 
refractive index n2. 
Observation: All the refractive indexes are absolute indexes. 
b) The lens is cut perpendicular on its plane face in two equal parts. These parts are moved 
away at a distance δ << r (Billet lens). On the symmetry axis of the system obtained is led a 
punctual source of light at the distance s1 (s1 > f1) (fig. 4.1). On the right side of the lens there 
is a screen E at the distance d. The screen is parallel with the plane face of the lens. On this 
screen there are N interference fringes, if on the right side of the lens is air. 
Determine N function of the wave length. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Solution problem 4 
 

a) From the Fermat principle it results that the time the light arrives from 1P  to 2P is not 
dependent of the way, in gauss approximation ( 1P  and 2P  are conjugated points). 

 
1T  is the time the light roams the optical way 2211 POVVP  (fig. 4.2): 

2

2

1

1
1 v
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v
MPT += , where
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hOPMOOPMP

1

2

1
22
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OP
hOPMP
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2
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because OMh = is much more smaller than OP1  or  OP2 . 
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Fig. 4.1 

Fig. 4.2 
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From condition 21 TT = , it results: 
 

2211212211
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+=+   (3) 

Taking in account the relation
n
cv = , and using 11 sOP = , 22 sOP = , the relation (3) can be 

written: 
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If the point 1P  is at infinite, 2s  becomes the focal distance; the same for 2P . 
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From the equations (30 and (4) it results: 

1
2

2

1

1 =+
s
f

s
f                               (6) 

The lens is plane-convex (fig. 4.3) and its focal distances are: 
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=
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               (7) 

b) In the case of Billet lenses, 1S  and 2S  are the real images of the object S and can be 
considered like coherent light sources (fig. 4.4). 
 

 
 
Fig. 4.3 
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∆=21OO  is much more smaller than r: 

rrOM ≈+∆= ,  121 pSOSOSO =≈≈ , 2
'

2211 pOSOSOS =≈= , 







+⋅∆=

2

1
21 1

p
pSS  

We calculate the width of the interference field 'RR   (fig. 4.4). 

2
22 '' ϕtgASRARR ⋅⋅=⋅= ,  2

' pdAS −≅ , 
22 p

rtg =
ϕ ,   ( )

2
2

' 2
p
rpdRR ⋅−=  

Maximum interference condition is: 
λ⋅= kNS2  

The fringe of k order is located at a distance kx  from A: 
( )









+∆

−
⋅=
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2

2

1
p
p
pdkxk

λ                    (8) 

The expression of the inter-fringes distance is: 
( )









+∆

−
=

1

2

1
p
p
pdi λ                          (9) 

The number of observed fringes on the screen is: 

2
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2
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2
p
p
p

r
i

RRN
λ

+
⋅∆==          (10) 

2p  can be expressed from the lenses’ formula: 

fp
fpp
−

=
1

1
2  

 
 

Fig. 4.4 
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Experimental part (Mechanics) 
 

There are given two cylindrical bodies (having identical external shapes and from the 
same material), two measuring rules, one graduated and other un-graduated, and a vessel with 
water. 
It is known that one of the bodies is homogenous and the other has an internal cavity with the 
following characteristics:   

- the cavity is cylindrical  
- has the axis parallel with the axis of the body 
- its length is practically equal with that of the body 

Determine experimentally and justify theoretically: 
a) The density of the material the two bodies consist of. 
b) The radius of the internal cavity. 
c) The distance between the axis of the cavity and the axis of the cylinder. 
d) Indicate the sources of errors and appreciate which of them influences more the final 

results. 
Write all the variants you have found. 
 
Solution of the experimental problem  
 

a) Determination of the density of the material 
The average density of the two bodies was chosen so that the bodies float on the water. 
Using the mass of the liquid crowded out it is determined the mass of the first body (the 
homogenous body): 

aaaaa HSVmm ρρ ===                                  (1) 
where Sa is the area of the base immersed in water, H the length  of the cylinder and ρa is the 
density of water. 
The mass of the cylinder is: 

ρπρ HRVm 2=⋅=                                (2) 
It results the density of the body: 

2R
Sa

a π
ρρ =                          (3) 

To calculate the area Sa it is measured the distance h above the water surface (fig. 5.1). Area is 
composed by the area of the triangle OAB plus the area of the circular sector with the angle 
2π -2θ. 
The triangle area: 

( ) ( ) ( ) ( )hRhhRhRhRR −−=−⋅−−⋅ 22
2
1 2       (4) 
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The circular sector area is: 
 

( )






 −

−=
−

R
hRRR arccos

2
2 22 ππ

π
θπ        (5) 

The immersed area is: 
 

( ) ( ) 





 −

−+−−=
R

hRRhRhhRSa arccos2 2 π        (6) 

where R and h are measured by the graduated rule. 
b) The radius of the cylindrical cavity 
The second body (with cavity) is dislocating a water mass: 

aaa HSmm ρ''' ==       (7) 
where Sa’ is area immersed in water. 
The mass of the body having the cavity inside is: 

( ) ( ) ρπρ HrRvVm 22' −=−=    (8) 
The cavity radius is: 

'2
a

a SRr ⋅−=
πρ
ρ

   (9) 

Sa
’ is determined like Sa. 

c) The distance between the cylinder’s axis and the cavity axis 
We put the second body on the horizontal table (or let it to float in water) and we trace the 
vertical symmetry axis AB (fig. 5.2). 
Using the rule we make an inclined plane. We put the body on this plane and we determine the 
maximum angle of the inclined plane for the situation the body remains in rest (the body 
doesn’t roll). Taking in account that the weight centre is located on the axis AB on the left side 
of the cylinder axis (point G in fig. 5.2) and that at equilibrium the weight centre is on the 
same vertical with the contact point between the cylinder and the inclined plane, we obtain the 
situation corresponding to the maximum angle of the inclined plane (the diameter AB is 
horizontal). 

Fig. 5.1 
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The distance OG is calculated from the equilibrium condition: 
 

xmOGm c ⋅=⋅'  , (mc = the mass dislocated  by the cavity)      (10) 
 

OG = Rsinα          (11) 
 

2

22'

sin
r

rRR
m
mOGx

c

−
⋅⋅=⋅= α     (12) 

d) At every measurement it must be estimated the reading error. Taking in account the 
expressions for ρ, r and x it is evaluated the maximum error for the determination of these 
measures. 

Fig. 5.2 
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Abstract 
 

The article contains the competition problems given at the 7th International Physics 
Olympiad (Warsaw, 1974) and their solutions.  

 
Introduction 

 
 The 7th International Physics Olympiad (Warsaw, 1974) was the second one organized 
in Poland. It took place after a one-year organizational gap, as no country was able to 
organize the competition in 1973. 

The original English version of the problems of the 7th IPhO has not been preserved. 
We would like to remind that the permanent Secretariat of the IPhOs was established only in 
1983; previously the Olympic materials had been collected by individual people in their 
private archives and, in general, are not complete. English texts of the problems and 
simplified solutions are available in the book by R. Kunfalvi [1]. Unfortunately, they are 
somewhat deformed as compared to the originals. Fortunately, we have very precise Polish 
texts. Also the full solutions in Polish are available. This article is based on the books [2, 3] 
and article [4]. 

The competition problems were prepared especially for the 7th IPhO by Andrzej 
Szymacha (theoretical problems) and Jerzy Langer (experimental problem). 

 
THEORETICAL PROBLEMS 

 
Problem 1 
 

A hydrogen atom in the ground state, moving with velocity v , collides with another 
hydrogen atom in the ground state at rest. Using the Bohr model find the smallest velocity 0v  
of the atom below which the collision must be elastic. 

At velocity 0v  the collision may be inelastic and the colliding atoms may emit 
electromagnetic radiation. Estimate the difference of frequencies of the radiation emitted in 
the direction of the initial velocity of the hydrogen atom and in the opposite direction as a 
fraction (expressed in percents) of their arithmetic mean value. 

Data: 
 

J 182.18  eV 6.13
2

18-
2

4

⋅===


meEi ; (ionization energy of hydrogen atom) 

 
kg 1067.1 27−⋅=Hm ; (mass of hydrogen atom) 

                                                 
1 This article has been sent for publication in Physics Competitions in September 2003 
2 e-mail: gorzk@ifpan.edu.pl 



 
( m  - mass of electron; e  - electric charge of electron;  - Planck constant; numerical 

values of these quantities are not necessary.) 
 

Solution 
 
 According to the Bohr model the energy levels of the hydrogen atom are given by the 
formula: 
 

2n
EE i

n −= , 

 
where n = 1, 2, 3, … The ground state corresponds to 1=n , while the lowest excited state 
corresponds to 2=n . Thus, the smallest energy necessary for excitation of the hydrogen atom 
is: 
 

ii EEEEE 4
3

4
1

12 )1( =−=−=∆ . 
 

During an inelastic collision a part of kinetic energy of the colliding particles is 
converted into their internal energy. The internal energy of the system of two hydrogen atoms 
considered in the problem cannot be changed by less than E∆ . It means that if the kinetic 
energy of the colliding atoms with respect to their center of mass is less than E∆ , then the 
collision must be an elastic one. The value of 0v  can be found by considering the critical case, 
when the kinetic energy of the colliding atoms is equal to the smallest energy of excitation. 
With respect to the center of mass the atoms move in opposite direction with velocities 02

1 v . 
Thus 

 

( ) ( ) iHH Evmvm 4
32

02
12

02
1

2
1

2
1

=+  

 
and 
 

H

i

m
Ev 3

0 =         ( 41026.6 ⋅≈  m/s). 

 
 Consider the case when 0vv = . The collision may be elastic or inelastic. When the 
collision is elastic the atoms remain in their ground states and do not emit radiation. Radiation 
is possible only when the collision is inelastic. Of course, only the atom excited in the 
collision can emit the radiation. In principle, the radiation can be emitted in any direction, but 
according to the text of the problem we have to consider radiation emitted in the direction of 
the initial velocity and in the opposite direction only. After the inelastic collision both atom 
are moving (in the laboratory system) with the same velocities equal to 02

1 v . Let f  denotes 
the frequency of radiation emitted by the hydrogen atom in the mass center (i.e. at rest). 
Because of the Doppler effect, in the laboratory system this frequency is observed as (c 
denotes the velocity of light): 



a) f
c
v

f 






 += 02
1

1 1 - for radiation emitted in the direction of the initial velocity of the 

hydrogen atom, 

b) f
c
v

f 






 −= 02
1

2 1  - for radiation emitted in opposite direction. 

 
The arithmetic mean value of these frequencies is equal to f . Thus the required ratio 

is 
 

c
v

f
ff

f
f 021 =

−
=

∆           ( %102 2−⋅≈ ). 

 
In the above solution we took into account that cv <<0 . Otherwise it would be 

necessary to use relativistic formulae for the Doppler effect. Also we neglected the recoil of 
atom(s) in the emission process. One should notice that for the visible radiation or radiation 
not too far from the visible range the recoil cannot change significantly the numerical results 

for the critical velocity 0v  and the ratio 
f
f∆ . The recoil is important for high-energy quanta, 

but it is not this case. 
The solutions were marked according to the following scheme (draft): 

1. Energy of excitation     up to 3 points 
2. Correct description of the physical processes up to 4 points 
3. Doppler effect      up to 3 points 

 
Problem 2 
 

Consider a parallel, transparent plate of thickness d – Fig. 1. Its refraction index varies 
as 

R
x

nn
−

=
1

0 . 

 

 

 

 

 
 

 

 

 

 

 

y 

xB A x 

d 

B 

α 



Fig. 1 
 

A light beam enters from the air perpendicularly to the plate at the point A (xA = 0) and 
emerges from it at the point B at an angle α .  

1. Find the refraction index Bn  at the point B. 
2. Find Bx (i.e. value of x at the point B) 
3. Find the thickness d of the plate. 

Data: 
 

2.10 =n ;   13=R cm;   °= 30α . 
 

Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 
 Consider a light ray passing through a system of parallel plates with different 
refractive indexes – Fig. 2. From the Snell law we have 
 

2

1

1

2

sin
sin

n
n

=
β
β  

i.e.  
1122 sinsin ββ nn = . 

 
In the same way we get 
 

2233 sinsin ββ nn = ,  etc. 
 
Thus, in general: 

=iin βsin const. 
 

β2 

n1 n2 n3 

β1 

β2 

β3 

β3 



This relation does not involve plates thickness nor their number. So, we may make use 
of it also in case of continuous dependence of the refractive index in one direction (in our case 
in the x direction). 

 
 Consider the situation shown in Fig. 3. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 
 

At the point A the angle °= 90Aβ . The refractive index at this point is 0n . Thus, we have 
 

BBAA nn ββ sinsin = , 

BBnn βsin0 = . 
 
Additionally, from the Snell law applied to the refraction at the point B, we have  
 

B
B

n=
−° )90sin(

sin
β

α . 

 
Therefore 
 

2
0

2222 )sin(sin1cossin nnnnnn BBBBBBBB −=−=−== βββα  
 
and finally 
 

α22
0 sin+= nnB . 

 
Numerically 
 

3.1
10
5

10
12 22

=





+






=Bn  

 

xB A 
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 α 

βB 



The value of Bx  can be found from the dependence )(xn  given in the text of the 
problem. We have 
 

R
x

nxnn
B

BB

−
==

1
)( 0 , 









−=

B
B n

nRx 01 , 

Numerically 
1=Bx  cm. 

 The answer to the third question requires determination of the trajectory of the light 
ray. According to considerations described at the beginning of the solution we may write (see 
Fig. 4): 
 

0)(sin)( nxxn =β . 
 
Thus 

R
xR

xn
nx −

==
)(

)(sin 0β . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
 
 Consider the direction of the ray crossing a point C on the circle with radius R  and 
center in point O as shown in Fig. 4. We see that 
 

∠sin COC' )(sin x
R

xR β=
−

= . 

 
Therefore, the angle ∠COC' must be equal to the angle )(xβ  formed at the point C by the 
light ray and CC'. It means that at the point C the ray must be tangent to the circle. Moreover, 
the ray that is tangent to the circle at some point must be tangent also at farther points. 
Therefore, the ray cannot leave the circle (as long as it is inside the plate)! But at the 

R 

A’ 

A 

B 

O 
R 

d 
C C’ 

R 

R - x 

B’ 

β(x) 



beginning the ray (at the point A) is tangent to the circle. Thus, the ray must propagate along 
the circle shown in Fig. 4 until reaching point B where it leaves the plate. 

 Already we know that A'B = 1 cm. Thus, B'B = 12 cm and from the rectangular 
triangle BB'O we get 
 

22 1213 OB' −==d cm = 5 cm. 
 
 The shape of the trajectory )(xy  can be determined also by using more sophisticated 
calculations. Knowing )(xβ  we find )(tg xβ : 
 

22 )(
)(tg

xRR

xRx
−−

−
=β . 

 
But )(tg xβ  is the derivative of )(xy . So, we have 
 

( )22

22
)(

)(
xRR

dx
d

xrR

xR
dx
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−−=
−−

−
= . 

 
Thus 
 

constxRRy +−−= 22 )(  
 
Value of const can be found from the condition 
 

0)0( =y . 
 
Finally: 
 

22 )( xRRy −−= . 
 
It means that the ray moves in the plate along to the circle as found previously. 
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Fig. 5 
 

Now we will present yet another, already the third, method of proving that the light in 
the plate must move along the circle. 
 We draw a number of straight lines (inside the plate) close to each other and passing 
trough the point (R,0) - Fig. 5. From the formula given in the text of the problem it follows 
that the refraction index on each of these lines is inversely proportional to the distance to the 
point (R,0). Now we draw several arcs with the center at (R,0). It is obvious that the geometric 
length of each arc between two lines is proportional to the distance to the point (R,0). 

 It follows from the above that the optical path (a product of geometric length and 
refractive index) along each arc between the two lines (close to each other) is the same for all 
the arcs.  

 Assume that at +-certain moment t  the wave front reached one of the lines, e.g. the 
line marked with a black dot in Fig. 5. According to the Huygens principle, the secondary 
sources on this line emit secondary waves. Their envelope forms the wave front of the real 
wave at some time tt ∆+ . The wave fronts of secondary waves, shown in Fig. 5, have 
different geometric radii, but - in view of our previous considerations - their optical radii are 
exactly the same. It means that at the time tt ∆+  the new wave front will correspond to one 
of the lines passing trough (R,0). At the beginning the wave front of the light coincided with 
the x axis, it means that inside the plate the light will move along the circle with center at the 
point (R,0). 

The solutions were marked according to the following scheme (draft): 

1. Proof of the relation =βsinn  const    up to 2 points 
2. Correct description of refraction at points A and B   up to 2 points 
3. Calculation of Bx        up to 1 point 
4. Calculation of d       up to 5 points 

 
Problem 3 
 
 A scientific expedition stayed on an uninhabited island. The members of the 
expedition had had some sources of energy, but after some time these sources exhausted. 
Then they decided to construct an alternative energy source. Unfortunately, the island was 
very quiet: there were no winds, clouds uniformly covered the sky, the air pressure was 
constant and the temperatures of air and water in the sea were the same during day and night. 
Fortunately, they found a source of chemically neutral gas outgoing very slowly from a cavity. 
The pressure and temperature of the gas are exactly the same as the pressure and temperature 
of the atmosphere.  

The expedition had, however, certain membranes in its equipment. One of them was 
ideally transparent for gas and ideally non-transparent for air. Another one had an opposite 
property: it was ideally transparent for air and ideally non-transparent for gas. The members 
of the expedition had materials and tools that allowed them to make different mechanical 
devices such as cylinders with pistons, valves etc. They decided to construct an engine by 
using the gas from the cavity.  

Show that there is no theoretical limit on the power of an ideal engine that uses the gas 
and the membranes considered above. 

 

Solution 



 

 Let us construct the device shown in Fig. 6. B1 denotes the membrane transparent for 
the gas from the cavity, but non-transparent for the air, while B2 denotes the membrane with 
opposite property: it is transparent for the air but non-transparent for the gas.  

Initially the valve Z1 is open and the valve Z2 is closed. In the initial situation, when 
we keep the piston at rest, the pressure under the piston is equal to 00 pp +  due to the Dalton 
law. Let 0V denotes an initial volume of the gas (at pressure 0p ). 

Now we close the valve Z1 and allow the gas in the cylinder to expand. During 
movement of the piston in the downwards direction we obtain certain work performed by 
excess pressure inside the cylinder with respect to the atmospheric pressure 0p . The partial 
pressure of the gas in the cylinder will be reduced according to the formula VVpp /00= , 
where V denotes volume closed by the piston (isothermal process). Due to the membrane B2 
the partial pressure of the air in the cylinder all the time is 0p  and balances the air pressure 
outside the cylinder. It means that only the gas from the cavity effectively performs the work. 

 
  

 

 

 

 

  

 

 

 

 
 

 

 
Fig. 6 

 

 Consider the problem of limits for the work that can be performed during isothermal 
expansion of an initial portion of the gas. Let us analyze the graph of the function VVp /00  
versus V  shown in Fig. 7. 

 It is obvious that the amount of work performed by the gas during isothermal 
expansion from 0V  to kV  is represented by the area under the curve (shown in the graph) from 

0V  to kV . Of course, the work is proportional to 0V . We shall prove that for large enough kV  
the work can be arbitrarily large.  

 Consider ... ,16 ,8 ,4 ,2 , 00000 VVVVVV =  It is clear that the rectangles I, II, III, … (see 
Fig. 7) have the same area and that one may draw arbitrarily large number of such rectangles 

Z1 

B2 

B1 

Z2 

Cavity 

p0 

p 

p0 

p0 



under the considered curve. It means that during isothermal expansion of a given portion of 
the gas we may obtain arbitrarily large work (at the cost of the heat taken from sthe 
urrounding) – it is enough to take kV  large enough. 

 After reaching kV  we open the valve Z2 and move the piston to its initial position 
without performing any work. The cycle can be repeated as many times as we want. 

 In the above considerations we focused our attention on the work obtained during one 
cycle only. We entirely neglected dynamics of the process, while each cycle lasts some time.  
One may think that - in principle - the length of the cycle increases very rapidly with the 
effective work we obtain. This would limit the power of the device we consider.  

Take, however, into account that, by proper choice of various parameters of the device, 
the time taken by one cycle can be made small and the initial volume of the gas 0V  can be 
made arbitrarily large (we consider only theoretical possibilities – we neglect practical 
difficulties entirely). E.g. by taking large size of the membrane B1 and large size of the piston 
we may minimize the time of taking the initial portion of the gas 0V  from the cavity and make 
this portion very great. 

In our analysis we neglected all losses, friction, etc. One should remark that there are 
no theoretical limits for them. These losses, friction etc. can be made negligibly small. 

 

 

 

 
Fig. 7 

 
 The device we analyzed is very interesting: it produces work at cost of heat taken from 
surrounding without any difference in temperatures. Does this contradict the second law of 
thermodynamics? No! It is true that there is no temperature difference in the system, but the 
work of the device makes irreversible changes in the system (mixing of the gas from the 
cavity and the air). 
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The solutions were marked according to the following scheme (draft): 

1. Model of an engine and its description     up to 4 points 
2. Proof that there is no theoretical limit for power    up to 4 points 
3. Remark on II law of thermodynamics    up to 2 points 

 
EXPERIMENTAL PROBLEM 

 
 In a "black box" there are two identical semiconducting diodes and one resistor 
connected in some unknown way. By using instruments provided by the organizers find the 
resistance of the resistor. 
 Remark: One may assume that the diode conducts current in one direction only. 
 List of instruments: two universal volt-ammeters (without ohmmeters), battery, wires 
with endings, graph paper, resistor with regulated resistance. 
 
Solution 
 
 At the beginning we perform preliminary measurements by using the circuit shown in 
Fig. 8. For two values of voltage 1U  and 2U , applied to the black box in both directions, we 
measure four values of current: )( 1UI , )( 2UI , )( 1UI −  and )( 2UI − . In this way we find that: 
 

1. The black box conducts current in both directions; 
2. There is an asymmetry with respect to the sign of the voltage; 
3. In both directions current is a nonlinear function of voltage. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 
 
 The diodes and resistor can be connected in a limited number of ways shown in Fig. 9 
(connections that differ from each other in a trivial way have been omitted). 
 
 
 
 
 
 
 
 
 

  mV 

  mA 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 
 
 
 Only one of these connections has the properties mentioned at the beginning. It is: 
 
 
 
 
 
 
 
 

Fig. 10 
 
 For absolute values of voltages we have 
 

UUUU ABR ∆=−= , 
 
where RU  denotes voltage on the resistor when a current I  flows trough the branch B, AU  - 
voltage on the black box when the current I  flows through the branch A, and BU  - voltage on 
the black box when the current I  flows through the branch B. 
 Therefore 
 

I
U

I
IUIU

I
IUR ABR ∆

=
−

==
)()()( . 

 
 It follows from the above that it is enough to take characteristics of the black box in 
both directions: by subtraction of the corresponding points (graphically) we obtain a straight 
line (example is shown in Fig. 11) whose slope allows to determine the value of R . 

The solutions were marked according to the following scheme (draft): 

B B 

A 



Theoretical part: 
1. Proper circuit and method allowing determination of connections  

the elements in the black box      up to 6 points 
2. Determination of R (principle)     up to 2 points 
3. Remark that measurements at the same voltage in both  

directions make the error smaller     up to 1 point 
4. Role of number of measurements (affect on errors)   up to 1 point 

Experimental part: 
1. Proper use of regulated resistor as potentiometer   up to 2 points 
2. Practical determination of R (including error)   up to 4 points 
3. Proper use of measuring instruments     up to 2 points 
4. Taking into account that temperature of diodes increases during  

measurements        up to 1 point 
5. Taking class of measuring instruments into account  up to 1 point 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 
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Problems of the 8th International Physics Olympiad

(Güstrow, 1975)

Gunnar Friege1 & Gunter Lind

Introduction

The 8th International Physics Olympiad took place from the 7.7. to the 12.7. 1975 in Güstrow,

in the German Democratic Republic (GDR). Altogether, 9 countries with 45 pupils participated.

The teams came from Bulgaria, the German Democratic Republic, the Federal Republic of

Germany (FRG), France, Poland, Rumania, Tchechoslowakia, Hungary and the USSR. The

entire event took place in the pedagogic academy of Güstrow. Pupils and leaders were

accommodated inside the university academy complex. On the schedule there was the

competition and receptions as well as excursions to Schwerin, Rostock, and Berlin were offered.

The delegation of the FRG reported of a  very good organisation of the olympiad.

The problems and solutions of the 8th International Physics Olympiad were created by a

commission of university physics professors and lecturers. The same commission set marking

schemes and conducted the correction of the tests. The correction was carried out very quickly

and was considered as righteous and, in cases of doubt, as very generous.

The main competition consisted of a 5 hour test in theory and a 4.5 hour experimental test. The

time for the theoretical part was rather short and for the experimental part rather long. The

problems originated from central areas of classical physics. The theoretical problems were

relatively difficult, although solvable with good physics knowledge taught at school. The level

of difficulty of the experimental problem was adequate. There were no additional devices

necessary for the solution of the problems. Only basic formula knowledge was requested, and

could be demanded from all pupils. Critics were only uttered concerning the second theoretical

problem (thick lens). This problem requested relatively little physical understanding, but tested

the mathematical skills and the routine in approaching problems (e.g. correct distinction of

cases). However, it is also difficult to find substantial physics problems in the area of

geometrical optics.

                                                
1 Remark: This article was written due to the special request to us by Dr. W. Gorzkowski, in order to close one of

the last few gaps in the IPhO-report collection.
 Contact: Dr. Gunnar Friege, Leibniz-Institute for Science Education (IPN) at the University of Kiel, Olshausenstr.

62, 24098 Kiel, Germany, friege@ipn.uni-kiel.de
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Altogether 50 points were the maximum to achieve; 30 in the theoretical test and 20 in the

experimental test. The best contestant came from the USSR and had 43 points. The first prize

(gold medal) was awarded with 39 points, the second prize (silver medal) with 34 points, the

third prize (bronze medal) with 28 points and the fourth prize (honourable mention) with 22

points. Among the 45 contestants, 7 I. prizes, 9 II. prizes, 12 III. prizes and 8 IV. prizes were

awarded, meaning that 80 % of all contestants were awarded.

The following problem descriptions and solution are based mainly on a translation of the

original German version from 1975. Because the original drafts are not well preserved, some

new sketches were drawn. We also gave the problems headlines and the solutions are in more

detail.

Theoretical problem 1: “Rotating rod”

A rod revolves with a constant angular velocity ω

around a vertical axis A. The rod includes a fixed angle

of / 2 -π α  with the axis. A body of mass m can glide

along the rod. The coefficient of friction is µ = tanβ.

The angle β is called „friction angle“.

a) Determine the angles α under which the body

remains at rest and under which the body is in

motion if the rod is not rotating (i.e. ω = 0).

b) The rod rotates with constant angular velocity

ω > 0. The angle α does not change during rotation.

Find the condition for the body to remain at rest

relative to the rod.

You can use the following relations:

sin (α ± β) = sin α ⋅ cos β ±  cos α ⋅ sin β

cos (α ± β) = cos α ⋅ cos β ∓  sin α ⋅ sin β
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Solution of problem 1:

a) ω = 0:

The forces in this case are (see figure):

G Z N m g= + = ⋅ (1),

sinZ m g Z= ⋅ ⋅ α = (2),

cosN m g N= ⋅ ⋅ α= (3),

cosR N m g Rµ µ α= ⋅ = ⋅ ⋅ ⋅ = (4).

[ R : force of friction]

The body is at rest relative to the rod, if Z R≤ . According to equations (2) and (4) this is

equivalent to tan tanα β≤ . That means, the body is at rest relative to the rod for α β≤ and

the body moves along the rod for α β> .

b) ω > 0:

Two different situations have to be considered: 1. α β>  and 2. α β≤ .

If the rod is moving ( 0ω ≠ ) the forces are  G m g= ⋅  and 2
rF m r ω= ⋅ ⋅ .

From the parallelogramm of forces (see figure):

rZ N G F+ = + (5).

The condition of equilibrium is:

Z Nµ= (6).

Case 1: Z is oriented downwards, i.e. sin cos2g rα ω α⋅ > ⋅ ⋅ .

sin - cos2Z m g m rα ω α= ⋅ ⋅ ⋅ ⋅ ⋅   and  cos sin2N m g m rα ω α= ⋅ ⋅ + ⋅ ⋅ ⋅

Case 2: Z is oriented upwards, i.e. sin cos2g rα ω α⋅ < ⋅ ⋅ .

sin cos2Z m g m rα ω α= − ⋅ ⋅ + ⋅ ⋅ ⋅   and  cos sin2N m g m rα ω α= ⋅ ⋅ + ⋅ ⋅ ⋅

It follows from the condition of equilibrium equation (6) that

( )sin cos2g rα ω α± ⋅ − ⋅ ⋅ = ( )tan cos sin2g rβ α ω α⋅ ⋅ + ⋅ ⋅        (7).
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Algebraic manipulation of equation (7) leads to:

( ) ( )sin cos2g rα β ω α β⋅ − = ⋅ ⋅ −        (8),

( ) ( )sin cos2g rα β ω α β⋅ + = ⋅ ⋅ +        (9).

That means,

( ), tan1 2 2

gr α β
ω

= ⋅ ∓      (10).

The body is at rest relative to the rotating rod in the case α β>  if the following inequalities

hold:

1 2r r r≤ ≤         with 1 2, 0r r >        (11)

or

1 2L L L≤ ≤         with / cos and / cos1 1 2 2L r L r= α = α               (12).

The body is at rest relative to the rotating rod in the case α β≤  if the following inequalities

hold:

20 r r≤ ≤ with 1r 0= (since 1r 0<  is not a physical solution), 2 0r >      (13).

Inequality (13) is equivalent to

20 L L≤ ≤         with / cos2 2L r 0= α>      (14).

Theoretical problem 2: “Thick lens”

The focal length f of a thick glass lens in air with refractive index n, radius curvatures r1, r2 and

vertex distance d (see figure) is given by: 
( ) ( ) ( )

1 2

2 11 1
n r rf

n n r r d n
=

− − + −  
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Remark: ri > 0 means that the central curvature point Mi is on the right side of the aerial

vertex Si, ri < 0 means that the central curvature point Mi is on the left side of the

aerial vertex Si (i = 1,2).

For some special applications it is required, that the focal length is independent from the

wavelength.

a) For how many different wavelengths can the same focal length be achieved?

b) Describe a relation between ri (i = 1,2), d and the refractive index n for which the required

wavelength independence can be fulfilled and discuss this relation.

Sketch possible shapes of lenses and mark the central curvature points M1 and M2.

c) Prove that for a given planconvex lens a specific focal length can be achieved by only one

wavelength.

d) State possible parameters of the thick lens for two further cases in which a certain focal

length can be realized for one wavelength only. Take into account the physical and the

geometrical circumstances.

Solution of problem 2:

a) The refractive index n is a function of the wavelength λ , i.e. n = n (λ ). According to the

given formula for the focal length f (see above) which for a given f yields to an equation

quadratic in n there are at most two different wavelengths (indices of refraction) for the same

focal length.

b) If the focal length is the same for two different wavelengths, then the equation

( ) ( )1 2f fλ = λ  or  ( ) ( )1 2f n f n=         (1)

holds. Using the given equation for the focal length it follows from equation (1):

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 1 2

1 1 2 1 1 2 2 2 1 21 1 1 1
n r r n r r

n n r r d n n n r r d n
=

− − + − − − + −      

Algebraic calculations lead to:

1 2
1 2

1r r d 1
n n

 
− = ⋅ − 

 
        (2).

If the values of the radii r1, r2 and the thickness satisfy this condition the focal length will be

the same for two wavelengths (indices of refraction). The parameters in this equation are

subject to some physical restrictions: The indices of refraction are greater than 1 and the

thickness of the lens is greater than 0 m. Therefore, from equation (2) the relation

01 2d r r> − >         (3)
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is obtained.

The following table shows a discussion of different cases:

1r 2r condition shape of the lens centre of
curvature

01r > 02r > 0 1 2r r d< − <
or

2 1 2r r d r< < +

M2 is always
right of M1.

1 12 2M M S S<

01r > 02r < d1 2r r+ < Order of points:
1 1 2 2S M M S

01r < 02r > never fulfilled

01r < 02r < 0 2 1r r d< − <
or

1 2 1r r d r< < +

M2 is always
right of M1.

1 12 2M M S S<

c) The radius r1 or the radius r2 is infinite in the case of the planconvex lens. In the following it

is assumed that r1 is infinite and r2 is finite.

( ) ( )
lim lim

1
1 1 1

1 1

2 2
r r

2

1 1

n r rf
nr dn n n

r r

→∞ →∞
= =

−  
− − + −  

  

        (4)

Equation (4) means, that for each wavelength (refractive index) there exists a different value

of the focal length.

d) From the given formula for the focal length (see problem formulation) one obtains the

following quadratic equation in n:

02A n B n C⋅ + ⋅ + =         (5)

with ( )2 1A r r d f= − + ⋅ , ( ) 22 1 1 2B f r r f d r r= − ⋅ − + ⋅ ⋅ + ⋅    and C f d= ⋅ .
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Solutions of equation (5) are:

, 2 4

2

1 2 2

B B Cn
A A A

= − ± −
⋅ ⋅

       (6).

Equation (5) has only one physical correct solution, if...

I) A = 0 (i.e., the coefficient of  n2 in equation (5) vanishes)

In this case the following relationships exists:

r1 – r2 = d        (7),

1
1 2

f dn
f d r r

⋅
= >

⋅ + ⋅
       (8).

II) B = 0 (i.e. the coefficient of n in equation (5) vanishes)

In this case the equation has a positive and a negative solution. Only the positve

solution makes sense from the physical point of view. It is:

( ) 02 1 1 2f r r 2 f d r r⋅ − + ⋅ ⋅ + ⋅ =        (9),

( )
12

2 1

C dn
A r r d

= − =− >
− +

     (10),

III) B2 = 4 AC

In this case two identical real solutions exist. It is:

( ) 2
( ) 2

2 1 1 2 2 1f r r 2 f d r r 4 r r d f d⋅ − + ⋅ ⋅ + ⋅ = ⋅ − + ⋅ ⋅        (11),

( )
( )

1
2

2 1 1 2

2 1

f r r 2 f d r rBn
2 A f r r d

⋅ − + ⋅ ⋅ + ⋅
= − = >

⋅ ⋅ − +
     (12).

Theoretical problem 3: “Ions in a magnetic field”

A beam of positive ions (charge +e) of the same and

constant mass m spread from point Q in different directions

in the plane of paper (see figure2). The ions were

accelerated by a voltage U. They are deflected in a uniform

magnetic field B that is perpendicular to the plane of paper.

The boundaries of the magnetic field are made in a way

that the initially diverging ions are focussed in point A

( QA 2 a= ⋅ ). The trajectories of the ions are symmetric to the middle perpendicular on QA .

                                                
2 Remark: This illustrative figure was not part of the original problem formulation.
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Among different possible boundaries of magnetic fields a specific type shall be considered in

which a contiguous magnetic field acts around the middle perpendicular and in which the points

Q and A are in the field free area.

a) Describe the radius curvature R of the particle path in the magnetic field as a function of the

voltage U and the induction B.

b) Describe the characteristic properties of the particle paths in the setup mentioned above.

c) Obtain the boundaries of  the magnetic field boundaries by geometrical constructions for the

cases R < a, R = a and R > 0.

d) Describe the general equation for the boundaries of the magnetic field.

Solution of problem 3:

a) The kinetic energy of the ion after acceleration by a voltage U is:

½ mv2 = eU        (1).

From equation (1) the velocity of the ions is calculated:

2 e Uv
m
⋅ ⋅

=        (2).

On a moving ion (charge e and velocity v) in a homogenous magnetic field B acts a Lorentz

force F. Under the given conditions the velocity is always perpendicular to the magnetic

field. Therefore, the paths of the ions are circular with Radius R. Lorentz force and

centrifugal force are of the same amount:
2m ve v B

R
⋅

⋅ ⋅ =         (3).

From equation (3) the radius of the ion path is calculated:

R = 1 2 m U
B e

⋅ ⋅        (4).

b) All ions of mass m travel on circular paths of radius R = v⋅m / e⋅B inside the magnetic field.

Leaving the magnetic field they fly in a straight line along the last tangent. The centres of

curvature of the ion paths lie on the middle perpendicular on QA  since the magnetic field is

assumed to be symmetric to the middle perpendicular on QA . The paths of the focussed

ions are above QA due to the direction of the magnetic field.
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c) The construction method of the boundaries of the magnetic fields is based on the

considerations in part b:

- Sketch circles of radius R and different centres of curvature on the middle perpendicular

on QA .

- Sketch tangents on the circle with either point Q or point A on these straight lines.

- The points of tangency make up the boundaries of the magnetic field. If R > a then not

all ions will reach point A. Ions starting at an angle steeper than the tangent at Q, do not

arrive in A. The figure on the last page shows the boundaries of the magnetic field for

the three cases R < a, R = a and R > a.

d) It is convenient to deduce a general equation for the boundaries of the magnetic field in

polar coordinates (r, ϕ) instead of using cartesian coordinates (x, y).

The following relation is obtained from the figure:

cos sinr R aϕ ϕ⋅ + =        (7).

The boundaries of the magnetic field are given by:

1 sin
cos

a Rr
a

ϕ
ϕ
 = − 
 

       (8).
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Experimental problem: “Semiconductor element”

In this experiment a semiconductor element (                   ), an adjustable resistor (up to 140 Ω),

a fixed resistor (300 Ω), a 9-V-direct voltage source, cables and two multimeters are at disposal.

It is not allowed to use the multimeters as ohmmeters.

a) Determine the current-voltage-characteristics of the semiconductor element taking into

account the fact that the maximum load permitted is 250 mW.  Write down your data in

tabular form and plot your data. Before your measurements consider how an overload of the

semiconductor element can surely be avoided and note down your thoughts. Sketch the

circuit diagram of the chosen setup and discuss the systematic errors of  the circuit.

b) Calculate the resistance (dynamic resistance) of the semiconductor element for a current of

25 mA.

c) Determine the dependence of output voltage U2 from the input voltage U1 by using the

circuit described below. Write down your data in tabular form and plot your data.

The input voltage U1 varies between 0 V and 9 V. The semiconductor element is to be

placed in the circuit in such a manner, that U2 is as high as possible. Describe the entire

circuit diagram in the protocol and discuss the results of the measurements.

d) How does the output voltage U2 change, when the input voltage is raised from 7 V to 9 V?

Explain qualitatively the ratio ∆U1  / ∆U2.

e) What type of semiconductor element is used in the experiment? What is a practical

application of the circuit shown above?

Hints: The multimeters can be used as voltmeter or as ammeter. The precision class of these

instruments is 2.5% and they have the following features:

measuring range 50 µA 300 µA 3 mA 30 mA 300 mA 0,3 V 1 V 3 V 10 V

internal resistance 2 kΩ 1 kΩ 100 Ω 10 Ω 1 Ω 6 kΩ 20 kΩ 60 kΩ 200 kΩ
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Solution of the experimental problem:

a) Some considerations: the product of the voltage across the semiconductor element U and

current I through this element is not allowed to be larger than the maximum permitted load

of  250 mW. Therefore the measurements have to be processed in a way, that the product U⋅

I is always smaller than 250 mW.

The figure shows two different circuit diagram that can be used in this experiment:

The complete current-voltage-

characteristics look like this:

The systematic error is produced

by the measuring instruments.

Concerning the circuit diagram on

the left (“Stromfehlerschaltung”),

the ammeter also measures the

current running through the voltmeter. The current must therefore be corrected. Concerning

the circuit diagram on the right (“Spannungsfehlerschaltung”) the voltmeter also measures

the voltage across the ammeter. This error must also be corrected. To this end, the given

internal resistances of the measuring instruments can be used. Another systematic error is

produced by the uncontrolled temperature increase of the semiconductor element, whereby

the electric conductivity rises.

b) The dynamic resistance is obtained as ratio of small differences by

i
UR
I

∆
=
∆

       (1).

The dynamic resistance is different for the two directions of the current. The order of

magnitude in one direction (backward direction) is 10 Ω  ±  50% and the order of magnitude

in the other direction (flux direction) is 1 Ω  ±  50%.
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c) The complete circuit diagram contains a potentiometer and two voltmeters.

The graph of the function ( )2 1U f U= has

generally the same form for both directions of

the current, but the absolute values are different.

By requesting that the semiconductor element

has to be placed in such a way, that the output

voltage U2 is as high as possible, a backward

direction should be used.

Comment: After exceeding a specific input voltage U1 the output voltage increases only a

little, because with the alteration of U1 the current I increases (breakdown of the

diode) and therefore also the voltage drop at the resistance.

d) The output voltages belonging to U1 = 7 V and U1 = 9 V are measured and their difference

2U∆   is calculated:

2U∆  = 0.1 V ±  50%        (2).

Comment: The circuit is a voltage divider circuit. Its special behaviour results from the

different resistances. The resistance of the semiconductor element is much

smaller than the resistance. It changes nonlinear with the voltage across the

element. From i VR R<<  follows  2 1U U∆ < ∆  in the case of 1 2U U> .

e) The semiconductor element is a Z-diode (Zener diode); also correct: diode and rectifier.  The

circuit diagram can be used for stabilisation of voltages.
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Marking scheme

Problem 1: “Rotating rod” (10 points)

Part a 1 point

Part b – cases 1. and 2. 1 point

          – forces and condition of equilibrium 1 point

          – case Z downwards 2 points

          – case Z upwards 2 points

         – calculation of r1,2 1 point

         – case α β> 1 point

         – case α β≤ 1 point

Problem 2: “Thick lens” (10 points)

Part a 1 point

Part b – equation (1), equation (2) 2 points

          – physical restrictions, equation (3) 1 point

          – discussion of different cases 2 points

          – shapes of lenses 1 point

Part c – discussion and equation (4) 1 point

Part d 2 point

Problem 3: “Ions in a magnetic field” (10 points)

Part a – derivation of equations (1) and (2) 1 point

          – derivation of equation (4) 1 point

Part b – characteristics properties of the particle

             paths

3 points

Part c – boundaries of the magnetic field for the

             three cases

3 points

Part d 2 points
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Experimental problem: “Semiconductor element” (20 points)

Part a  – considerations concerning overload,
   circuit diagram,
   experiment and measurements,
    complete current-voltage-
   -characteristics
   discussion of the systematic errors

6 points

Part b – equation (1)
   dynamic resistance for both directions
   correct results within ±50%

3 points

Part c – complete circuit diagram,
measurements,
graph of the function ( )2 1U f U= ,
correct comment

5 points

Part d – correct 2U∆  within ±50%,
correct comment

3 points

Part e – Zener-diode (diode, rectifier) and
stabilisation of voltages

3 points

Remarks: If the diode is destroyed two points are deducted.

If a multimeter is destroyed five points are deducted.
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Problems of the 9th International Physics Olympiads 
(Budapest, Hungary, 1976) 

 
 
 
Theoretical problems 
 
Problem 1 
 

A hollow sphere of radius R = 0.5 m rotates about a vertical axis through its centre 
with an angular velocity of ω  = 5 s-1. Inside the sphere a small block is moving together with 
the sphere at the height of R/2 (Fig. 6). (g = 10 m/s2.) 

a) What should be at least the coefficient of friction to fulfill this condition? 
b) Find the minimal coefficient of friction also for the case of ω  = 8 s-1. 
c) Investigate the problem of stability in both cases, 

α) for a small change of the position of the block, 
β) for a small change of the angular velocity of the sphere. 
 

 
 

Solution 
 

a) The block moves along a horizontal circle of radius αsinR . The net force acting 
on the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force 
exerted by the wall N, the frictional force S and the weight mg is equal to the resultant: 

αω sin2Rm . 
 

The connections between the horizontal and vertical components: 
 

  αααω cossinsin2 SNRm −= , 
 

  αα sincos SNmg += . 
 

The solution of the system of equations: 
 

  







−=

g
RmgS αωα cos1sin

2

, 

 

R/2 

Figure 6 Figure 7 

S 
α 

mω2Rsinα 

mg 
N 

R 



2 
 

  







+=

g
RmgN αωα

22 sincos . 

The block does not slip down if 
 

  0.2259==
+

−
⋅=≥

23
33

sincos

cos1
sin 22

2

g
R
g

R

N
S

a αωα

αω

αµ . 

 

In this case there must be at least this friction to prevent slipping, i.e. sliding down. 
 

b) If on the other hand 1cos2

>
g

R αω  some 

friction is necessary to prevent the block to slip 
upwards. αω sin2Rm  must be equal to the 
resultant of forces S, N and mg. Condition for the 
minimal coefficient of friction is (Fig. 8): 
 

 =
+

−
⋅=≥

g
R

g
R

N
S

b αωα

αω

αµ 22

2

sincos

1cos

sin  

0.1792==
29

33 . 

 
c) We have to investigate µa and µb as functions of α and ω in the cases a) and b) 

(see  Fig. 9/a and 9/b): 
 

 
 

In case a): if the block slips upwards, it comes back; if it slips down it does not return. 
If ω  increases, the block remains in equilibrium, if ω  decreases it slips downwards. 

In case b): if the block slips upwards it stays there; if the block slips downwards it 
returns. If ω increases the block climbs upwards-, if ω decreases the block remains in 
equilibrium. 
 
Problem 2 

 
The walls of a cylinder of base 1 dm2, the piston and the inner dividing wall are 

α 
90° 

µ a 

0.5 

90° 

µ b 

0.5 ω = 5/s 

ω < 5/s ω > 5/s 

α 

ω > 8/s 

ω = 8/s 

ω < 8/s 

Figure 
 

Figure 
 

S α 

mω2Rsinα 

mg 

N 

Figure 8 
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perfect heat insulators (Fig. 10). The valve in the dividing wall opens if the pressure on the 
right side is greater than on the left side. Initially there is 12 g helium in the left side and 2 g 
helium in the right side. The lengths of both sides are 11.2 dm each and the temperature is 

C0° . Outside we have a pressure of 100 kPa. 
The specific heat at constant volume is 
cv = 3.15 J/gK, at constant pressure it is 
cp = 5.25 J/gK. The piston is pushed slowly 
towards the dividing wall. When the valve 
opens we stop then continue pushing slowly 
until the wall is reached. Find the work done 
on the piston by us. 
 
Solution 
 

The volume of 4 g helium at C0°  temperature and a pressure of 100 kPa is 22.4 dm3 
(molar volume). It follows that initially the pressure on the left hand side is 600 kPa, on the 
right hand side 100 kPa. Therefore the valve is closed. 

An adiabatic compression happens until the pressure in the right side reaches 600 kPa 
(κ = 5/3). 
 

  3535 6002.11100 V⋅=⋅ , 
 

hence the volume on the right side (when the valve opens): 
 

  V = 3.82 dm3. 
 

From the ideal gas equation the temperature is on the right side at this point 
 

  K5521 ==
nR
pVT . 

 

During this phase the whole work performed increases the internal energy of the gas: 
 

  W1 = (3.15 J/gK) ⋅ (2 g) ⋅ (552 K – 273 K) = 1760 J. 
 

Next the valve opens, the piston is arrested. The temperature after the mixing has been 
completed: 
 

  K313
14

552227312
2 =

⋅+⋅
=T . 

 

During this phase there is no change in the energy, no work done on the piston. 
An adiabatic compression follows from 11.2 + 3.82 = 15.02 dm3 to 11.2 dm3: 

 

  32
3

32 2.1102.15313 ⋅=⋅ T , 
 

hence 
 

  T3 = 381 K. 
The whole work done increases the energy of the gas: 
 

  W3 = (3.15 J/gK) ⋅ (14 g) ⋅ (381 K – 313 K) = 3000 J. 
 

The total work done: 
 

  Wtotal = W1 + W3 = 4760 J. 
 

The work done by the outside atmospheric pressure should be subtracted: 
 

  Watm = 100 kPa ⋅ 11.2 dm3 = 1120 J. 

11.2 dm 11.2 dm 

1 dm2 

Figure 10 
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The work done on the piston by us: 
 

  W = Wtotal – Watm = 3640 J. 
Problem 3 
 

Somewhere in a glass sphere there is an air bubble. Describe methods how to 
determine the diameter of the bubble without damaging the sphere. 
 
Solution 
 

We can not rely on any value about the density of the glass. It is quite uncertain. The 
index of refraction can be determined using a light beam which does not touch the bubble. 
Another method consists of immersing the sphere into a liquid of same refraction index: its 
surface becomes invisible. 

A great number of methods can be found. 
We can start by determining the axis, the line which joins the centers of the sphere and 

the bubble. The easiest way is to use the “tumbler-over” method. If the sphere is placed on a 
horizontal plane the axis takes up a vertical position. The image of the bubble, seen from both 
directions along the axis, is a circle. 

If the sphere is immersed in a liquid of same index 
of refraction the spherical bubble is practically inside a 
parallel plate (Fig. 11). Its boundaries can be determined 
either by a micrometer or using parallel light beams. 

Along the axis we have a lens system consisting, of 
two thick negative lenses. The diameter of the bubble can 
be determined by several measurements and complicated 
calculations. 

If the index of refraction of the glass is known we can fit a plano-concave lens of same 
index of refraction to the sphere at the end of the axis (Fig. 12). As ABCD forms a parallel 
plate the diameter of the bubble can be measured using parallel light beams. 

 

 
 

Focusing a light beam on point A of the surface of the sphere (Fig. 13) we get a 
diverging beam from point A inside the sphere. The rays strike the surface at the other side 
and illuminate a cap. Measuring the spherical cap we get angle ϕ. Angle ψ can be obtained in 
a similar way at point B. From 
 

Figure12 

A   
 

C   
 

A 

r 

d 

ψ ϕ 
R B 

Figure13 

Figure11 



5 
 

  
dR

r
+

=ϕsin  and 
dR

r
−

=ψsin  

 

we have 
 

  
ϕψ
ϕψ

sinsin
sinsin2
+

⋅= Rr ,    
ϕψ
ϕψ

sinsin
sinsin

+
−

⋅= Rd . 

 The diameter of the bubble can be determined also by the help of X-rays. X-rays are not 
refracted by glass. They will cast shadows indicating the structure of the body, in our case the 
position and diameter of the bubble. 

We can also determine the moment of inertia with respect to the axis and thus the 
diameter of the bubble. 
 
Experimental problem 
 
The whole text given to the students: 

 
At the workplace there are beyond other devices a test tube with 12 V electrical 

heating, a liquid with known specific heat (c0 = 2.1 J/g°C) and an X material with unknown 
thermal properties. The X material is insoluble in the liquid. 

Examine the thermal properties of the X crystal material between room temperature 
and 70 °C. Determine the thermal data of the X material. Tabulate and plot the measured data. 

(You can use only the devices and materials prepared on the table. The damaged 
devices and the used up materials are not replaceable.) 
 
Solution 
 

Heating first the liquid then the liquid and the crystalline substance together two 
time-temperature graphs can be plotted. From the graphs specific heat, melting point and heat 
of fusion can be easily obtained. 
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[2] R. Kunfalvi: Collection of Competition Tasks from the Ist through XVth International 



6 
 

Physics Olympiads 1967-1984 
 Roland Eötvös Physical Society in cooperation with UNESCO, Budapest, 1985 
 
[3] A Nemzetközi Fizikai Diákolimpiák feladatai I.-XV. 
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10th International Physics Olympiad
1977, Hradec Králové, Czechoslovakia

Problem 1. The compression ratio of a four-stroke internal combustion
engine is ε = 9.5. The engine draws in air and gaseous fuel at a temperature
27 oC at a pressure 1 atm = 100 kPa. Compression follows an adiabatic
process from point 1 to point 2, see Fig. 1. The pressure in the cylinder
is doubled during the mixture ignition (2–3). The hot exhaust gas expands
adiabatically to the volume V2 pushing the piston downwards (3–4). Then
the exhaust valve opens and the pressure gets back to the initial value of
1 atm. All processes in the cylinder are supposed to be ideal. The Poisson
constant (i.e. the ratio of specific heats Cp/CV ) for the mixture and exhaust
gas is κ = 1.40. (The compression ratio is the ratio of the volume of the
cylinder when the piston is at the bottom to the volume when the piston is
at the top.)

p

p = p

p

p

p

V

0 1

1

2

2

3

4

0
1

2

3

4

V V

Figure 1:

1



a) Which processes run between the points 0–1, 2–3, 4–1, 1–0?

b) Determine the pressure and the temperature in the states 1, 2, 3 and 4.

c) Find the thermal efficiency of the cycle.

d) Discuss obtained results. Are they realistic?

Solution: a) The description of the processes between particular points is the
following:
0–1 : intake stroke isobaric and isothermal process
1–2 : compression of the mixture adiabatic process
2–3 : mixture ignition isochoric process
3–4 : expansion of the exhaust gas adiabatic process
4–1 : exhaust isochoric process
1–0 : exhaust isobaric process

Let us denote the initial volume of the cylinder before induction at the
point 0 by V1, after induction at the point 1 by V2 and the temperatures
at the particular points by T0, T1, T2, T3 and T4.

b) The equations for particular processes are as follows.

0–1 : The fuel-air mixture is drawn into the cylinder at the temperature
of T0 = T1 = 300 K and a pressure of p0 = p1 = 0.10 MPa.

1–2 : Since the compression is very fast, one can suppose the process to be
adiabatic. Hence:

p1V
κ
2 = p2V

κ
1 and

p1V2

T1

=
p2V1

T2

.

From the first equation one obtains

p2 = p1

(
V2

V1

)κ

= p1ε
κ

and by the dividing of both equations we arrive after a straightforward
calculation at

T1V
κ−1
2 = T2V

κ−1
1 , T2 = T1

(
V2

V1

)κ−1

= T1ε
κ−1 .

For given values κ = 1.40, ε = 9.5, p1 = 0.10 MPa, T1 = 300 K we have
p2 = 2.34 MPa and T2 = 738 K (t2 = 465 oC).
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2–3 : Because the process is isochoric and p3 = 2p2 holds true, we can write

p3

p2

=
T3

T2

, which implies T3 = T2
p3

p2

= 2T2 .

Numerically, p3 = 4.68 MPa, T3 = 1476 K (t3 = 1203 oC).

3–4 : The expansion is adiabatic, therefore

p3V
κ
1 = p4V

κ
2 ,

p3V1

T3

=
p4V2

T4

.

The first equation gives

p4 = p3

(
V1

V2

)κ

= 2p2ε
−κ = 2p1

and by dividing we get

T3V
κ−1
1 = T4V

κ−1
2 .

Consequently,
T4 = T3ε

1−κ = 2T2ε
1−κ = 2T1 .

Numerical results: p4 = 0.20 MPa, T3 = 600 K (t3 = 327 oC).

4–1 : The process is isochoric. Denoting the temperature by T ′
1 we can write

p4

p1

=
T4

T ′
1

,

which yields

T ′
1 = T4

p1

p4

=
T4

2
= T1 .

We have thus obtained the correct result T ′
1 = T1. Numerically, p1 =

0.10 MPa, T ′
1 = 300 K.

c) Thermal efficiency of the engine is defined as the proportion of the
heat supplied that is converted to net work. The exhaust gas does work on
the piston during the expansion 3–4, on the other hand, the work is done
on the mixture during the compression 1–2. No work is done by/on the gas
during the processes 2–3 and 4–1. The heat is supplied to the gas during the
process 2–3.
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The net work done by 1 mol of the gas is

W =
R

κ− 1
(T1 − T2) +

R

κ− 1
(T3 − T4) =

R

κ− 1
(T1 − T2 + T3 − T4)

and the heat supplied to the gas is

Q23 = CV (T3 − T2) .

Hence, we have for thermal efficiency

η =
W

Q23

=
R

(κ− 1)CV

T1 − T2 + T3 − T4

T3 − T2

.

Since
R

(κ− 1)CV

=
Cp − CV

(κ− 1)CV

=
κ− 1

κ− 1
= 1 ,

we obtain

η = 1− T4 − T1

T3 − T2

= 1− T1

T2

= 1− ε1−κ .

Numerically, η = 1− 300/738 = 1− 0.407, η = 59, 3% .
d) Actually, the real pV -diagram of the cycle is smooth, without the sharp

angles. Since the gas is not ideal, the real efficiency would be lower than the
calculated one.

Problem 2. Dipping the frame in a soap solution, the soap forms a rectangle
film of length b and height h. White light falls on the film at an angle α
(measured with respect to the normal direction). The reflected light displays
a green color of wavelength λ0.

a) Find out if it is possible to determine the mass of the soap film using
the laboratory scales which has calibration accuracy of 0.1 mg.

b) What color does the thinnest possible soap film display being seen from
the perpendicular direction? Derive the related equations.

Constants and given data: relative refractive index n = 1.33, the wavelength
of the reflected green light λ0 = 500 nm, α = 30o, b = 0.020 m, h = 0.030 m,
density % = 1000 kg m−3.
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Solution: The thin layer reflects the monochromatic light of the wavelength λ
in the best way, if the following equation holds true

2nd cos β = (2k + 1)
λ

2
, k = 0, 1, 2, . . . , (1)

where k denotes an integer and β is the angle of refraction satisfying

sin α

sin β
= n .

Hence,

cos β =

√
1− sin2 β =

1

n

√
n2 − sin2 α .

Substituting to (1) we obtain

2d
√

n2 − sin2 α = (2k + 1)
λ

2
. (2)

If the white light falls on a layer, the colors of wavelengths obeying (2) are
reinforced in the reflected light. If the wavelength of the reflected light is λ0,
the thickness of the layer satisfies for the kth order interference

dk =
(2k + 1)λ0

4
√

n2 − sin2 α
= (2k + 1)d0 .

For given values and k = 0 we obtain d0 = 1.01 · 10−7 m.
a) The mass of the soap film is mk = %kb h dk. Substituting the given

values, we get m0 = 6.06 ·10−2 mg, m1 = 18.2 ·10−2 mg, m2 = 30.3 ·10−8 mg,
etc. The mass of the thinnest film thus cannot be determined by given
laboratory scales.

b) If the light falls at the angle of 30o then the film seen from the per-
pendicular direction cannot be colored. It would appear dark.

Problem 3. An electron gun T emits electrons accelerated by a potential
difference U in a vacuum in the direction of the line a as shown in Fig. 2. The
target M is placed at a distance d from the electron gun in such a way that
the line segment connecting the points T and M and the line a subtend the
angle α as shown in Fig. 2. Find the magnetic induction B of the uniform
magnetic field

5



T

M

a

a
electron gun

d

Figure 2:

a) perpendicular to the plane determined by the line a and the point M

b) parallel to the segment TM

in order that the electrons hit the target M . Find first the general solution
and then substitute the following values: U = 1000 V, e = 1.60 · 10−19 C,
me = 9.11 · 10−31 kg, α = 60o, d = 5.0 cm, B < 0.030 T.

Solution: a) If a uniform magnetic field is perpendicular to the initial direc-
tion of motion of an electron beam, the electrons will be deflected by a force
that is always perpendicular to their velocity and to the magnetic field. Con-
sequently, the beam will be deflected into a circular trajectory. The origin of
the centripetal force is the Lorentz force, so

Bev =
mev

2

r
. (3)

Geometrical considerations yield that the radius of the trajectory obeys
(cf. Fig. 3).

r =
d

2 sin α
. (4)
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a

a

a

r

S

electron gun

Figure 3:

The velocity of electrons can be determined from the relation between the
kinetic energy of an electron and the work done on this electron by the electric
field of the voltage U inside the gun,

1

2
mev

2 = eU . (5)

Using (3), (4) and (5) one obtains

B = me

√
2eU

me

2 sin α

ed
= 2

√
2Ume

e

sin α

d
.

Substituting the given values we have B = 3.70 · 10−3 T.
b) If a uniform magnetic field is neither perpendicular nor parallel to the

initial direction of motion of an electron beam, the electrons will be deflected
into a helical trajectory. Namely, the motion of electrons will be composed
of an uniform motion on a circle in the plane perpendicular to the magnetic
field and of an uniform rectilinear motion in the direction of the magnetic
field. The component ~v1 of the initial velocity ~v, which is perpendicular
to the magnetic field (see Fig. 4), will manifest itself at the Lorentz force
and during the motion will rotate uniformly around the line parallel to the
magnetic field. The component ~v2 parallel to the magnetic field will remain

7



T

M

d

a

a

v

v

v1

2

electron gun

Figure 4:

constant during the motion, it will be the velocity of the uniform rectilinear
motion. Magnitudes of the components of the velocity can be expressed as

v1 = v sin α v2 = v cos α .

Denoting by N the number of screws of the helix we can write for the time
of motion of the electron

t =
d

v2

=
d

v cos α
=

2πrN

v1

=
2πrN

v sin α
.

Hence we can calculate the radius of the circular trajectory

r =
d sin α

2πN cos α
.

However, the Lorentz force must be equated to the centripetal force

Bev sin α =
mev

2 sin2 α

r
=

mev
2 sin2 α

d sin α
2πN cos α

. (6)
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Consequently,

B =
mev

2 sin2 α 2πN cos α

d sin α ev sin α
=

2πNmev cos α

de
.

The magnitude of velocity v again satisfies (5), so

v =

√
2Ue

me

.

Substituting into (6) one obtains

B =
2πN cos α

d

√
2Ume

e
.

Numerically we get B = N · 6.70 · 10−3 T . If B < 0.030 T should hold true,
we have four possibilities (N ≤ 4). Namely,

B1 = 6.70 · 10−3 T ,

B2 = 13.4 · 10−3 T ,

B3 = 20.1 · 10−3 T ,

B4 = 26.8 · 10−3 T .

9



1 

Problems of the XI International Olympiad, Moscow, 1979  

The publication has been prepared by  Prof. S. Kozel and Prof.  V.Orlov 

(Moscow Institute of Physics and Technology)  

The XI International Olympiad in Physics for students took place in Moscow, USSR, in July 1979 

on the basis of Moscow Institute of Physics and Technology (MIPT).   Teams from 11 countries 

participated in the competition, namely Bulgaria, Finland, Germany, Hungary, Poland, Romania, 

Sweden, Czechoslovakia, the DDR, the SFR Yugoslavia, the USSR.   The problems for the 

theoretical competition have been prepared by professors of MIPT (V.Belonuchkin, I.Slobodetsky, 

S.Kozel). The problem for the experimental competition has been worked out  by O.Kabardin from  

the Academy of Pedagogical Sciences. 

It is pity that marking schemes were not preserved. 

Theoretical  Problems 

 

Problem 1. 

 A space rocket with mass M=12t is moving around the Moon along the circular orbit at the height 

of h =100 km. The engine is activated for a short time to pass at the lunar landing orbit. The 

velocity of the ejected gases u = 104 m/s. The Moon radius RM = 1,7·103 km, the acceleration of 

gravity near the Moon surface gM = 1.7 m/s2 

 

 

 

 

 

 

 

 

 

                     Fig.1             Fig.2 

 

1). What amount of fuel should be spent so that when activating the braking engine at 

point A of the trajectory, the rocket would land on the Moon at point B (Fig.1)? 

2). In the second scenario of landing, at point A the rocket is given an impulse directed 

towards the center of the Moon, to put the rocket to the orbit meeting the Moon surface 

at point C (Fig.2). What amount of fuel is needed in this case? 
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Problem 2.  

Brass weights are used to weigh an aluminum-made sample on an analytical balance. The weighing 

is ones in  dry air and another time in  humid air with the water vapor pressure  Ph =2·103 Pa. The 

total atmospheric pressure (P = 105 Pa) and the temperature (t =20° C) are the same in both cases. 

What should the mass of the sample be to be able to tell the difference in the balance 

readings provided their sensitivity is m0 = 0.1 mg  ? 

Aluminum density ρ1= 2700 kg/m3, brass density ρ2=.8500 kg/m3. 

 

Problem 3 

.During the Soviet-French experiment on the optical location of the Moon the light pulse of a ruby 

laser (λ= 0 , 6 9 μm) was d irected to the Moon’s surface by the telescope with a diameter of the 

mirror D = 2,6 m. The reflector on the Moon’s surface  reflected the light backward as an ideal 

mirror with the diameter d = 20 cm. The reflected light was then collected by the same telescope 

and focused at the photodetector. 

1) What must the accuracy to direct  the telescope optical axis be in this experiment?   

2) What part of emitted laser energy can be detected after reflection on the Moon, if we 

neglect the light loses in the Earth’s atmosphere? 

3) Can we see a reflected light pulse with naked eye if the energy of single laser pulse  

     E = 1 J and the threshold sensitivity of eye is equal n =100 light quantum? 

4) Suppose the Moon’s surface reflects α = 10% of the incident light in the spatial angle 2π 

steradian,  estimate the advantage of a using reflector. 

The distance from the Earth to the Moon is L = 380000 km. The diameter of pupil of the eye is  

dp = 5mm. Plank constant is h = 6.6ּ10-34  Jּs. 

 

Experimental Problem 

 

 Define the electrical circuit scheme in a “black box” and determine the parameters of its elements.  

List of instruments: A DC source with tension 4.5 V, an AC source with 50 Hz frequency and 

output voltage up to 30 V, two multimeters for measuring AC/DC current and voltage, variable 

resistor, connection wires. 
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Solution of Problems of the XI International Olympiad, Moscow, 1979 

Solution of Theoretical  Problems 

 

Problem 1.   

1) During  the rocket  moving along the circular orbit  its centripetal acceleration is created by 

moon gravity force: 

R
Mv

R
MMG M

2
0

2 = , 

where R = RM + h  is the primary orbit radius, v0 -the rocket  velocity on the circular orbit: 

R
MGv M=0  

Since  2
M

M
M R

MGg =  it yields 

hR
gR

R
Rgv

M

M
M

MM

+
==

2

0                     (1) 

The rocket velocity will remain perpendicular to the radius-vector OA after the braking 

engine sends tangential momentum to the rocket (Fig.1). The rocket should then move along the 

elliptical trajectory with the focus in the Moon’s center.  

Denoting the rocket velocity at points A and B as vA and vB we can write the equations for 

energy and momentum conservation as follows: 

 

M

MBMA

R
MMGMv

R
MMGMv

−=−
22

22

 (2) 

MvAR = MvBRM    (3) 

 

Solving equations  (2) and (3) jointly we find 

)(
2

M

MM
A RRR

RMGv
+

=  

Taking (1) into account, we get  
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M

M
A RR

Rvv
+

=
2

0 . 

Thus the rocket velocity change Δv at point A must be 

./24
2

2121 000 sm
hR

Rv
RR

Rvvvv
M

M

M

M
A =











+
−=











+
−=−=∆  

 Since the engine switches on for a short time the momentum conservation low in the system 

“rocket-fuel” can be written in the form 

(M – m1)Δv = m1u 

where m1 is the burnt fuel mass. 

This yields 

vu
vm
∆+

∆
=1  

Allow for  Δv << u we find  

kg291 =
∆

≈ M
u
vm  

2) In the second case the vector  is directed perpendicular to the vector  thus giving 

 
Based on the energy conservation law in this case the equation can be written as  

( )
M

MCM

R
GMMMv

R
GMMvvM

−=−
∆+

22

22
2

2
0   (4) 

and from the momentum conservation law  

MC RMvRMv =0 .     (5) 

 

Solving equations  (4) and (5) jointly and taking into account (1) we find 

( )
m/s97

2

2 ≈
+

=
−

=∆
hR

gh
R
RRgv

M

MM
M . 

Using the momentum conservation law we obtain 

kg1162
2 ≈

∆
= M

u
vm . 

 

 

 

 

Problem 2.  
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A sample and weights are affected by the Archimede’s buoyancy force of either dry or humid air in 

the first  and second cases, respectively. The difference in the scale indication ΔF is determined by 

the change of difference of these forces. 

The difference of Archimede’s buoyancy forces in dry air: 

                 gVF a
'

1 ρ∆=∆    
Whereas in humid air it is: 

 

 
where ΔV -  the difference in volumes between the sample and the weights, and    "

a
' andρρ a      - 

densities of dry and humid air, respectively.      

Then the difference in the scale indications   ΔF could be written as follows: 

 
( )"'

21 aaVgFFF ρρ −∆=∆−∆=∆    (1) 
 

According to the problem conditions this difference should be distinguished, i.e.                                    
gmF 0≥∆   or  ( ) 0

"' mVg aa ≥−∆ ρρ  , wherefrom 
 

"'
0

aa

m
V

ρρ −
≥∆  .     (2) 

The difference in volumes between the aluminum sample and brass weights can be found from the 
equation 








 −
=−=∆

21

12

21 ρρ
ρρ

ρρ
mmmV  ,   (3) 

 
where m     is the sought mass of the sample. From expressions (2) and (3) we obtain   
  









−−

≥







−

∆=
12

21
"'

0

12

21

ρρ
ρρ

ρρρρ
ρρ

aa

m
Vm  .  (4) 

 
To find the mass m of the sample one has to determine the difference  ( )"'

aa ρρ −  . 
With the general pressure being equal, in the second case, some part of dry air is replaced by vapor: 

V
m

V
m va

aa
∆

−
∆

=− "' ρρ  . 

 
Changes of mass of air Δma and vapor Δmv can be found from the ideal-gas equation of state 

                                       
RT
VMP

m aa
a =∆  ,     

RT
VMP

m vv
v =∆ , 

wherefrom we obtain 

        
( )

RT
MMP vaa

aa
−

=− "' ρρ  .     (5) 

From equations (4) and (5) we obtain 

( ) 







−−

≥
12

210

ρρ
ρρ

vaa MMP
RTm

m  .       (6) 

gVF a
"

2 ρ∆=∆
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The substitution of numerical values gives the answer: m ≥ 0.0432 kg ≈ 43 g. 
 

Note.  When we wrote down expression (3), we considered the sample mass be equal to the 

weights’ mass, at the same time allowing for a small error. 

One may choose another way of solving this problem. Let us calculate the change of 

Archimede’s force by the change of the air average molar mass. 

In dry air the condition of the balance between the sample and weights could be written 

down in the form of 

 

2211 V
RT

PM
V

RT
PM aa 






 −=






 − ρρ  .       (7) 

In humid air its molar mass is equal to 

,
P

PP
M

P
P

MM a
v

a
a

−
+=         (8) 

 
whereas the condition of finding the scale error could be written in the form 

02211 mV
RT

PM
V

RT
PM aa ≥






 −−






 − ρρ .       (9) 

From expressions (7) –(9) one can get a more precise answer 
 

( )( ) ava

aa

PMM
PMRTm

m
12

210

ρρ
ρρ

−−
−

≥  .           (10) 

 
Since aa PM << RTm 210 ρρ  , then both expressions (6) and (10) lead practically to the same 
quantitative result, i.e. m ≥ 43 g.  
 
Problem 3.    
1) The beam divergence angle δφ caused by diffraction defines the accuracy of the telescope optical 
axis installation: 

δφ ≈  λ/D ≈ 2.6∙10-7 rad. ≈ 0.05″ . 
 

2) The part K1 of the light energy of a laser, directed to a reflector, may be found by the ratio 

of the area of S1 reflector (  S1 = πd2/4 ) versus the area S2 of the light spot on the Moon  

(S2 = πr2 , where r = L δφ ≈ Lλ/D,   L – the distance from the Earth to the Moon) 

   

( ) 22

22

2

2

2

1
1 42 L

Dd
r

d
S
SK

λ
===  

 
The reflected light beam diverges as well and forms a light spot with the radius R on the Earth’s 
surface:  
        

R = λL/d,    as     r << R 
 

That’s why the part K2 of the reflected energy, which got into the telescope, makes 
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( ) 22

22

2

2

2 42 L
dD

R
DK

λ
==  

The part K0 of the laser energy, that got into the telescope after having been reflected by the 

reflector on the Moon, equals 
4

210 2






==

L
dDKKK
λ

≈ 10-12 

 

 

3) The pupil of a naked eye receives as less a part of the light flux compared to a telescope, 

as the area of the pupil  Se   is less than the area of the telescope mirror  St: 

 

≈== 2

2

00 D
d

K
S
S

KK e

t

e
e 3.7·10-18 . 

 So the number of photons N getting into the pupil of the eye is equal  

eK
h
EN
ν

= = 12. 

  Since N<n, one can not perceive the reflected pulse with a naked eye. 

  4) In the absence of a reflector   α =10% of the laser energy, that got onto the Moon, are 

dispersed by the lunar surface within a solid angle    Ω1 = 2π steradian.                  

The solid angle in which one can see the telescope mirror from the Moon, constitutes 
 

Ω2 = St /L2
 = πD2/4L2    

 
That is why the part K of the energy gets into the telescope and it is equal 

 
 
 
 
 

Thus, the gain  β , which is obtained through the use of the reflector is equal 
β = K0/K ≈ 2·106 

 

 
Note. The result obtained is only evaluative as the light flux is unevenly distributed inside the 
angle of diffraction. 

 

 

18
2

2

1

2 105.0
8

−⋅≈=
Ω
Ω

=
L

DK αα
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Solution of Experimental Problem. 

 

A transformer is built-in in a “black box”. The black box has 4 terminals. To be able to 

determine the equivalent circuit and the parameters of  its elements one may first carry out 

measurements of the direct current. The most expedient is to mount the circuit according to the 

layout in Fig.3 and to build volt-ampere characteristics for various terminals of the “box”. This 

enables one to make sure rightway that there were no   e.m.f. sources in the “box” (the plot I=f(U) 

goes through the origin of the coordinates), no diodes (the current strength does not depend on the 

polarity of the current’s external source), by the inclination angle of the plot one may define the 

resistances between different terminals of the “box”. The tests allowed for some estimations of 

values R1-2 and R3-4. The ammeter did not register any current between the other terminals. This 

means that between these terminals there might be some other resistors with resistances larger than  

RL    : 

ohm1025.2
A102

V5,4 6
6

min

max ⋅=
⋅

== −I
URL  

where   Imin     - the minimum value 

of the strength of the current 

which the instrument would 

have  

 

 

 

 

 

 

registered.  Probably there might be some capacitors between terminals 1-3, 1-4, 2-3, 2-4  (Fig.4).  

Then, one can carry out analogous measurements of an alternative current. The taken volt-

ampere characteristics enabled one to find full resistances on the alternative current of sections 1-2 

and 3-4: Z1 and Z2 and to compare them to the values R1 and R2. It turned out, that Z1>R2 and Z2>R2. 

 

 

 

 

 

 

Fig.3 

“Black 
     box” 
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Fig.4      Fig.5 

This fact allows one to conclude that in the “black box” the coils are connected to terminals 1-2 and 

3-4 (Fig.5). Inductances of coils L1 and L2 can be determined by the formulas 

πν2

2
1

2
1

1

RZ
L

−
=  ,      

πν2

2
2

2
2

2

RZ
L

−
= . 

After that the dependences Z = f(I),  L=f(I) are to be investigated. The character of the found 

dependences enabled one to draw a conclusion about the presence of ferromagnetic cores in the 

coils. Judging by the results of the measurements on the alternative current one could identify the 

upper limit of capacitance of the capacitors which could be placed between terminals 1-3, 1-4, 2-3, 

2-4: 
6

9min
max 1

max

5 10 A 5 10 F 5nF
2 2 3.14 50s 3V

IC
Uπν

−
−

−

⋅
= = = ⋅ =

⋅ ⋅ ⋅
 

Then one could check the availability of inductive coupling between circuits 1-2 and 3-4. The plot 

of dependence of voltage U3-4 versus voltage U1-2 (Fig. 6) allows one to find both the transformation 

coefficient 

2
1

43

21 ==
−

−

U
UK  

and the maximum operational voltages on coils L1 and L2, when the transformation  

 

 

 

 

 

 

 

 

 

     Fig.6 

  

coefficient has not changed yet, i.e. before saturation of the core. 

U1-2(max) =2.5 V,     U3-4(max) = 5 V. 

One could build either plot K(U1-2) or K(U3-4) (Fig. 7). 
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      Fig.7   

 

Note: It was also possible to define the “box” circuit after tests of the direct current. To do that one 

had to find the presence of induction coupling between terminals 1-2 and 3-4, that is the appearance 

of e.m.f. of  induction in circuit 3-4, when closing and  breaking circuits 1-2 and vice-versa. When 

comparing the direction of the pointer’s rejection of the voltmeters connected to terminals 1-2 and 

3-4 one could identify directions of the transformer’s windings. 

 

Acknowledgement 
The authors would like to express their thanks and gratitude to Professor Waldemar Gorzkowski 

and Professor Ivo Volf for supplying the materials for the XI IphO in the Polish, Hungarian and 

Czech languages that have been of great help to the authors in their work at the problems of the 

Olympiad. 

 

References: 
 

1. O.Kabardin, V.Orlov, International Physics Olympiads for Pupuls, Nauka, Moskva 1985. 

2. W.Gorzkowski, A.Kotlicki, Olimpiady Fizyczne XXVII i XXVIII, WsiP, Warszawa 1983 

3. R.Kunfalvi, Collection of Competition Tasks from the 1 trough XV International Physics 

Olympiads, 1867-1984, Roland Eotvos Physical Society an UNESCO, Budapest 1985 

4. V.Urumov, Megjunadodni Olimpijadi po Fisika, Prosvento Delo, Skopje 1999 

5. D.Kluvanec, I.Volf, Mezinarodni Fysikalni Olympiady, MaFy, Hradec Kralowe 1993 

 



XII International Physics Olympiad 
 

Varna, Bulgaria, July 1981 
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Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High 
School Students”, ed. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian). 

 
Theoretical Problem 1 

 
 A static container of mass M and cylindrical shape is placed in vacuum. One of its 
ends is closed. A fixed piston of mass m and negligible width separates the volume of the 
container into two equal parts. The closed part contains n moles of monoatomic perfect gas 
with molar mass M0 and temperature T. After releasing of the piston, it leaves the container 
without friction. After that the gas also leaves the container. What is the final velocity of the 
container? 
 The gas constant is R. The momentum of the gas up to the leaving of the piston can be 
neglected. There is no heat exchange between the gas, container and the piston. The change 
of the temperature of the gas, when it leaves the container, can be neglected. Do not account 
for the gravitation of the Earth.  
 

Theoretical Problem 2 
 
 An electric lamp of resistance R0 = 2 Ω working at nominal voltage U0 = 4.5 V is 
connected to accumulator of electromotive force E = 6 V and negligible internal resistance.  
 1. The nominal voltage of the lamp is ensured as the lamp is connected 
potentiometrically to the accumulator using a rheostat with resistance R. What should be the 
resistance R and what is the maximal electric current Imax, flowing in the rheostat, if the 
efficiency of the system must not be smaller than η0 = 0.6?  
 2. What is the maximal possible efficiency η of the system and how the lamp can be 
connected to the rheostat in this case? 
 

Theoretical Problem 3 
 
 A detector of radiowaves in a radioastronomical observatory is placed on the sea 
beach at height h = 2 m above the sea level. After the rise of a star, radiating electromagnetic 
waves of wavelength λ  = 21 cm, above the horizont the detector registers series of 
alternating maxima and minima. The registered signal is proportional to the intensity of the 
detected waves. The detector registers waves with electric vector, vibrating in a direction 
parallel to the sea surface.  
 1. Determine the angle between the star and the horizont in the moment when the 
detector registers maxima and minima (in general form). 
 2. Does the signal decrease or increase just after the rise of the star? 



 3. Determine the signal ratio of the first maximum to the next minimum. At reflection 
of the electromagnetic wave on the water surface, the ratio of the intensities of the electric 
field of the reflected (Er) and incident (Ei) wave follows the low: 

ϕ
ϕ

cos
cos

+
−

=
n
n

E
E

i

r , 

where n is the refraction index and ϕ is the incident angle of the wave. For the surface “air-
water” for λ = 21 cm, the refraction index n = 9.  

4. Does the ratio of the intensities of consecutive maxima and minima increase or 
decrease with rising of the star?   

Assume that the sea surface is flat. 
 

Solution of the Theoretical Problem 1 
 
 Up to the moment when the piston leaves the container, the system can be considered 
as a closed one. It follows from the laws of the conservation of the momentum and the energy:  

0)( 10 =−+ muvnMM                 (1) 

                        UmuvnMM
∆=+

+
22

)( 22
10 ,                (2) 

where v1 – velocity of the container when the piston leaves it, u – velocity of the piston in the 
same moment, ∆U – the change of the internal energy of the gas. The gas is perfect and 
monoatomic, therefore 

   )(
2
3

2
3

fTTnRTnRU −=∆=∆ ;    (3) 

Tf  - the temperature of the gas in the moment when the piston leaves the container. This 
temperature can be determined by the law of the adiabatic process: 
    .constpV =γ  
Using the perfect gas equation nRTpV = , one obtains 
  .1 constTV =−γ ,  11 −− = γγ

ff VTTV  
Using the relation VV f 2= , and the fact that the adiabatic coefficient for one-atomic gas is  

3
5

2
3

2
5

===
R

R

c
c

v

pγ , the result for final temperature is: 

  3
2

3
2

1 2
2

)( −− === TT
V
VTT

f
f

γ       (4) 

Solving the equations (1) – (4) we obtain 
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If the gas mass nM0 is much smaller than the masses of the container M and the piston m, 
then the equation (5) is simplified to:  

)(
)21(3 3

2

1 MmM
mnRTv

+
−= −       (5’) 



When the piston leaves the container, the velocity of the container additionally increases to 
value v2 due to the hits of the atoms in the bottom of the container. Each atom gives the 
container momentum: 
   xA vmp ∆= 2 ,  

where mA – mass of the atom; 
A

A N
Mm 0= , and xv  can be obtained by the averaged quadratic 

velocity of the atoms 2v as follows: 

2222 vvvv zyx =++ , and 222
zyx vvv == , therefore 

3

2vvx = . It appears that due to the elastic 

impact of one atom the container receives averaged momentum 
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All calculations are done assuming that the thermal velocities of the atoms are much larger 
than the velocity of the container and that the movement is described using system connected 
with the container.  
 Have in mind that only half of the atoms hit the bottom of the container, the total 
momentum received by the container is 
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and additional increase of the velocity of the container is 
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Using the formula for the averaged quadratic velocity  
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as well eq. (4) for the temperature Tf , the final result for v2 is 
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Therefore the final velocity of the container is 
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Solution of the Theoretical Problem 2 

 
1) The voltage U0 of the lamp of resistance R0 is adjusted using the rheostat of 

resistance R. Using the Kirchhoff laws one obtains: 
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where xRR −  is the resistance of the part of the rheostat, parallel connected to the lamp, Rx is 
the resistance of the rest part, 
  xIREU −=0         (2) 
The efficiency η of such a circuit is 
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From eq. (3) it is seen that the maximal current, flowing in the rheostat, is determined by the 
minimal value of the efficiency: 
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The dependence of the resistance of the rheostat R on the efficiency η can determined 

replacing the value for the current I , obtained by the eq. (3), 
ηRE
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2
0= , in the eqs. (1) and (2): 
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Then  
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 To answer the questions, the dependence )(ηR  must be investigated. By this reason 
we find the first derivative ηR′ : 
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η < 1, therefore the above obtained derivative is positive and the function R(η) is increasing.  
It means that the efficiency will be minimal when the rheostat resistance is minimal. Then 
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The maximal current Imax can be calculated using eq. (4). The result is: Imax ≈660 mA. 



 2) As the function R(η) is increasing one, maxηη → , when ∞→R . In this case the 

total current I will be minimal and equal to 
R

U 0 . Therefore the maximal efficiency is 
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E
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This case can be realized connecting the rheostat in the circuit using only two of its 
three plugs. The used part of the rheostat is R1: 
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Solution of the Theoretical Problem 3 
 
 1) The signal, registered by the detector A, is result of the interference of two rays: 
the ray 1, incident directly from the star and the ray 2, reflected from the sea surface (see the 
figure).     

The phase of the second ray is shifted by π due to the reflection by a medium of larger 
refractive index. Therefore, the phase difference between the two rays is:  
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 The condition for an interference maximum is: 
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where k = 1,2,3,…,19. (the difference of the optical paths cannot exceed 2h, therefore k 
cannot exceed 19). 
 The condition for an interference minimum is: 
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where k = 1,2,3,…,19. 
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 2) Just after the rise of the star the angular height α is zero, therefore the condition for 
an interference minimum is satisfied. By this reason just after the rise of the star, the signal 
will increase.  
 3) If the condition for an interference maximum is satisfied, the intensity of the 
electric field is a sum of the intensities of the direct ray Ei and the reflected ray Er ,  
respectively: ri EEE +=max . 

Because 
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From the figure it is seen that maxmax 2
απϕ −= , we obtain 
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At the interference minimum, the resulting intensity is: 
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The intensity I of the signal is proportional to the square of the intensity of the electric 
field E, therefore the ratio of the intensities of the consecutive maxima and minima is: 
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Using the eqs. (2) and (3), the eq. (6) can be transformed into the following form: 
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Using this general formula, we can determine the ratio for the first maximum (k =1) and the 
next minimum: 
   

      

2

2

22

min

max

4

24

















+

+
=

h
n

h
nhn

I
I

λ

λ

λ
= 3.104 

4) Using that 
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So, with the rising of the star the ratio of the intensities of the consecutive maxima and 
minima decreases.  
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The Experimental Problem 
  

Materials and Instruments: elastic rubber cord (the length of free cord is l0 = 150 mm), 
vertically hanged up to a stand, set of weights from 10 g to 100 g, pan for the weights with 
mass 5 g, chronometer, ruler, millimeter (scaled) paper.  

Note: The Earth Acceleration is g = 10 m/s2. The mass of the rubber cord can be 
neglected.     
 
 Make the following study: 
 1. Load the rubber cord with weights in the range 15 g to 105 g. Put the data obtained 
into a table. Make a graph (using suitable scale) with the experimentally obtained dependence 
of the prolongation of the cord on the stress force F. 
 2. Using the experimental results, obtained in p.1, calculate and put into a table the 
volume of the cord as a function of the loading in the range 35 g to 95 g. Do the calculations 
consequently for each two adjacent values of the loading in this range. Write down the 
formulas you have used for the calculations. Make an analytical proposition about the 
dependence of the volume on the loading. 
 Assume that Young’s modulus is constant: E = 2.106 Pa. Take in mind that the 
Hooke’s law is only approximately valid and the deviations from it can be up to 10%. 
 3. Determine the volume of the rubber cord, using the chronometer, at mass of the 
weight equal to 60 g. Write the formulas used.                  
 

Solution of the Experimental Problem 
 

1. The measurements of the cord length ln at different loadings mn must be at least 10. 
The results are shown in Table I.  
 
Table 1. 

mn, kg Fn = mn.g, N ln, mm ∆ln = ln – l0, mm 
0.005 0.05 153 3 
0.015 0.15 158 8 
0.025 0.25 164 14 
0.035 0.35 172 22 
0.045 0.45 181 31 
0.055 0.55 191 41 
0.065 0.65 202 53 
0.075 0.75 215 65 
0.085 0.85 228 78 
0.095 0.95 243 93 



0.105 10.5 261 111 
     
 The obtained dependence of the prolongation of the cord on the stress force F can be 
drawn on graph. It is shown in Fig. 1.  
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2.For the calculations of the volume the Hooke’s law can be used for each 

measurement: 
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larger error, because the value of the nl∆ is of the same order as ln).  
 As the value of the Sn is determined, it is easy to calculate the volume Vn at each value 
of Fn: 
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 Using the data from Table 1, all calculations can be presented in Table 2: 
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0.035 – 0.025 0.1 0.172 0.008 1,07.10-6 184.10-9 

0.045 – 0.035 0.1 0.181 0.009 1,01.10-6 183.10-9 
0.055 – 0.045 0.1 0.191 0.010 0,95.10-6 182.10-9 
0.065 – 0.055 0.1 0.203 0.012 0,92.10-6 187.10-9 
0.075 – 0.065 0.1 0.215 0.012 0,89.10-6 191.10-9 
0.085 – 0.075 0.1 0.228 0.013 0,88.10-6 200.10-9 



0.095 – 0.085 0.1 0.243 0.015 0,81.10-6 196.10-9 
0.105 – 0.095 0.1 0.261 0.018 0,72.10-6 188.10-9 

  
The results show that the relative deviation from the averaged value of the calculated values 
of the volume is: 
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Therefore, the conclusion is that the volume of the rubber cord upon stretching is constant: 
   Vn = const.  
 3. The volume of the rubber cord at fixed loading can be determined investigating the 
small vibrations of the cord. The reason for these vibrations is the elastic force: 
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Using the second law of Newton:  
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the period of the vibrations can be determined: 
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Then 
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and the volume of the cord is equal to: 
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The measurement of the period gives: T = t/n = 5.25s /10 = 0.52 s at used mass m = 0.065 kg. 
The result for the volume V ≈ 195.10-9 m3, in agreement with the results obtained in part 2.  
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Problems of the 13th International Physics Olympiad

(Malente, 1982)

Gunter Lind & Gunnar Friege 1

Leibniz-Institute for Science Education (IPN) at the University of Kiel, Germany

Abstract

The 13th International Physics Olympiad took place in 1982 in the Federal Republic of

Germany. This article contains the competition problems, their solutions and a grading

scheme.

Introduction

In 1982 the Federal Republic of Germany was the first host of the Physics Olympiad

outside the so-called Eastern bloc. The 13th International Physics Olympiad took place in

Malente, Schleswig-Holstein. The competition was funded by the German Federal

Ministry of Science and Education. The organisational guidelines were laid down by the

work group “Olympiads for pupils” of the conference of ministers of education of the

German federal states. The Institute for Science Education (IPN) at the University of Kiel

was responsible for the realisation of the event. A commission of professors, whose

chairman was appointed by the German Physical Society, were concerned with the

formulation of the competition problems. All other members of the commission came from

physics department of the university of Kiel or from the college of education at Kiel.

The problems as usual covered different fields of  classical physics. In 1982 the pupils had

to deal with three theoretical and two experimental problems, whereas at the previous

Olympiads only one experimental task was given. However, it seemed to be reasonable to

put more stress on experimental work. The degree of difficulty was well balanced. One of

the theoretical problems could be considered as quite simple (problem 3: “hot-air

balloon”). Another theoretical problem (problem 1: “fluorescent lamp”) had a mean degree

of difficulty and the distribution of the points was a normal distribution with only a few

                                                

1 Contact: Leibniz-Institute for Science Education (IPN) at the University of Kiel
Olshausenstrasse 62, 24098 Kiel, Germany
ipho@ipn.uni-kiel.de



excellent and only a few unsatisfying solutions. The third problem (problem 2: “oscillation

coat hanger”) turned out to be the most difficult problem. This problem was generally

considered as quite interesting because different ways of solving were possible. About one

third of the pupils did not find an adequate start to the problem, but nearly one third of the

pupils was able to solve the substantial part of the problem. That means, this problem

polarized between the pupils. The two experimental tasks were quite different in respect of

the input for the experimental setup and the time required for dealing with the problems,

whereas they were quite similar in the degree of difficulty. Both required demandingly

theoretical considerations and experimental skills. Both experimental problems turned out

to be rather difficult. The tasks were composed in a way that on the one hand almost every

pupil had the possibility to come to certain partial results and that there were some

difficulties on the other hand which could only be solved by very few pupils. The

difficulty in the second experimental problem (problem5: “motion of a rolling cylinder”)

was the explanation of the experimental results, which were initially quite surprising. The

difficulty in the other task (problem 4: “lens experiment") was the revealing of an

observation method with a high accuracy (parallax). The five hours provided for solving

the two experimental problems were slightly too short. According to that,  in both

experiments only a few pupils came up with excellent solutions. In problem 5 nobody got

the full points.

The problems presented here are based on the original German and English versions of the

competition problems. The solutions are complete but in some parts condensed to the

essentials. Almost all of the original hand-made figures are published here.

Theoretical Problems

Problem 1: Fluorescent lamp

An alternating voltage of 50 Hz frequency is applied to the fluorescent lamp shown in the

accompanying circuit diagram.
2
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The following quantities are measured:

overall voltage (main voltage) U  = 228.5 V

electric current I   = 0.6 A

partial voltage across the fluorescent lamp U’ = 84 V

ohmic resistance of the series reactor dR 26.3= Ω

The fluorescent lamp itself may be considered as an ohmic resistor in the calculations.

a) What is the inductance L of the series reactor?

b) What is the phase shift ϕ   between voltage and current?

c) What is the active power Pw transformed by the apparatus?

d) Apart from limiting the current the series reactor has another important function. Name

and explain this function!

Hint: The starter  includes a contact which closes shortly after

switching on the lamp, opens up again and stays open.

e) In a diagram with a quantitative time scale sketch the time sequence of the luminous

flux emitted by the lamp.

f) Why has the lamp to be ignited only once although the applied alternating voltage goes

through zero in regular intervals?

g) According to the statement of the manufacturer, for a fluorescent lamp of the described

type a capacitor of about 4.7 µF can be switched in series with the series reactor. How

does this affect the operation of the lamp and to what intent is this possibility provided

for?

h) Examine both halves of the displayed demonstrator lamp with the added spectroscope.

Explain the differences between the two spectra. You may walk up to the lamp and you

may keep the spectroscope as a souvenir.

S
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Solution of problem 1:

a) The total resistance of the apparatus is 228.5VZ 380.8
0.6A

= = Ω  ,

the ohmic resistance of the tube is R
84 VR 140
0.6 A

= = Ω .

Hence the total ohmic resistance is R 140 26.3 166.3= Ω + Ω = Ω .

Therefore the inductance of the series reactor is: 2 2L Z R 342.6ω⋅ = − = Ω .

This yields 1

342.6L 1.09 H
100 s−

Ω
= =

π
.

b) The impedance angle is obtained from L 342.6tan 2.06
R 166.3
ω⋅ Ω

ϕ = = =
Ω

.

Thus o64.1ϕ = .

c) The active power can be calculated in different ways:

1) o
wP U I cos 228.5V 0.6 A cos 64.1 59.88 W= ⋅ ⋅ ϕ = ⋅ ⋅ =

2) 2 2
wP R I 166.3 (0.6 A) 59.87 W= ⋅ = Ω ⋅ =

d) By opening the contact in the starter a high induction voltage is produced across the

series reactor (provided the contact does not open exactly the same moment, when the

current goes through zero). This voltage is sufficient to ignite the lamp. The main

voltage itself, however, is smaller than the ignition voltage of the fluorescent tube.

e)

f) The recombination time of the ions and electrons in the gaseous discharge is

sufficiently large.
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g) The capacitive resistance of a capacitor of 4.7 µF is

6 11 (100 4.7 10 ) 677.3
C

− −= ⋅π ⋅ ⋅ Ω = Ω
ω⋅

.

The two reactances subtract and there remains a reactance of 334.7 Ω acting as a

capacitor.

The total resistance of the arrangement is now

2 2Z ' (334.7) (166.3) 373.7= + Ω = Ω ,

which is very close to the total resistance without capacitor, if you assume the capacitor

to be loss-free (cf. a) ). Thus the lamp has the same operating qualities, ignites the same

way, and a difference is found only in the impedance angle ϕ’, which is opposite to the

angle ϕ calculated in b):

( ) 1L C 334.7tan ' 2.01
R 166.3

−ω⋅ − ω⋅
ϕ = = − = −

o' 63.6ϕ = − .

Such additional capacitors are used for compensation of reactive currents in buildings

with a high number of fluorescent lamps, frequently they are prescribed by the

electricity supply companies. That is, a high portion of reactive current is unwelcome,

because the power generators have to be layed out much bigger than would be really

necessary and transport losses also have to be added which are not payed for by the

customer, if pure active current meters are used.

h) The uncoated part of the demonstrator lamp reveals the line spectrum of mercury, the

coated part shows the same line spectrum over a continuous background. The

continuous spectrum results from the ultraviolet part of the mercury light, which is

absorbed by the fluorescence and re-emitted with smaller frequency (energy loss of the

photons) or larger wavelength respectively.

Problem 2: Oscillating coat hanger

A (suitably made) wire coat hanger can perform small amplitude oscillations in the plane

of the figure around the equilibrium positions shown. In positions a) and b) the long side is
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horizontal. The other two sides have equal length. The period of oscillation is the same in

all cases.

What is the location of the center of mass, and how long is the period?

  a) b) c)

The figure does not contain any information beyond the dimensions given. Nothing is

known, e.g., concerning the detailed distribution of mass.

Solution of problem 2

First method:

The motions of a rigid body in a plane correspond to the motion of two equal point masses

connected by a rigid massless rod. The moment of inertia then determines their distance.

Because of the equilibrium position a) the center of mass

is on the perpendicular bipartition of the long side of the

coat hanger. If one imagines the equivalent masses and

the supporting point P being arranged in a straight line in

each case, only two positions of P yield the same period

of oscillation (see sketch). One can understand this by

considering the limiting cases: 1. both supporting points

in the upper mass and 2. one point in the center of mass and

above. Between these extremes the period of oscillation gro

supporting point placed in the corner of the long side c) has

center of mass, and therefore this point lies outside the two 

supporting points a), b) then have to be placed symmetricall

between the two point masses, i.e., the center of mass bisect

One knows of the reversible pendulum that for every suppo

pendulum it generally has a second supporting point of the p

the same period of oscillation but at a different distance from
 the other infinitely high

ws continuously. The

 the largest distance from the

point masses. The two other

y to the center of mass

s the perpendicular bipartition.

rting point of the physical

endulum rotated by 180o, with

 the center of mass. The



7

section between the two supporting points equals the length of the corresponding

mathematical pendulum. Therefore the period of oscillation is obtained through the

corresponding length of the pendulum sb + sc , where sb = 5 cm and 2 2
cs 5 21= + cm, to

be  T  =  1.03 s .

Second method:

Let  s  denote the distance between the supporting point and the center of mass,  m  the

mass itself and  θ  the moment of inertia referring to the supporting point. Then we have

the period of oscillation  T :

T 2
m g s
θ

= π
⋅ ⋅

  , (1)

where  g  is the acceleration of gravity,  g  = 9.81 m/s2. Here θ can be obtained from the

moment of inertia  θo related to the center of mass:

2
0 m sθ = θ + ⋅ (2)

Because of the symmetrical position in

case a) the center of mass is to be found

the perpendicular bisection above the

long side. Now (1) and (2) yield

2
2

0
Tm s m g s for

2
⎛ ⎞θ + ⋅ = ⋅ ⋅ ⋅⎜ ⎟⋅π⎝ ⎠

  s  =  sa,  sb  an

because all periods of oscillation are the same. T

different solutions at most. Therefore at least two

of  sc > 21 cm > sa + sb, only sa and sb can equal e

sa = 5 cm

The moment of inertia θ0 is eliminated through (

(
2

2 2
c a c

Tm (s s ) m g s
2

⎛ ⎞⋅ − = ⋅ ⋅ ⋅⎜ ⎟⋅ π⎝ ⎠

and we have c as sT 2
g
+

= ⋅π
on

d sc. (3)

his quadratic equation has only two

 of the three distances are equal. Because

ach other. Thus we have

(4)

3):

)as−

(5)
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with the numerical value T 1.03 s= ,

which has been rounded off after two decimals because of the accuracy of  g.

Third method:

This solution is identical to the previous one up to equation (2).

From (1) and (2) we generally have for equal periods of oscillation T1 = T2:

2
0 1

1

m s
m g s

θ + ⋅
⋅ ⋅

  =  
2

0 2

2

m s
m g s

θ + ⋅
⋅ ⋅

and therefore ( ) ( )2 2
2 0 1 1 0 2s m s s m s⋅ θ + ⋅ = ⋅ θ + ⋅

or ( ) ( )2 1 0 1 2s s m s s 0− ⋅ θ − ⋅ = (6)

The solution of (6) includes two possibilities: 0
1 2 1 2s s or s s

m
θ

= ⋅ =

Let  2⋅a  be the length of the long side and  b the height of the coat hanger. Because of

Tb  =  Tc  we then have 0
b c b ceither s s or s s

m
θ

= ⋅ = , where 2 2
c bs s a= + ,

which excludes the first possibility. Thus 0
b cs s

m
θ

⋅ = . (7)

For  Ta  =  Tb  the case  sa ⋅ sb = 0

m
θ  is excluded because of eq. (7), for we have

a bs s⋅ < 0
c bs s

m
θ

⋅ = .

Hence 2 2
a b c

1 1s s b, s b a
2 4

= = = +

and

20 2b
b c b

b b

s s s smT 2 2
g s g s

θ
+ ⋅ +

= ⋅π = π
⋅ ⋅

The numerical calculation yields the value T 1.03 s= .
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Problem 3: Hot-air-balloon

Consider a hot-air balloon with fixed volume VB = 1.1 m3. The mass of the balloon-

envelope, whose volume is to be neglected in comparison to VB,  is mH  =  0.187 kg.

The balloon shall be started, where the external air temperature is  1ϑ  = 20 oC and the

normal external air pressure is po = 1.013 ⋅ 105 Pa. Under these conditions the density of

air is ρ1 = 1.2 kg/m3.

a) What temperature 2ϑ  must the warmed air inside the balloon have to make the balloon

just float?

b) First the balloon is held fast to the ground and the internal air is heated to a steady-state

temperature of 3ϑ  = 110 oC. The balloon is fastened with a rope.

Calculate the force on the rope.

c) Consider the balloon being tied up at the bottom (the density of the internal air stays

constant). With a steady-state temperature 3ϑ  = 110 oC of the internal air the balloon

rises in an isothermal atmosphere of 20 oC and a ground pressure of

p0 = 1.013 ⋅ 105 Pa. Which height  h  can be gained by the balloon under these

conditions?

d) At the height  h  the balloon (question c)) is pulled out of its equilibrium position by

10 m and then is released again.

Find out by qualitative reasoning what kind of motion it is going to perform!

Solution of problem 3:

a) Floating condition:

The total mass of the balloon, consisting of the mass of the envelope  mH  and the mass

of the air quantity of temperature 2ϑ  must equal the mass of the displaced air quantity

with temperature 1ϑ  = 20 oC.

VB ⋅ ρ2  +  mH  =  VB ⋅ ρ1

H
2 1

B

m
V

ρ = ρ −  (1)
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Then the temperature may by obtained from

1 2

2 1

T
T

ρ
=

ρ
,

1
2 1

2

T Tρ
= ⋅
ρ

= 341.53 K = 68.38 °C (2)

b) The force  FB  acting on the rope is the difference between the buoyant force FA  and

the weight force  FG:

FB = VB ⋅ ρ1 ⋅ g  -  (VB ⋅ ρ3  + mH) ⋅ g (3)

It follows with ρ3 ⋅ T3  =  ρ1 ⋅ T1

FB = VB ⋅ ρ1 ⋅ g ⋅ 1

3

T1
T

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 - mH ⋅ g = 1,21 N (4)

c) The balloon rises to the height  h , where the density of the external air ρh has the same

value as the effective density ρeff, which is evaluated from the mass of the air of

temperature ϑ3  = 110 oC (inside the balloon) and the mass of the envelope  mH:

1

0

g h

3 B H2
eff h 1

B B

V mm e
V V

ρ ⋅ ⋅
−

ρρ ⋅ +
ρ = = = ρ = ρ ⋅   (5)

Resolving eq. (5) for  h  gives: o 1

1 eff

ph 1n 843m
g

ρ
= ⋅ =

ρ ⋅ ρ
(6).

d) For small height differences (10 m in comparison to 843 m) the exponential pressure

drop (or density drop respectively) with height can be approximated by a linear

function of height. Therefore the driving force is proportional to the elongation out of

the equilibrium position.

This is the condition in which harmonic oscillations result, which of course are damped

by the air resistance.
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Experimental Problems

Problem 4: Lens experiment

The apparatus consists of a symmetric biconvex lens, a plane mirror, water, a meter stick,

an optical object (pencil), a supporting base and a right angle clamp. Only these parts may

be used in the experiment.

a) Determine the focal length of the lens with a maximum error of  ±  1 %.

b) Determine the index of refraction of the glass from which the lens is made.

The index of refraction of water is  nw  =  1.33. The focal length of a thin lens is given by

( )
1 2

1 1 1n 1
f r r

⎛ ⎞
= − ⋅ −⎜ ⎟

⎝ ⎠
,

where  n  is the index of refraction of the lens material and  r1  and  r2  are the curvature

radii of the refracting surfaces. For a symmetric biconvex lens we have r1 = - r2 = r, for a

symmetric biconcave lens  r1  =  - r2  =  - r .

Solution of problem 4:

a) For the determination of  fL , place the lens on the mirror

and with the clamp fix the pencil to the supporting base.

Lens and mirror are then moved around until the

vertically downward looking eye sees the pencil and its

image side by side.

In order to have object and image in focus at the same

time, they must be placed at an equal distance to the eye.

In this case object distance and image distance are the

same and the magnification factor is  1 .

It may be proved quite accurately, whether magnification 

one concentrates on parallatical shifts between object and

only when the distances are equal do the pencil-tips point 

The light rays pass the lens twice because they are reflecte

the optical mapping under consideration corresponds to a 

placed directly one after another:
1 has in fact been obtained, if

 image when moving the eye:

at each other all the time.

d by the mirror. Therefore

mapping with two lenses
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L L

1 1 1 1 1 1, where
g b f f f f
+ = = +

i.e. the effective focal length  f  is just half the focal length of the lens. Thus we find for

magnification 1:

L
L

2 2g b and i.e. f g.
g f

= = =

A different derivation of fL = g = b: For  a

mapping of magnification  1  the light rays

emerging from a point on the optical axis

are reflected into themselves. Therefore

these rays have to hit the mirror at right

angle and so the object distance  g  equals

the focal length  fL  of the lens in this case.

The distance between pencil point and mirro

which enables one to state  fL  with a maximu

either by averaging several measurements or

is found through the appearance of parallaxe

Half the thickness of the lens has to be subtra

point and mirror.

'
L L

1f f d , d 3.0 0.5 mm
2

= − = ±

The nominal value of the focal length of the 

focal length of the single lenses spread consi

separately, so the individual result of the stud

b) The refractive index  n  of the lens material c

( )
L

1 2n 1
f r

= − ⋅

if the focal length  fL  and the curvature radiu

known. fL  was determined in part a) of this p
r has to be determined with an accuracy,

m error of  ± 1 % . This is accomplished

 by stating an uncertainty interval, which

.

cted from the distance between pencil-

lens is Lf  = 30 cm. However, the actual

derably. Each lens was measured

ent can be compared with the exact value.

an be evaluated from the equation

s  r  of the symmetric biconvex lens are

roblem.
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The still unknown curvature radius  r  of the

symmetric biconvex lens is found in the

following way: If one pours some water onto

the mirror and places the lens in the water,

one gets a plane-concave water lens, which

has one curvature radius equalling the glass len

Because the refractive index of water is known 

curvature radius through the formula above, wh

( )w
w

1 1n 1 .
f r

− = − ⋅

Only the focal length  f '  of the combination of

we have

L w

1 1 1
f ' f f

= + .

This focal length is to be determined by a mapp

Then the focal length of the water lens is
w

1
f

and one has the curvature radius ( )wr n 1= − − ⋅

Now the refractive index of the lens is determin

with the known values of  fL  and  r, or, if one w

the measured quantities: ( )
( )

w

L

f ' n 1
n

2 f ' f
⋅ −

=
⋅ −

+ 1.

The nominal values are: f ' =  43.9 cm, fw = -94

Problem 5: Motion of a rolling cylinder

The rolling motion of a cylinder may be decompose

horizontal translation of the center of gravity. In the

translatory acceleration and the forces causing it ar
s’ radius and the other radius is  ∞ .

in this case, one can evaluate the

ere  r1  =  -r   and  r2  =  ∞  :

 lenses is directly measured, for which

ing of magnification  1  as above.

'
L

1 1
f f

= −

wf .

ed by 
L

rn 1
2 f

= +
⋅

ants to express  n  explicitly through

.5 cm, r =  31.2 cm, n = 1.52.

d into rotation about its axis and

 present experiment only the

e determined directly.



Given a cylinder of mass Μ , radius R , which is placed on a horizontal plane board. At a

distance ri  (i  =  1 … 6) from the cylinder axis a force acts on it (see sketch). After letting

the cylinder go, it rolls with constant acceleration.
14

a) Determine the linear accelerations ai (i  =  1 … 6) of the cylinder axis experimentally

for several distances ri (i = 1 … 6).

b) From the accelerations  ai  and given quantities, compute the forces Fi   which act in

horizontal direction between cylinder and plane board.

c) Plot the experimental values Fi as functions of ri. Discuss the results.

Before starting the measurements, adjust the plane board horizontally. For present

purposes it suffices to realize the horizontal position with an uncertainty of ± 1 mm of

height difference on 1 m of length; this corresponds to the distance between adjacent

markings on the level. What would be the result of a not horizontal position of the plane

board?

Describe the determination of auxiliary quantities and possible further adjustments;

indicate the extent to which misadjustments would influence the results.

The following quantities are given:

R = 5 cm r1 = 0.75 cm

M = 3.275 kg r2 = 1.50 cm

m = 2 x 50 g r3 = 2.25 cm

D = 1.50 cm r4 = 3.00 cm

d = 0.1 mm r5 = 3.75 cm

r6 = 4.50 cm

Mass and friction of the pulleys c may be neglected in the evaluation of the data.

By means of knots, the strings are put into slots at the cylinder. They should be inserted as

deeply as possible. You may use the attached paper clip to help in this job.



The stop watch should be connected, as shown in the sketch, with electrical contacts at A

and B via an electronic circuit box. The stop watch starts running as soon as the contact at

A is opened, and it stops when the contact at B is closed.

The 

at B,

of th

Solu

The

a) T

b) L

s

T

f

h

I

I

15

purpose of the transistor circuit is to keep the relay position after closing of the contact

 even if this contact is opened afterwards for a few milliseconds by a jump or chatter

e cylinder.

tion of problem 5:

oretical considerations:

he acceleration of the center of mass of the cylinder is 2

2 sa
t
⋅

= (1)

et  am  be the acceleration of the masses  m  and  T  the sum of the tensions in the two

trings, then

T  =  m ⋅ g - m ⋅ am (2)

he acceleration  a  of the center of mass of the cylinder is determined by the resultant

orce of the string-tension  T  and the force of interaction  F  between cylinder and the

orizontal plane.

M⋅a  = T  -  F (3)

f the cylinder rotates through an angle  θ  the mass  m  moves a distance xm.

t holds

xm = (R + r) ⋅ θ

( )m
aa R r
R

= + ⋅ (4)
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From  (2),  (3) and  (4)  follows rF mg M m 1 a
R

⎡ ⎤⎛ ⎞= − + ⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (5)

c) From the experimental data we see that for small  ri  the forces M ⋅ a  and T are in

opposite direction and that they are in the same direction for large ri .

For small values of  r  the torque produced by the string-tensions is not large enough to

provide the angular acceleration required to prevent slipping. The interaction force

between cylinder and plane acts into the direction opposite to the motion of the center

of mass and thereby delivers an additional torque.

For large values of  r  the torque produced by string-tension is too large and the

interaction force has such a direction that an opposed torque is produced.

From the rotary-impulse theorem we find

aT r F R
R

⋅ + ⋅ = Ι ⋅θ = Ι ⋅ ,

where  Ι  is the moment of inertia of the cylinder.

With (3)  and  (5) you may eliminate  T  and  a  from this equation. If the moment of

inertia of the cylinder is taken as 21 R
2

Ι = ⋅Μ ⋅ (neglecting the step-up cones) we find

after some arithmetical transformations

2

r1 2
RF mg

m r3 2 1
M R

− ⋅
= ⋅

⎛ ⎞+ ⋅ ⋅ +⎜ ⎟
⎝ ⎠

.

For  r  =  0 m gF m3 2
M

⋅
→ =

+ ⋅
 >  0.

For  r  =  R m gF m3 8
M

− ⋅
⇒ =

+ ⋅
<  0.

Because  m 1
M

it is approximately 1 2 rF m g
3 3 R

= ⋅ − ⋅ .



That means:  the dependence of  F  from  r  is approximately linear.  F  will be zero if

r m g
R 2

⋅
= .

Experimental results:

s  =  L  −  (2 ⋅  R ⋅D  +  D2)
1
2   −  (2 ⋅  R ⋅d  −  d2) 

1
2

s  =  L  −  4.5 cm  =  39.2 cm  −  4.5 cm  =  34.7 cm

r
[cm]

t
[s]

t

[s]

a

[m/s2]

F
[N]

0.75 1.81 1.82 1.82 1.816 0.211 0.266

1.50 1.71 1.72 1.73 1.720 0.235 0.181

2.25 1.63 1.63 1.64 1.633 0.261 0.090

3.00 1.56 1.56 1.57 1.563 0.284 0.004

3.75 1.51 1.51 1.52 1.513 0.304 - 0.066

4.50 1.46 1.46 1.46 1.456 0.328 - 0.154
17
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Grading schemes

Theoretical problems

Problem 1: Fluorescent lamp pts.
Part a 2
Part b 1
Part c 1
Part d 1
Part e 1
Part f 1
Part g 2
Part h 1

10

Problem 2: Oscillating coat hanger pts.
equation (1) 1,5
equation (2) 1,5
equation (4) 3
equation (5) 2
numerical value for T 1

10

Problem 3: Hot-air-balloon pts.
Part a 3
Part b 2
Part c 3
Part d 2

10

Experimental problems

Problem 4: Lens experiment pts.
correct description of experimental prodedure 1
selection of magnification one 0.5
parallaxe for verifying his magnification 1
fL = g = b with derivation 1
several measurements with suitable averaging or other

determination of error interval 1
taking into account the lens thickness and computing fL,

including the error 0.5
idea of water lens 0.5
theory of lens combination 1
measurements of f ′ 0.5
calculation of n and correct result 1

8
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Problem 5: Motion of a rolling cylinder pts.
Adjustment mentioned of strings a) horizontally and b) in

direction of motion 0.5
Indication that angle offset of strings enters the formula for

the acting force only quadratically, i.e. by its cosine 0.5
Explanation that with non-horizontal position, the force

m⋅g is to be replaced by  m⋅g  ±  M⋅g ⋅ sin α 1.0
Determination of the running length according for formula

( ) ( )1 / 2 1 / 22 2s L 2 R D D 2 R d d= − ⋅ ⋅ + − ⋅ ⋅ +

including correct numerical result 1.0
Reliable data for rolling time 1.0
accompanied by reasonable error estimate 0.5
Numerical evaluation of the  Fi 0.5
Correct plot of  Fi (vi) 0.5
Qualitative interpretation of the result by intuitive

consideration of the limiting cases  r = 0  and  r = R 1.0
Indication of a quantitative, theoretical interpretation using

the concept of moment of inertia 1.0
Knowledge and application of the formula  a = 2 s / t2 0.5
Force equation for small mass and tension of the string

m⋅(g - am)  =  T 1.0
Connection of tension, acceleration of cylinder and

reaction force  T – F = M⋅a 1.0
Connection between rotary and translatory motion

( )mx R r= + ⋅ θ 0.5
( )ma 1 r / R a= + ⋅ 0.5

Final formula for the reaction force
( )( )F m g M m 1 r / R a= ⋅ − + ⋅ + ⋅ 1.0

If final formulae are given correctly, the knowledge for
preceding equations must be assumed and is graded
accordingly.

12
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1.Mechanics – Problem I (8 points) 
Jumping particle 
 
A particle moves along the positive axis Ox  (one-dimensional situation) under a force that’s projection 
on Ox is 0FFx =  as represented in the figure below (as function of x ). At the origin of Ox  axis is 
placed a perfectly reflecting wall.  
A friction force of constant modulus NFf 00,1=  acts anywhere the particle is situated. 
The particle starts from the point  mxx 00,10 ==  having the kinetic energy JEc 0,10= . 
a. Find the length of the path of the particle before it comes to a final stop  
b. Sketch the potential energy )(xU  of the particle in the force field xF . 
c. Draw qualitatively the dependence of the particle speed as function of his coordinate x . 

 
 
 

2.Electricity – Problem II (8 points) 
 
Different kind of oscillation 
 
Let’s consider the electric circuit in the figure, for which mHL 101 = , 

mHL 202 = , nFC 101 = , nFC 52 =  and Ω= kR 100 . The switch K  
being closed the circuit is coupled with a source of alternating current. The 
current furnished by the source has constant intensity while the frequency of 
the current may be varied.  

a. Find the ratio of frequency mf  for which the active power in circuit 
has the maximum value mP  and the frequency difference 

−+ −=∆ fff  of the frequencies +f  and  −f  for which the active 
power in the circuit is half of the maximum power mP . 

 
 
The switch K  is now open. In the moment  0t  immediately after the switch 
is open the intensities of the currents in the coils  1L  and  Ai 1,001 =  and 
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Ai 2,002 =  1L  (the currents flow as in the figure); at the same moment, 
the potential difference on the capacitor with capacity  1C  is  

Vu 400 =  : 
b. Calculate the frequency of electromagnetic oscillation in  

2211 LCCL  circuit; 
c. Determine the intensity of the electric  current in the AB  

conductor; 
d. Calculate the amplitude of the oscillation of the intensity of 

electric current in the coil 1L . 
 
Neglect the mutual induction of the coils, and the electric resistance of 
the conductors. Neglect the fast transition phenomena occurring when 
the switch is closed or opened. 
 
 
 
 
 
 

3.Optics – Problem III (7points) 
 

Prisms 
 
Two dispersive prisms having apex angles °= 60ˆ

1A  and  °= 30ˆ
2A  are glued as in the figure below 

( °= 90Ĉ ). The dependences of refraction indexes of the prisms on the wavelength are given by the 
relations    

( ) 2
1

11 λ
λ

ban += ;      

( ) 2
2

22 λ
λ

ban +=  

were  
.105,3,1,101,1,1 24

22
25

11 nmbanmba ⋅==⋅==   
 

a. Determine the wavelength  0λ  of the incident radiation that pass through the prisms without 
refraction on AC  face at any incident angle; determine the corresponding refraction indexes of 
the prisms. 

b. Draw the ray path in the system of prisms for three different radiations ioletred vλλλ ,, 0  
incident on the system at the same angle. 

c. Determine the minimum deviation angle in the system for a ray having the wavelength 0λ . 
d. Calculate the wavelength of the ray that penetrates and exits the system along directions 

parallel to DC. 
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4.Atomics - Problem IV (7 points) 
 
Compton scattering 
 
A photon of wavelength iλ  is scattered by a moving, free electron. As a result the electron stops and 
the resulting photon of wavelength 0λ  scattered at an angle °= 60θ  with respect to the direction of 
the incident photon, is again scattered by a second free electron at rest. In this second scattering 
process a photon with wavelength of mf

1010251 −×= ,λ  emerges at an angle °= 60θ  with respect 
to the direction of the photon of wavelength 0λ . Find the de Broglie wavelength for the first electron 
before the interaction. The following constants are known: 

sJh ⋅×= −341066,  - Planck’s constant 
kgm 311019 −×= ,  - mass oh the electron 

smc /, 81003 ×=  - speed of light in vacuum 
 
 
The purpose of the problem is to calculate the values of the speed, momentum and wavelength of the 
first electron. 
 
To characterize the photons the following notation are used: 
Table 4.1 

 

 
To characterize the electrons one uses 
Table 4.2 

 first electron 
before collision  

first electron 
after collision 

second electron 
before collision  

Second electron 
after collision 

momentum ep1


 0  0  ep2


 
energy eE1  eE0  eE0  eE2  
speed ev1

  0  0  ev 2
  

 
 
 
 
 
 
 

 initial  
photon 

photon –  
after the  
first scattering 

final  
photon 

momentum ip


 0p


 fp


 
energy iE  0E  fE  
wavelength iλ  iλ  fλ  
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5.IPhO’s LOGO – Problem V  
 
The Logo of the International Physics Olympiad is represented in the figure below. 
The figure presents the phenomenon of the curving of the trajectory of a jet of fluid around the shape of 
a cylindrical surface. The trajectory of fluid is not like the expected dashed line but as the circular solid 
line. 
Qualitatively explain this phenomenon (first observed by Romanian engineer Henry Coanda in 1936). 
 
This problem will be not considered in the general score of the Olympiad. The best solution will be 
awarded a special prize.  
 

 
 



IPhO 1983             Theoretical Question I      

 
 

Mechanics – Problem I - Solution       Page 1 from 17 

1.Mechanics – Problem I (8 points) 
A particle moves along the positive axis Ox  (one-dimensional situation) under a force having a 
projection 0FFx = on Ox , as represented, as function of x , in the figure 1.1. In the origin of the Ox  
axis is placed a perfectly reflecting wall.  
A friction force, with a constant modulus NFf 00,1= , acts everywhere on the particle. 
The particle starts from the point  mxx 00,10 ==  having the kinetic energy JEc 0,10= . 
a. Find the length of the path of the particle until its’ final stop  
b. Plot the potential energy )(xU  of the particle in the force field xF . 
c. Qualitatively plot the dependence of the particle’s speed as function of its’ x coordinate. 

 
Figure 1.1 

 

Problem I – Solution 
a. It is possible to make a model of the situation in the problem, considering the Ox axis vertically 
oriented having the wall in its’ lower part. The conservative force xF  could be the weight of the particle. 
One may present the motion of the particle as the vertical motion of a small elastic ball elastically 
colliding with the ground and moving with constant friction through the medium. The friction force is 
smaller than the weight.  
The potential energy of the particle can be represented in analogy to the gravitational potential energy 
of the ball, hgm ⋅⋅ , considering xhFgm x ==⋅ ; . As is very well known, in the field of a conservative 
force, the variation of the potential energy depends only on the initial and final positions of the particle, 
being independent of the path between those positions. 
 
For the situation in the problem, when the particle moves towards the wall, the force acting on it is 
directed towards the wall and has the modulus l 

fx FFF −=←         ( 1.1) 

NF 9=←         ( 1.2) 

As a consequence, the motion of the particle towards the wall is a motion with a constant acceleration 
having the modulus  

m
FF

m
Fa fx −== ←

←        ( 1.3) 

During the motion, the speed of the particle increases. 
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Hitting the wall, the particle starts moving in opposite direction with a speed equal in modulus with the 
one it had before the collision.  
When the particle moves away from the wall, in the positive direction of the Ox axis, the acting force is 
again directed towards to the wall and has the magnitude  

fx FFF +=→         ( 1.4) 

NF 11=→         ( 1.5) 

Correspondingly, the motion of the particle from the wall is slowed down and the magnitude of the 
acceleration is 

m
FF

m
Fa fx +== →

→        ( 1.6) 

During this motion, the speed of the particle diminishes to zero.  
Because during the motion a force acts on the particle, the body cannot have an equilibrium position in 
any point on axis – the origin making an exception as the potential energy vanishes there. The particle 
can definitively stop only in this point.  
The work of a conservative force from the point having the coordinate  00 =x  to the point x  , xL →0  is 
correlated with the variation of the potential energy of the particle ( ) ( )0UxU −  as follows 

( ) ( )

( ) ( )







⋅=⋅=⋅−=−

−=−

∫∫

→

xFdxFdxFUxU

LUxU

x

x

x

x

x

x

00

0

0

0
    ( 1.7) 

Admitting that the potential energy of the particle vanishes for 0=x , the initial potential energy of the 
particle ( )0xU  in the field of conservative force  

( ) 0FxFx =         ( 1.8) 

can be written 

( ) 000 xFxU ⋅=         ( 1.9) 

The initial kinetic energy ( )0xE  of the particle is – as given  

( ) cExE =0         ( 1.10) 

and, consequently the total energy of the particle ( )0xW  is 

( ) ( ) cExUxW += 00        ( 1.11) 

The draw up of the particle occurs when the total energy of the particle is entirely exhausted by the 
work of the friction force. The distance covered by the particle before it stops, D , obeys 

( )
( )









⋅=+⋅

⋅=+
⋅=

fcx

fc

f

FDExF
FDExU

FDxW

0

0

0

       ( 1.12) 

so that , 
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f

cx

F
ExF

D
+⋅

= 0        ( 1.13)

and 

* 

mD 20=         ( 1.14)

The relations (1.13) and (1.14) represent the answer to the question I.a. 

* 

 
b. The relation (1.7) written as   

( ) xFxU x ⋅=         ( 1.15) 

gives the linear dependence of the potential energy to the position . 
If the motion occurs without friction, the particle can reach a point A  situated at the distance δ  apart 
from the origin in which the kinetic energy vanishes. In the point A  the energy of the particles is entirely 
potential.  
The energy conservation law for the starting point and point A   gives  









+=

⋅=⋅+

x

c

xxc

F
Ex

FxFE

0

0

δ

δ
       ( 1.16) 

The numerical value of the position of point A , furthest away from the origin, is  
m2=δ  

if the motion occurs without friction. 
The representation of the dependence of the potential energy on the position in the domain ( )δ,0  is 
represented in the figure 1.2. 

 
Figure 1.2 

During the real motion of the particle (with friction) the extreme positions reached by the particle are 
smaller than δ  (because of the leak of energy due to friction).  
The graph in the figure 1.2 is the answer to the question I.b.  
 



IPhO 1983             Theoretical Question I      

 
 

Mechanics – Problem I - Solution       Page 4 from 17 

c.  During the motion of the particle its energy decrease because of the dissipation work of the friction 
force. The speed of the particle has a local maximum near the wall. Denoting kv  the speed of the 
particle just before its’ kth

1+kv collision with the wall and   the speed just before its’ next collision,  
1+> kk vv  

Among two successive collisions, the particle reaches its’ kx  positions in which its’ speed vanishes and 
the energy of the particle is purely potential. These positions are closer and closer to the wall because a 
part of the energy of the particle is dissipated through friction.  

kk xx <+1          ( 1.17) 

 
Case 1  

When the particle moves towards the wall, both its’ speed and its’ kinetic energy increases. The 
potential energy of the particle decreases. During the motion – independent of its’ direction- energy is 
dissipated through the friction force.  
The potential energy of the particle, )(xU  , the kinetic energy ( )xE  and the total energy of the particle 
during this part of the motion ( )xW   obey the relation 

( ) ( ) ( )xxFxWxW f −⋅=− 00        ( 1.18) 

the position x  lying in the domain  
( )0,0 xx∈          ( 1.19) 

covered from 0x  towards origin. The relation (1.18) can be written as 

[ ] ( )xxFxFvmxFE fxxc −⋅=







⋅+

⋅
−⋅+ 0

2

0 2
     ( 1.20) 

so that 

( )[ ]

( ) ( )[ ]








−−−+=

−⋅−⋅−⋅+=

fxfxc

fxxc

FFxFFxE
m

v

xxFxFxFE
m

v

0
2

00
2

2

2

     ( 1.21)  

and by consequence  

( ) ( )[ ]fxfxc FFxFFxE
m

v −−−+−= 0
2      ( 1.22) 

The minus sign in front of the magnitude of the speed indicates that the motion of the particle occurs 
into the negative direction of the coordinate axis. 
Using the problem data  

( )

( )








⋅−−=

⋅−=

x
m

v

x
m

v

9192

91922

        ( 1.23) 

The speed of the particle at the first collision with the wall ←1v  can be written as  
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( )[ ]fxc FFxE
m

v −+−=← 01
2        ( 1.24) 

and has the value  

192
1 m

v −=←         ( 1.25) 

The total energy near the wall, purely kinetic  ←1E  , has the expression 

( )fxc FFxEE −+=← 01         ( 1.26) 

The numerical value of this energy is  

JE 191 =←          ( 1.27)  

The graph in the figure (1.3) gives the dependence on position of the square of the speed for the first 
part of the particle’s motion.  

 
Figure 1.3 

 
Figure 1.4 



IPhO 1983             Theoretical Question I      

 
 

Mechanics – Problem I - Solution       Page 6 from 17 

The graph in the figure (1.4) presents the speed’s dependence on the position in this first part of the 
particle’s motion (towards the wall). 
After the collision with the wall, the speed of the particle, →1v , has the same magnitude as the speed 
just before the collision but it is directed in the opposite way. In the graphical representation of the 
speed as a function of position, the collision with the wall is represented as a jump of the speed from a 
point lying on negative side of the speed axis to a point lying on positive side of the speed axis. The 
absolute value of the speed just before and immediately after the collision is the same as represented 
in the figure 1.5.  

( )[ ]fxc FFxE
m

v −+=→ 01
2        ( 1.28) 

After the first collision, the motion of the particle is slowed down with a constant deceleration →a   and 
an initial speed →1v . 
This motion continues to the position 1x   where the speed vanishes.  
From Galileo law it can be inferred that  

( )[ ] ( )[ ]
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=
+

⋅
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=

⋅
=

⋅⋅−=

→

→

→→

fx
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fx
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FF
FFxE

m
FF

FFxE
m

a
vx

xav

0
02

1
1

1
2
1

2

2

2

20

    ( 1.29) 

The numerical value of the position 1x   is 

mx
11
19

1 =          ( 1.30) 

For the positions  
( )1,0 xx∈          ( 1.31) 

covered from the origin towards 1x  the total energy ( )xW  has the expression  

( ) xFvmxW x ⋅+
⋅

=
2

2

        ( 1.32) 

From the wall, the energy of the particle diminishes because of the friction – that is  
( )

( )





⋅=⋅−
⋅

−−+

⋅=−←

xFxFvmFFxE

xFxWE

fxfxc

f

2

2

0

1

     ( 1.33) 

The square of the magnitude of the speed is  

( ) ( )[ ]

( ) ( )








−⋅+=

⋅+−−+=

xxFF
m

v

xFFFFxE
m

v

fx

fxfxc

1
2

0
2

2

2

      ( 1.34) 

and the speed is  

( ) ( )[ ]xFFFFxE
m

v fxfxc ⋅+−−+= 0
2      ( 1.35) 
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Using the furnished data results  

[ ]x
m

v ⋅−= 111922         ( 1.36) 

and respectively  

[ ]x
m

v ⋅−= 11192         ( 1.37) 

For the positions lying in the domain ( )1,0 xx∈  - (which correspond to a second part of the motion of 
particle) the figure 1.5 gives the dependence of the speed on the position. 

 
Figure 1.5 

As can be observed in the figure, after reaching the furthest away position, 1x , the particle moves 
towards the origin, without an initial speed, in an accelerated motion having an acceleration with the 
magnitude of ( ) mFFa fx −=← . After the collision with the wall, the particle has a velocity equal in 
magnitude but opposite in direction with the one it had just before the collision. 
When the particle reaches a point in the domain ( )1,0 x  moving from 1x  towards the origin its’ total 
energy ( )xW  has the expression (1.32). 
Starting from 1x , because of the dissipation determined by the friction force, the energy changes to the 
value corresponding to the position with coordinate x .  

( ) ( )

( )







−⋅=⋅−
⋅

−⋅

−⋅=−⋅

xxFxFvmxF

xxFxWxF

fxx

fx

1

2

1

11

2

      ( 1.38) 

The square of the speed has the expression  

( ) ( )[ ]
( )[ ] ( )











−⋅











−

+
−+

=

−⋅−=

fx
fx

fxc

fx

FFx
FF

FFxE
m

v

xxFF
m

v

02

1
2

2

2

     ( 1.39) 
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and the speed is  
( )[ ] ( )fx

fx

fxc FFx
FF

FFxE
m

v −⋅











−

+
−+

= 02      ( 1.40) 

Using the given data, for a position in the domain ( )1,0 x  

9
11
1922 ⋅



 −= x

m
v         ( 1.41) 

respectively 

9
11
192

⋅



 −−= x

m
v         ( 1.42)  

The speed of the particle when it reaches for the second time the wall has - using (1.39) - the 
expression  

( )[ ] ( )












−⋅
+

−+
−=← fx

fx

fxc FF
FF

FFxE
m

v 0
2

2      ( 1.43) 

 
The resulting numerical value is 

11
1712

2 m
v −=←         ( 1.44) 

Concluding, after the first collision and first recoil, the particle moves away from the wall, reaches again 
a position where the speed vanishes and then comes back to the wall. The speed of the particle hitting 
again the wall is smaller than before – as in the figure 1.5. 
As it was denoted before kv   is the speed of the particle just before its’ k th

kx run and   is the 
coordinate of the furthest away point reached during the k th

The energy of the particle starting from the wall is  
 run.  

( )0
2

2

k
k

k WmvE =
⋅

=         ( 1.45) 

In the point kx , the furthest away from the origin after k th

( )kkxkk xWFxU =⋅=

 collision, the energy verifies the relation 

        ( 1.46) 

The variation of the energy between starting point and point kx  is 

kfxk
k xFFxmv

⋅=⋅−
⋅
2

2

        ( 1.47) 

so that 

( )fx

k
k FF

mvx
+⋅
⋅

=
2

2

        ( 1.48) 

After the particle reaches point kx  the direction of the speed changes and, when the particle reaches 
again the wall  
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( )0
2 11

2
1

++
+ ==
⋅

kk
k WEmv        ( 1.49) 

The energy conservation law for the kx  point and the state when the particle reaches again the wall 
gives 

kf
k

xk xFmvFx ⋅=
⋅

−⋅ +

2

2
1        ( 1.50) 

so that 

( )fxkk FFx
m

v −=+
22

1         ( 1.51) 

Considering (1.48), the relation (1.51) becomes 

FF
FF

vv
x

x
kk +

−
⋅=+

22
1         ( 1.52) 

Between two consequent collisions the speed diminishes in a geometrical progression having the ratio 
q .This ratio has the expression 

FF
FF

q
x

x

+
−

=          ( 1.53) 

and the value  

11
9

=q          ( 1.54) 

For the 1+k  collision the relation (1.48) becomes  

( )fx

k
k FF

mvx
+⋅
⋅

= +
+ 2

2
1

1         ( 1.55) 

Taking into account (1.52), the ratio of the successive extreme positions can be written as  
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=
+
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=

+

+

kk

fx

fx

k
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xqx

q
FF
FF

x
x

2
1

21

        ( 1.56) 

From the k  run towards origin, (analogous to (1.39)), the dependence of the square of the speed on 
position can be written as ( )

2
,←kv  

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








−⋅⋅−=

−⋅−=

←

←

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
1

2
,

2
,

2

2

      ( 1.57) 

or, using the data 
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( )





















−






⋅⋅=← x

m
v

k

k 11
9

11
19922

,       ( 1.58) 

For the k th

( )
2

,→kv
 run from the origin (analogous with (1.34)), the dependence on the position of the square of 

the magnitude of the speed  can be written as   

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








−⋅⋅+=

−⋅+=

→

→

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
1

2
,

2
,

2

2

      ( 1.59) 

Using given data 

( )





















−






⋅⋅=→ x

m
v

k

k 11
9

11
191122

,       ( 1.60) 

 
The evolution of the square of the speed as function of position is represented in the figure 1.6.  

 
Figure 1.6 

And the evolution of the speed as function of position is represented in the figure 1.7.  
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Figure 1.7 

The sum of the progression given in (1.56) gives half of the distance covered by the particle after the 
first collision. 

∑
∞

= −
=

1
21 1

1
k

k q
xx         ( 1.61) 

Considering (1.53) and (1.29) 

( )
∑
∞

= ⋅
−⋅+

=
1

0

2k f

fxc
k F

FFxE
x        ( 1.62) 

Numerically, 

mx
k

k∑
∞

=

=
1 2

19          ( 1.63) 

The total covered distance is 








=

+⋅= ∑
∞

=

mD

xxD
k

k

20

2 0
1         ( 1.64) 

which is the same with ( 1.14 ). 
 
Case 2 
If the particle starts from the 0x  position moving in the positive direction of the coordinate axis Ox its’ 
speed diminishes and its’ kinetic energy also diminishes while its’ potential energy increases to a 
maximum in the '1x  position where the speed vanishes. During this motion the energy is dissipated due 
to the friction. 
The total energy ( )xW , for the positions x  between 0x  and '1x  verify the relation  

( ) ( ) ( )00 xxFxWxW f −⋅=−        ( 1.65) 

the position x  lying in the domain  
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( )', 10 xxx∈          ( 1.66) 

when the particle moves from 0x  in the positive direction of the axis. The relation (1.65) becomes 

[ ] ( )0

2

0 2
xxFxFvmxFE fxxc −⋅=








⋅+

⋅
−⋅+      ( 1.67) 

so that 

( )[ ]

( ) ( )[ ]








+−++=

−⋅−⋅−⋅+=

fxfxc

fxxc

FFxFFxE
m

v

xxFxFxFE
m

v

0
2

00
2

2

2

     ( 1.68)  

and  

( ) ( )[ ]fxfxc FFxFFxE
m

v +−++= 0
2       ( 1.69) 

Using provided data 

( )

( )








⋅−=

⋅−=

x
m

v

x
m

v

11212

112122

        ( 1.70) 

 
Figure 1.8 
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Figure 1.9 

The graph in the figure (1.8) presents the dependence of the square speed on the position for the 
motion in the domain ( )', 10 xxx∈ . The particle moves in the positive direction of the coordinate axis Ox. 
This motion occurs until the position '1x  - when the speed vanishes - is reached. From the relation 
(1.68), in which we take the modulus of the speed zero, results  

fx

c

FF
Exx
+

+= 01'         ( 1.71) 

the numerical value for '1x  is  

mx
11
21'1 =          ( 1.72) 

After furthest away position '1x is reached, the particle moves again towards the origin, without initial 
speed, in a speeded up motion having an acceleration of magnitude ( ) mFFa fx −=← . After the 
collision with the wall, the particle has a velocity '1→v  equal in magnitude but opposite direction with the 
one it had before the collision '1←v .  
When the particle is at a point lying in the domain ( )',0 1x  running from '1x  to the origin, its’ total energy  
( )xW  has the expression  

( ) xFvmxW x ⋅+
⋅

=
2

2

        ( 1.73) 

Because of friction, the value of the energy decreases from the one it had at '1x  to the corresponding to 
the x  position     

( ) ( )

( )







−⋅=⋅−
⋅

−⋅

−⋅=−⋅

xxFxFvmxF

xxFxWxF

fxx

fx

'
2

'

''

1

2

1

11

      ( 1.74) 

The square of the speed has the expression  

( ) ( )[ ]xxFF
m

v fx −⋅−= '2
1

2        ( 1.75) 

and the speed is 
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( ) ( )[ ]xxFF
m

v fx −⋅−−= '2
1        ( 1.76) 

For the given data, in the domain,  ( )',0 1x  

9
11
2122 ⋅



 −= x

m
v         ( 1.77) 

respectively 

9
11
212

⋅



 −−= x

m
v         ( 1.78)  

The speed of the particle hitting a second time the wall is – according to (1.78)- 

( )[ ]'2' 11 xFF
m

v fx ⋅−−=←        ( 1.79) 

 
and has the value  

11
1892'1 m

v −=←         ( 1.80) 

Concluding, after the first collision and first recoil, the particle moves away from the wall, reaches again 
a position where the speed vanishes and then comes back to the wall. The speed of the particle hitting 
again the wall is smaller than before – as in the figure 1.11. 
Denoting 'kv   the speed at the beginning of the k th 'kx run and  the coordinate of the furthest away 
point during the k th

( )0'
2

''
2

k
k

k WmvE =
⋅

=

 run, the energy of the particle leaving the wall is  

        ( 1.81) 

In the position 'kx  after the k  departure from the wall, the energy is  

( )'''' kkxkk xWFxU =⋅=         ( 1.82) 

The variation of the total energy has the expression  

''
2

'2
kfxk

k xFFxmv
⋅=⋅−

⋅         ( 1.83) 

so that 

( )fx

k
k FF

mvx
+⋅
⋅

=
2

''
2

        ( 1.84) 

After the particle reaches the position 'kx   the direction of the speed changes and, when the particle 
hits the wall,  

( )0''
2

'
11

2
1

++
+ ==
⋅

kk
k WEmv        ( 1.85) 

The energy conservation law for the 'kx position and the point in which the particle hits the wall gives  
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'
2

''
2

1
kf

k
xk xFmvFx ⋅=

⋅
−⋅ +        ( 1.86) 

so that 

( )fxkk FFx
m

v −=+ '22'
1         ( 1.87) 

Considering (1.84), the relation (1.87) becomes 

FF
FF

vv
x

x
kk +

−
⋅=+

22
1 ''         ( 1.88) 

Between two successive collisions the speed diminishes in a geometrical progression with the ratio q  

FF
FF

q
x

x

+
−

=          ( 1.89) 

Using the data provided 

11
9

=q          ( 1.90) 

From ( 1+k )th

( )fx

k
k FF

mvx
+⋅
⋅

= +
+ 2

''
2

1
1

, collision the relation (1.84) is written as 

        ( 1.91) 

Considering (1.84) and (1.91), the ratio of the extreme positions in two successive runs is 
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x

        ( 1.92) 

For the  k th

( )
2

,' ←kv
 run towards the origin, analogous to (1.57), one may write the dependence of the square 

speed as function of the position as 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
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←

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
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,

2
,
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      ( 1.93) 

Or, using the data 

( )





















−






⋅⋅=← x

m
v

k

k 11
9

11
2192'2 ,       ( 1.94) 

From the k th

( )
2

,→kv
 run from the origin, analogous to (1.59), the dependence on the position of the square 

speed  can be written as 



IPhO 1983             Theoretical Question I      

 
 

Mechanics – Problem I - Solution       Page 16 from 17 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
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      ( 1.95) 

Using given data  

( )





















−






⋅⋅=→ x

m
v

k

k 11
9

11
21112'2 ,       ( 1.96) 

The evolution of the square of the speed as function on position is presented in the figure 1.10. 

 
Figure 1.10 

And the evolution of the speed as function of the position is presented in the figure 1.11. 
 
 

.  
Figure 1.11 

The sum of the geometrical progression (1.92) gives (after the doubling and then subtracting of the 0x  ) 
the total distance covered by the particle. 
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∑
∞

= −
=

1
21 1

1''
k

k q
xx         ( 1.97) 

Considering (1.97), (1.71) and (1.72) it results 

mx
k

k∑
∞

=

=
1 2

21'          ( 1.98) 

The total distance covered by the particle is  








=

−⋅= ∑
∞

=

mD

xxD
k

k

20

'2 0
1         ( 1.99) 

which allows us to find again the result ( 1.14 ). 
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2.Electricity – Problem II (8 points) 
 
Different kind of oscillation 
 
Let’s consider the electric circuit in the figure, for which mHL 101 = , 

mHL 202 = , nFC 101 = , nFC 52 =  and Ω= kR 100 . The switch K  
being closed the circuit is coupled with a source of alternating current. The 
current furnished by the source has constant intensity while the frequency of 
the current may be varied. 

a. Find the ratio of frequency mf  for which the active power in circuit 
has the maximum value mP  and the frequency difference 

−+ −=∆ fff  of the frequencies +f  and  −f  for which the active 
power in the circuit is half of the maximum power mP . 

 
 
The switch K  is now open. In the moment  0t  immediately after the 
switch is open the intensities of the currents in the coils  1L  and  

Ai 1,001 =  and Ai 2,002 =  1L  (the currents flow as in the figure); at 
the same moment, the potential difference on the capacitor with 
capacity  1C  is  Vu 400 =  : 

b. Calculate the frequency of electromagnetic oscillation in  
2211 LCCL  circuit; 

c. Determine the intensity of the electric  current in the AB  
conductor; 

d. Calculate the amplitude of the oscillation of the intensity of 
electric current in the coil 1L . 

 
Neglect the mutual induction of the coils, and the electric resistance of 
the conductors. Neglect the fast transition phenomena occurring when 
the switch is closed or opened. 
 
 
 
Problem II - Solution 
 
a. As is very well known in the study of AC circuits using the formalism of complex numbers, a complex 
inductive reactance jLX L ⋅⋅= ω , ( 1−=j )  is attached to the inductance L  - part of a circuit 
supplied with an alternative current having the pulsation ω  . 

Similar, a complex capacitive reactance 
ω⋅

−=
C

jX C  is attached to the capacityC . 

A parallel circuit will be characterized by his complex admittanceY . 
The admittance of the AC circuit represented in the figure is 
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     ( 2.1) 

The circuit behave as if has a parallel equivalent capacity  C  

21 CCC +=          ( 2.2) 

and a parallel  equivalent inductance  L  
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         ( 2.3) 

The complex admittance of the circuit may be written as  
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Y 11        ( 2.4) 

and the complex impedance of the circuit will be   
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      ( 2.5) 

The impedance  Z  of the circuit, the inverse of the admittance of the circuit  Y  is the modulus of the 
complex impedance Z   
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22
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ω

     ( 2.6) 

The constant current source supplying the circuit furnish a current having a momentary value  ( )ti   

( ) ( )tIti ⋅⋅⋅= ωsin2 ,        ( 2.7) 

where I  is the effective intensity (constant), of the current and  ω  is the current pulsation (that can 
vary) . The potential difference at the jacks of the circuit has the momentary value  ( )tu   

( ) ( )ϕω +⋅⋅⋅= tUtu sin2        ( 2.8) 

where U  is the effective value of the tension and  ϕ  is the phase difference between tension and 
current.  
The effective values of the current and tension obey the relation  
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ZIU ⋅=           ( 2.9) 
The active power in the circuit is  

R
IZ

R
UP

222 ⋅
==         ( 2.10) 

Because as in the enounce,  





=
=

constantR
constantI

         ( 2.11) 

the maximal active power is realized for the maximum value of the impedance that is the minimal value 
of the admittance . 
The admittance  

22 11








⋅
−⋅+






=

ω
ω

L
C

R
Y        ( 2.12) 

has– as function of the pulsation  ω  - an „the smallest value”  

R
Y 1

min =          ( 2.13) 

for the pulsation 

CLm ⋅
=

1ω          ( 2.14) 

In this case  

01
=








⋅
−⋅

ω
ω

L
C .        ( 2.15) 

So, the minimal active power in the circuit has the value   
2IRPm ⋅=          ( 2.16) 

and occurs in the situation of alternative current furnished by the source at the frequency mf  

LC
f mm ⋅⋅

==
π

ω
π 2

1
2
1        ( 2.17) 

To ensure that the active power is half of the maximum power it is necessary that 















==

⋅=
⋅

=

2
22

2
22

12
2
1

2
1

Y
ZR

IR
R

IZ

PP m

        ( 2.18) 

That is 
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       ( 2.19) 

The pulsation of the current ensuring an active power at half of the maximum power must satisfy one of 
the equations  

0112 =
⋅

−
⋅

±
CLCR

ωω        ( 2.20) 

The two second degree equation may furnish the four solutions 

CLCRCR ⋅
+








⋅
±

⋅
±=

41
2
1

2
1 2

ω       ( 2.21) 

Because the pulsation is every time positive, and because  

CRCLCR ⋅
>

⋅
+








⋅
141 2

       ( 2.22) 

the only two valid solutions are  

CRCLCR ⋅
±

⋅
+








⋅
=± 2

141
2
1 2

ω       ( 2.23) 

It exist two frequencies  ±± = ω
π2
1f  allowing to obtain in the circuit an active power representing half of 

the maximum power. 
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1
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1
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141
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1

2
1

2

2

π

π
     ( 2.24) 

The difference of these frequencies is  

CR
fff

⋅
=−=∆ −+

1
2
1
π

        ( 2.25) 

the bandwidth of the circuit – the frequency interval around the resonance frequency having at the ends 
a signal representing 21  from the resonance signal. At the ends of the bandwidth the active power 
reduces at the half of his value at the resonance.  
The asked ratio is  
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( ) ( )
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=
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∆
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L
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       ( 2.26)

Because  

* 







=

=

mHL

nFC

3
20
15

 

it results that  
1510 −⋅= sradmω  

and 

150
1020
1015310100 3

9
3 =

×
×⋅

⋅×==
∆ −

−

L
CR

f
fm      ( 2.27) 

The (2.26) relation is the answer at the question a. 
 
b. The fact that immediately after the source is detached it is a current in the coils, allow as to admit 
that currents dependents on time will continue to flow   through the coils.  

 
Figure 2.1 

The capacitors will be charged with charges variable in time. The variation of the charges of the 
capacitors will results in currents flowing through the conductors linking the capacitors in the circuit. 
The momentary tension on the jacks of the coils and capacitors – identical for all elements in circuit – is 
also dependent on time. Let’s admit that the electrical potential of the points C and D is  )(tu  and the 
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potential of the points A and B is zero. If through the inductance  1L  passes the variable current having 
the momentary value ( )ti1 , the relation between the current and potentials is   

( ) 01
1 =−

dt
diLtu          ( 2.28) 

The current passing through the second inductance ( )ti2  has the expression,  

( ) 02
2 =−

dt
diLtu         ( 2.29) 

If on the positive plate of the capacitor having the capacity  1C  is stocked the charge ( )tq1 , then at the 
jacks of the capacitor the electrical tension is  ( )tu  and 

uCq ⋅= 11          ( 2.30) 

Deriving this relation it results  

dt
duC

dt
dq

⋅= 1
1          ( 2.31) 

But 

3
1 i

dt
dq

−=          ( 2.32)  

because the electrical current appears because of the diminishing of the electrical charge on capacitor 
plate. Consequently 

dt
duCi ⋅−= 13          ( 2.33) 

Analogous, for the other capacitor, 

dt
duCi ⋅−= 44          ( 2.34) 

Considering all obtained results 
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         ( 2.35) 

respectively 










=

−=

2

2

2
4

2

2

1
3

dt
udC

dt
di

dt
udC

dt
di

        ( 2.36) 

Denoting ( )ti5  the momentary intensity of the current flowing from point B  to the point A , then the 
same momentary intensity has the current through the points C  and D . For the point A  the Kirchhoff 
rule of the currents gives   
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351 iii =+          ( 2.37) 

For  B  point the same rule produces  

254 iii =+          ( 2.38) 

Considering (2.37) and (2.38) results  

2431 iiii −=−          ( 2.39) 

and deriving  

dt
di

dt
di

dt
di

dt
di 2431 −=−         ( 2.40) 

that is 
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21
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dt
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dt
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L
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L
u

      ( 2.41) 

Using the symbols defined above  
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⋅=−

01
2

2

u
LC

u
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dt

ud
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u



         ( 2.42) 

Because the tension obeys the relation above, it must have a harmonic dependence on time  
( ) ( )δω +⋅⋅= tAtu sin         ( 2.43) 

The pulsation of the tension is   

CL ⋅
=

1ω          ( 2.44) 

Taking into account the relations (2.43) and (2.36) it results that  

( )( ) ( )

( )( ) ( )








+⋅⋅⋅⋅−=+⋅⋅−=
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δωωδω

δωωδω
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dt
dCi

tACtA
dt
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cossin

cossin

224

113

   ( 2.45) 

and 

( )

( )









+⋅⋅⋅==
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δω

δω
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LL

u
dt
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u
dt
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sin1

22

2

11

1

      ( 2.46) 

It results that 
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( )

( )
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2
2

1
1

      ( 2.47) 

In the expression above, A , M , N  and δ  are constants that must be determined using initially 
conditions. It is remarkable that the currents through capacitors are sinusoidal but the currents through 
the coils are the sum of sinusoidal and constant currents. 
In the first moment 

( )
( )
( )
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==
==
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Aii
Vuu

2,00
1,00

400

022

011

0

        ( 2.48) 

Because the values of the inductances and capacities are  
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         ( 2.49) 

the equivalent inductance and capacity is 
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       ( 2.50) 

respectively 





=
+=
nFC

CCC
15

21  .        ( 2.51) 

From (2.44) results  

15

9

10
1015

150
1

1 −

−

⋅=
×⋅

= sradω       ( 2.52)

The value of the pulsation allows calculating the value of the requested frequency b. This frequency 
has the value 

* 

f  

Hzf
ππ

ω
2
10

2

5

==         ( 2.53)

 

 * 

c. If the momentary tension on circuit is like in (2.43), one may write 



IPhO 1983                                                                           Theoretical Question II   

 
 

Electricity – Problem II - Solution                                                             Page 9 from 12 

( ) ( )

( )
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δ
        ( 2.54) 

From the currents (2.47) is possible to write  
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       ( 2.55) 

On the other side is possible to express (2.39) as 

( ) ( )

( ) ( )













−+⋅⋅⋅
⋅

−+⋅⋅⋅⋅−

=+⋅⋅⋅⋅+++⋅⋅⋅
⋅

−=−

NtA
L

tAC

tACMtA
L

iiii

δω
ω

δωω

δωωδω
ω

cos1cos

coscos1

2
2

1
1

2431

    ( 2.56) 

An identity as 
DCBA +⋅≡+⋅ αα coscos        ( 2.57) 

is valuable for any value of the argument  α  only if 
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         ( 2.58) 

Considering (2.58), from (2.56) it results 

( )















+⋅−=+⋅⋅

=+

21
21

11
0

LL
ACCA

NM

ω
ω

      ( 2.59) 

For the last equation it results that the circuit oscillate with the pulsation in the relation (2.44) 
Adding relations (2.55) and considering (2.54) and (2.59) results that 
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      ( 2.60) 
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The numerical value of the amplitude of the electrical tension results by summing the last relations from 
(2.54) and (2.60) 
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      ( 2.61) 

The numerical value of the electrical tension on the jacks of the circuit is  

( ) ( )
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      ( 2.62) 

And consequently from (2.54) results 
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       ( 2.63) 

and 

( )
26
5cos =δ          ( 2.64) 

Also 
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From (2.55) 
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the corresponding numerical values are 
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The relations (2.47) becomes 

 * 
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    ( 2.68) 

The currents through the coils are the superposition of sinusoidal currents having different amplitudes 
and a direct current passing only through the coils. This direct current has the constant value  

AI 1,00 =          ( 2.69)

as in the  figure 2.2. 

 * 

 
Figure 2.2 

The alternative currents through the coils has the expressions  
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The currents through the capacitors has the forms  
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    ( 2.71) 

The current  5i  has the expression  
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1,05110cos
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135

     ( 2.72) 

The value of the intensity of  5i  current is the answer from the question c. 
The initial value of this current is  
 
 

AAi 3,01,0
26
5

100
268

5 −=







+−=       ( 2.73)

d. The amplitude of the current through the inductance  

 * 

1L  is  

( ) ( )( ) AAAarctgti 2,0
100

2645110cos
100

264max~max 5
1 ≈=








+⋅⋅=   ( 2.74)

representing the answer at the question d. 

 * 
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3. Optics – Problem III (7points) 
 

Prisms 
 
Two dispersive prisms having apex angles °= 60ˆ

1A  and  °= 30ˆ
2A  are glued as in the figure ( °= 90Ĉ ). 

The dependences of refraction indexes of the prisms on the wavelength are given by the relations    

( ) 2
1

11 λ
λ

ban += ;      

( ) 2
2

22 λ
λ

ban +=  

were  
.105,3,1,101,1,1 24

22
25

11 nmbanmba ⋅==⋅==   
 

a. Determine the wavelength  0λ  of the incident radiation that pass through the prisms without 
refraction on AC  face at any incident angle; determine the corresponding refraction indexes of 
the prisms. 

b. Draw the ray path in the system of prisms for three different radiations ioletred vλλλ ,, 0  
incident on the system at the same angle. 

c. Determine the minimum deviation angle in the system for a ray having the wavelength 0λ . 
d. Calculate the wavelength of the ray that penetrates and exits the system along directions 

parallel to DC. 
 

Problem III - Solution 
 

a.  The ray with the wavelength  0λ  pass trough the prisms system without refraction on AC  face at 
any angle of incidence if : 

( ) ( )0201 λλ nn =          
Because  the dependence of refraction indexes of prisms  on wavelength has the form : 

( ) 2
1

11
λ

λ
ban +=         ( 3.1) 

( ) 2
2

22 λ
λ

ban +=         ( 3.2) 

The relation (3.1) becomes: 

2
0

2
22

0

1
1 λλ

baba +=+         ( 3.3)  

The wavelength 0λ  has correspondingly the form: 

12

21
0 aa

bb
−
−

=λ          ( 3.4) 

Substituting the furnished numerical values  
nm5000 =λ          ( 3.5) 
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The corresponding common value of indexes of refraction of prisms for the radiation with the 
wavelength 0λ  is: 

( ) ( ) 5,10201 == λλ nn        ( 3.6) 
The relations (3.6) and (3.7) represent the answers of question a. 
 
 
b. For the rays with different wavelength ( ioletred vλλλ ,, 0 ) having the same incidence angle on first 
prism, the paths are illustrated in the figure 1.1. 
 

 
Figure 3.1 

The draw illustrated in the figure 1.1 represents the answer of question b. 
 
 
c. In the figure 1.2 is presented the path of ray with wavelength  0λ   at minimum deviation (the angle 
between the direction of incidence of ray and the direction of emerging ray is minimal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.2 
In this situation 
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( ) ( )

2
'sin

2
'sin min

0201 A

A

nn

+

==

δ

λλ       ( 3.7) 

where 
( ) °= 30'Âm , 

as in the figure 1.1 
Substituting in (3.8) the values of refraction indexes the result is  

2
'sin

2
3

2
'sin min AA

⋅=
+δ        ( 3.8) 

or 

2
'

2
'sin

2
3arcsin2min

AA
−






 ⋅=δ        ( 3.9) 

Numerically 
°≅ 7,30minδ          ( 3.10) 

The relation (3.11) represents the answer of question c. 
 
 
d. Using the figure 1.3 the refraction law on the  AD  face is 

111 sinsin rni ⋅=          ( 3.11) 
The refraction law on the  AC  face is 

2211 sin'sin rnrn ⋅=⋅         ( 3.12) 
 

 
 

Figure 3.3 
        
As it can be seen in the figure 1.3 
 22 Ar =          ( 3.13) 
and 

°= 301i          ( 3.14) 
Also,  

111 ' Arr =+          ( 3.15) 
Substituting (3.16) and (3.14) in (3.13)  it results  
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( ) 22111 sinsin AnrAn ⋅=−⋅        ( 3.16) 
or 

( ) 2211111 sincossincossin AnArrAn ⋅=⋅−⋅⋅      ( 3.17) 
Because of (3.12) and (3.15) it results that 

1
1 2

1sin
n

r =          ( 3.18) 

and 
14

2
1cos 2

1
1

1 −= n
n

r         ( 3.19) 

 Putting together the last three relations it results     

1

1222
1 sin

cossin2
14

A
AAn

n
+⋅

=−       ( 3.20) 

Because  
°= 60ˆ

1A   
and 

°= 30ˆ
2A   

relation (3.21) can be written as  

3

12
14 22

1
+

=−
n

n         ( 3.21) 

or  
2

22
2

1 13 nnn ++=⋅         ( 3.22) 
Considering the relations (3.1), (3.2) and (3.23) and operating all calculus it results: 

( ) ( ) 032613 2
2

2
1

2
222112

2
2

2
1

4 =−+⋅−−+−−−⋅ bbbabbaaaa λλ   ( 3.23) 
Solving the equation (3.24) one determine the wavelength  λ  of the ray that enter the prisms system 
having the direction parallel with DC  and emerges the prism system having the direction again parallel 
with DC . That is  

nm1194=λ          ( 3.24) 
or 

mµλ 2,1≅          ( 3.25) 
The relation (3.26) represents the answer of question d. 
 
 
 
 
Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and 
         Research- Bucharest, Romania 
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4. Atomics - Problem IV (7 points) 
 
Compton scattering 
 
A photon of wavelength iλ  is scattered by a moving, free electron. As a result the electron stops 
and the resulting photon of wavelength 0λ  scattered at an angle °= 60θ  with respect to the 
direction of the incident photon, is again scattered by a second free electron at rest. In this 
second scattering process a photon with wavelength of mf

1010251 −×= ,λ  emerges at an angle 
°= 60θ  with respect to the direction of the photon of wavelength 0λ . Find the de Broglie 

wavelength for the first electron before the interaction. The following constants are known: 
sJh ⋅×= −341066,  - Planck’s constant 

kgm 311019 −×= ,  - mass oh the electron 
smc /, 81003 ×=  - speed of light in vacuum 

 
 
Problem III - Solution 
 
The purpose of the problem is to calculate the values of the speed, momentum and wavelength 
of the first electron. 
 
To characterize the photons the following notation are used: 
Table 4.1 

 

 
To characterize the electrons one uses 
Table 4.2 
 first electron 

before collision  
first electron 
after collision 

second electron 
before collision  

Second electron 
after collision 

momentum ep1


 0  0  ep2


 
energy eE1  eE0  eE0  eE2  
speed ev1

  0  0  ev 2
  

 
 
The image in figure 4.1 presents the situation before the first scattering of photon. 
 

 initial  
photon 

photon –  
after the  
first scattering 

final  
photon 

momentum ip


 0p


 fp


 
energy iE  0E  fE  
wavelength iλ  iλ  fλ  
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 Figure 4.1       Figure 4.2 
 

 
 Figure 4.3      Figure 4.4 
To characterize the initial photon we will use his momentum ip

  and his energy iE  
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        ( 4.1) 

i
i

cf
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=           ( 4.2)  

is the frequency of initial photon. 
For initial, free electron in motion the momentum oep



 and the energy oeE are 
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       ( 4.3) 

where 0m  is the rest mass of electron and m  is the mass of moving electron. As usual, 
c

v e1=β . 

De Broglie wavelength of the first electron is 
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2
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The situation after the scattering of photon is described in the figure 4.2. 
To characterize the scattered photon we will use his momentum 0p

  and his energy 0E  








⋅=

⋅
==

oo

o

o
o

fhE
c
fhhP

λ



        ( 4.4). 

where 

0λ
cfo =          ( 4.5) 

is the frequency of scattered photon. 
 
The magnitude of momentum of the electron ( that remains in rest) after the scattering is zero; 
his energy is eE1 . The mass of electron after collision is 0m  - the rest mass of electron at rest. 
So, 

2
01 cmE e ⋅=  

To determine the moment of the first moving electron, one can write the principles of 
conservation of moments and energy. That is  

0ppP oei





=+          ( 4.6) 

and 

eei EEEE 100 +=+         ( 4.7) 

The conservation of moment on Ox  direction is written as 

θα coscos 0
1 c

fhvm
c
fh

e
i ⋅

=⋅⋅+
⋅       ( 4.8) 

and the conservation of moment on Oy  is 

θα sinsin 0
1 c

fhvm e
⋅

=⋅⋅        ( 4.9) 

To eliminate α , the last two equation must be written again as 

( ) ( )

( )
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=⋅⋅

2
02

1

2
02

2
2

1

sinsin

coscos

θα

θα

c
fhvm

ff
c
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      ( 4.10) 

and then added. 
The result is 

( )θcos2 0
2

1
2

02

2
2
1

2 ⋅⋅−+
⋅

=⋅ ie ffff
c
hvm       ( 4.11) 

or 
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( )θcos2
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1
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22
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ffffhv

c
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cm      ( 4.12) 

The conservation of energy (4.7) can be written again as 

0
2

01
2 fhcmfhcm ⋅+⋅=⋅+⋅        ( 4.13) 

or 

( )10
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ffhcm
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−⋅+⋅=
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⋅        ( 4.14) 

Squaring the last relation results 
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e
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−

⋅     ( 4.15) 

Subtracting (4.12) from (4.15) the result is 

( ) 02cos22 1
2

01
2

10
2

0 =⋅⋅−⋅⋅⋅+−⋅⋅⋅ ffhffhffhcm θ     ( 4.16) 

or 

( )
010

cos1
f
c

f
c

cm
h

−=−
⋅

θ        ( 4.17) 

Using  

cm
h
⋅

=Λ
0

         ( 4.18) 

the relation (4.17) becomes 
( ) 0cos1 λλθ −=−⋅Λ i         ( 4.19) 

The wavelength of scattered photon is 
( )θλλ cos10 −⋅Λ−= i         ( 4.20) 

shorter than  the wavelength of initial photon and consequently the energy of scattered photon is 
greater that the energy of initial photon. 





>
<

0

0

EEi

i λλ
         ( 4.21) 

  
Let’s analyze now the second collision process that occurs in point N . To study that, let’s 
consider a new referential having Ox  direction on the direction of the photon scattered after 
the first collision.   
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The figure 4.3 presents the situation before the second collision and the figure 4.4 presents the 
situation after this scattering process. The conservation principle for moment in the scattering 
process gives  
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      ( 4.22) 

To eliminate the unknown angle β  must square and then add the equations (4.22) 

That is 
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or 
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     ( 4.24) 

The conservation principle of energy in the second scattering process gives 

22
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λλ
       ( 4.25) 

 (4.24) and (4.25) gives 
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   ( 4.27) 

Subtracting (4.26) from (1.27), one obtain 
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       ( 4.28) 

That is  
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Because the value of fλ  is know and Λ  can be calculate as 
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mmm
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34
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1025,1λ

   ( 4.30) 

the value of wavelength of photon before the second scattering is 

m10
0 1023,1 −×=λ         ( 4.31) 

Comparing (4.28) written as: 
( )θλλ cos10 −⋅Λ+=f         ( 4.32) 

and (4.20) written as  
( )θλλ cos10 −⋅Λ+=i         ( 4.33) 

clearly results 

fi λλ =           ( 4.34) 

The energy of the double scattered photon is the same as the energy of initial photon. The 
direction of “final photon” is the same as the direction of “initial” photon. Concluding, the final 
photon is identical with the initial photon. The result is expected because of the symmetry of the 
processes. 
Extending the symmetry analyze on electrons, the first moving electron that collides the initial 
photon and after that remains at rest, must have the same momentum and energy as the second 
electron after the collision – because this second electron is at rest  before the collision. 
That is  
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EE
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21
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         ( 4.35) 

Taking into account (4.24), the moment of final electron is  

( )( ) ( )( )θλλ
θ

θλλ cos1
cos2

cos1
11

222 −Λ−⋅
⋅

−
−Λ−

+=
ffff

e hp    ( 4.36) 

The de Broglie wavelength of second electron after scattering (and of first electron before 
scattering) is 

( )( ) ( )( ) 
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+==
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θ
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λλ
cos1
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111 2221
ffff

ee   ( 4.37) 

Numerical value of this wavelength is 

mee
10

21 1024,1 −×== λλ        ( 4.38) 
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5.IPhO’s LOGO – Problem V  
 
The Logo of the International Physics Olympiad is represented in the figure below. 
The figure presents the phenomenon of the curving of the trajectory of a jet of fluid around the shape of 
a cylindrical surface. The trajectory of fluid is not like the expected dashed line but as the circular solid 
line. 
Qualitatively explain this phenomenon (first observed by Romanian engineer Henry Coanda in 1936). 
 
This problem will be not considered in the general score of the Olympiad. The best solution will be 
awarded a special prize.  

 
 

Figure 5.1 
Problem V -Solution 
 
Suppose a fluid is in a recipient at a constant pressure. If a thin jet of fluid (gas or liquid) having a small 
circular or rectangular cross section leaves the recipient through a nozzle entering the medium, the 
particles belonging to the medium will be carried out by the jet. Other particles belonging to the medium 
will be attracted to the jet.  
If the jet flows over a large surface, the particles belonging to the medium over the jet and the particles 
leaving between the jet and the surface will be carried out by the jet. The density of particles over the jet 
remains constant because of newly arriving particles, but the particles between the surface and the jet 
cannot be replaced.  A pressure difference appears between the upper and lower side of the jet, 
pushing the jet to the surface. If the surface is curved, the jet will follow its shape. 
The left image in the figure below presents the normal flow of a fluid jet leaving through a nozzle of a 
recipient with a high, constant pressure. The final pressure of the fluid is of medium pressure.  
The right image in the figure below presents the flow of a fluid over the large surface. The jet is “stuck” 

 
against the surface. 
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The process of deflection of the jet increases the speed of the jet without any variation of the pressure 
and temperature of the jet.  
During the tests of the first jet plane in Paris, December 1936, the Romanian engineer Henry Coanda 
was the first to observe this phenomenon, occurring when the flames of the engine passed through a 
flap.  
 
The logo of the Olympiad illustrates the Coanda flow of a fluid. 
 
 
 
 
Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and 
         Research- Bucharest, Romania 
Professor Adrian S.DAFINEI,PhD, Faculty of Physics – University of Bucharest, Romania 



IPhO 1983                                                                                  Theoretical Question I 

 

MARKING SCHEME – JUMPING PARTICLE  Page 1 from 2 

 
MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION I  

 
 
Part 

 
MARKING SCHEME - THE  THEORETICAL QUESTION  I- JUMPING PARTICLE 

 

Total 
Scores 

   I.a. For: 
the distance D covered by the particle to the stop 

( )
( )
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ExF

D
+⋅

= 0                   0.50 p 

final result  mD 20=                0.50 p 
 

2.00 
points 

   I.b. For: 

( ) xFxU x ⋅=                1.00 p 

 
                 1.00 p 

2.00 
points 

   I.c. For :  
the evolution of the square of the speed as function of the position  
 
 

 
                 1.00 p 
 

4.00 
points 
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 the evolution of the speed as function of the position  

 
                 1.00 p 
 
or 
the evolution of the square of the speed as function of the position  

 
                 1.00 p 
the evolution of the speed as function of the position  

.  
                 1.00 p 

 

 
Total score - theoretical question I 

8.00 
points 
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MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION II  
 

Part MARKING SCHEME - THE  THEORETICAL QUESTION  II -   DIFFERENT  
KIND  OF OSCILLATION 
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final result:  1510 −⋅= sradω ;  Hzf
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Observation: in the expression above, A , M , N  and δ  are constants that must be determined 
using initially conditions ( Vu 400 = , Ai 1,001 = , Ai 2,002 = ) 
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Observation:  the currents through the coils are the superposition of sinusoidal currents having 
different amplitudes and a direct current passing only through the coils.  
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II.d. For: 
the amplitude of the current through the inductance  1L   
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Total score theoretical question III 
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MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION III -OPTICS 

Part MARKING SCHEME - THE  THEORETICAL QUESTION  III -  PRISMS 
 

Total 
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1.25 points 

 
   III. b. 

 
For the rays with different wavelength  ( ioletred vλλλ ,, 0 ) having the same incidence 
angle on first prism, the paths are illustrated in the figure III.1 
 

 
Figure III.1 
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MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION IV  
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MARKING SCHEME - THE  THEORETICAL QUESTION  IV- COMPTON SCATTERING 
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Scores 

IV. For: 
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Theoretical problems 
 
Problem 1 
 
a) Consider a plane-parallel transparent plate, where the refractive index, n, 
varies with distance, z, from the lower surface (see figure). Show that 
    

 

nA sin α = nB sin β . The notation is that of the figure. 

α

β

n

n

n(z)

A

B

z

z = 0

 
b) Assume that you are standing in a large flat desert. At some distance you 
see what appears to be a water surface. When you approach the “water” is 
seems to move away such that the distance to the “water” is always constant. 
Explain the phenomenon. 
 
c) Compute the temperature of the air close to the ground in b) assuming that 
your eyes are located 1.60 m above the ground and that the distance to the 
“water” is 250 m. The refractive index of the air at 15 ˚C and at normal air 
pressure (101.3 kPa) is 1.000276. The temperature of the air more than 1 m 
above the ground is assumed to be constant and equal to 30 ˚C. The 
atmospheric pressure is assumed to be normal. The refractive index, n, is such 
that n – 1 is proportional to the density of the air. Discuss the accuracy of your 
result. 
 
Solution: 
 
a) From the figure we get 
    

 

nA sin α = n1 sinα1 = n2 sin α2 =… = nB sin β  
 
b) The phenomenon is due to total reflexion 
in a warm layer of air when β = 90˚. This 
gives 

α

β

nA

nB

n
n

1

2

α
α

αα1
1

2
2



     

 

nA sin α = nB  
 
c) As the density, ρ, of the air is inversely proportional to the absolute 
temperature, T,  for fixed pressure we have 

    

 

n T( )= 1+ k ⋅ ρ = 1+ k/ T  
The value given at 15 ˚C determines the value of k = 0.0795.  
In order to have total reflexion we have     

 

n30sin α = nT  or 

 
    

 

1+
k

303

 

 
 

 

 
 ⋅

L
h2 + L2

= 1+
k
T

 

 
 

 

 
  with h = 1.6 m and L = 250 m 

As h << L we can use a power expansion in     

 

h/ L : 

 

    

 

T =
303

303
k

+ 1
 

 
 

 

 
 1

1+ h2/ L2
− 303

k

≈ 303 1+
303h2

2kL2

 

 
  

 

 
  = 328K = 56ÞC  

 



Problem 2 
 
In certain lakes there is a strange 
phenomenon called “seiching” which is an 
oscillation of the water. Lakes in which you 
can see this phenomenon are normally long 
compared with the depth and also narrow. 
It is natural to see waves in a lake but not 
something like the seiching, where the entire 
water volume oscillates, like the coffee in a cup that you carry to a waiting 
guest. 
 
In order to create a model of the seiching we look at water in a rectangular 
container. The length of the container is L and the depth of the water is h. 
Assume that the surface of the water to begin with makes a small angle with 
the horizontal. The seiching will then start, and we assume that the water 
surface continues to be plane but oscillates around an axis in the horizontal 
plane and located in the middle of the container.  
 
Create a model of the movement of the water and derive a formula for the 
oscillation period T. The starting conditions are given in figure above. 
Assume that   

 

ξ << h . The table below shows experimental oscillation periods 
for different water depths in two containers of different lengths. Check in 
some reasonable way how well the formula that you have derived agrees 
with the experimental data. Give your opinion on the quality of your model. 
 
Table 1. L = 479 mm 

    

 

h/ mm 30 50 69 88 107 124 142
T / s 1.78 1.40 1.18 1.08 1.00 0.91 0.82

 

 
Table 2. L = 143 mm 

    

 

h/ mm 31 38 58 67 124
T / s 0.52 0.52 0.43 0.35 0.28

 

 
The graph below shows results from measurements in lake Vättern in Sweden. 
This lake has a length of 123 km and a mean depth of 50 m. What is the time 
scale in the graph? 

L

h

ξ



 
The water surface level in Bastudalen (northern end of lake Vättern) and Jönköping (southern end). 
 



Solution: 
 
In the coordinate system of the figure, we have for 
the centre of mass coordinates of the two triangular 
parts of the water 
     

 

x1, y1( )= L/ 3,h/ 2+ξ / 3( ) x2,y2( )= −L/ 3,h/ 2−ξ / 3( ). 
For the entire water mass the centre of mass coordinates will then be 

 
    

 

xCoM, yCoM( )=
ξL
6h

,
ξ2

6h
 

 
  

 

 
   

Due to that the y component is quadratic in ξ will be much much smaller than 
the x component. 
The velocities of the water mass are 

 
    

 

vx ,vy( )=
?ξ L
6h

,
?ξ ξ
3h

 

 
  

 

 
  , 

and again the vertical component is much smaller the the horizontal one. 
We now in our model neglect the vertical components. The total energy 
(kinetic + potential) will then be 

 
    

 

W = WK + WP = 1
2 M

?ξ 2L2

36h2 + Mg ξ2

6h2  

For a harmonic oscillator we have  
     

 

W = WK + WP = 1
2 m?x 2 + 1

2 mω2x2  
Identifying gives 

 
    

 

ω =
12gh

L
 or 

    

 

Tmodel =
πL
3h

. 

Comparing with the experimental data we find     

 

Texperiment ≈ 1.1⋅ Tmodel , our model 
gives a slight underestimation of the oscillation period. 
 
Applying our corrected model on the Vättern data we have that the oscillation 
period of the seiching is  about 3 hours. 
 
Many other models are possible and give equivalent results. 
 

x

y



Problem 3 
 
 An electronic frequency filter consists of four components coupled as in the 
upper figure. The impedance of the source 
can be neglected and the impedance of the 
load can be taken as infinite. The filter 
should be such that the voltage ratio 
    

 

Uout / U in  has a frequency dependence shown 
in the lower where   

 

Uin  is the input voltage 
and   

 

Uout  is the output voltage. At frequency     

 

f0  the phase lag between the two 
voltages is zero. 
 
In order to build the filter you can choose from the following components: 
 
2 resistors, 10 kΩ 
2 capacitors, 10 nF 
2 solenoids, 160 mH (iron-free and with neglible 
resistance) 
 
Construct, by combining four of these components, 
a filter that fulfils the stated conditions. Determine 
the frequency     

 

f0  and the ratio     

 

Uout / U in  at this frequency for as many 
component combinations as possible.  
 
Solution: 
 
The conditions at very high and very low frequencies can be satisfied with for 
example the following circuit 

 

C

R

R
C

 
 
Using either the graphic vector method or the analytic jω method we can 

show that the minimum occurs för a frequency 
    

 

f0 =
1

2πRC
 when the ratio 

between the output and input voltages is 2/3. Switching the resistors and the 
capacitors gives a new circuit with the same frequency     

 

f0 . Another two 

possibilities is to exchange the capacitors for solenoids where we get 
    

 

f0 =
R

2πL
. 

There are further eight solutions with unsymmetric patterns of the electronic 
components. 

U Uin out

U in Uout/

f

1

f 0



Experimental problems 
 
Problem 1 
 
You have at your disposal the following material: 
 
(1) A sine wave voltage generator set to a frequency of 0,20 kHz. 
(2) A dual ray oscilloscope. 
(3) Millimeter graph paper. 
(4) A diod. 
(5) A capacitor of 0.10 µF  (square and black). 
(6) An unknown resistor R (red). 
(7) A coupling plate. 
(8) Coupling wires. 
 
Build the circuit shown in the figure.  
 
Connect the terminals A and B to the sine 
wave generator set to a frequency of 0.20 
kHz. Determine experimentally the mean 
power developed in the resistor R when the amplitude of the generator 
voltage is 2.0 V (that is the peak-to-peak voltage is 4.0 V). 
 
Solution: 
 
The picture to the right shows the 
oscilloscope voltage over the resistor. 
The period of the sine wave is 5 ms and 
this gives the relation 1 horizontal 
division = 1.5 ms. The actual vertical 
scale was 0.85 V / division. The first 
rising part of the curve is a section of a 
sine wave, the second falling part is an exponential decay determined by the 
time constant of the resistor and capacitor. Reading from the display the "half-
life"     

 

t1/ 2 = RC ⋅ ln 2 turns out to be 0.5 ms. This gives R = 7.2 kΩ. The mean 
power developed in the resistor is 

    

 

P =
1
T

U 2 t( )
R0

T

∫ dt . Numerical integration (counting squares) gives 

    

 

U 2 t( )
0

T

∫ dt = 4,5 ⋅ 10−3 V2s from which   

 

P ≈ 0.1 mW. 

0.1 µF C R
A

B



Problem 2 
 
 Material: 
(1) A glow discharge lamp connected to 220 V, alternating current. 
(2) A laser producing light of unknown wavelength. 
(3) A grating. 
(4) A transparent “micro-ruler”, 1 mm long with 100 subdivisions, the ruler is 
situated exactly in the centre of the circle. 
(5) A 1 m long ruler 
(6) Writing material. 
 
The spectrum of the glow discharge lamp has a number of spectral lines in the 
region yellow-orange-red. On of the yellow lines in the short wavelength part 
of this spectrum is very strong. Determine the wavelength of this spectral line. 
Estimate the accuracy of your measurement. 
 
Note: If you happen to know the wavelength of the laser light beforehand you 
are not allowed to use that value in your computation. 
 
Warning. Do not look into the laser beam. Do not touch the surface of the 
grating or the surface of the transparent micro-ruler. 
 
Solution: 
 
Using the micro-ruler with we can determine the wavelength of the laser light. 
Knowing this wavelength we can calibrate the grating and then use it to 
determine the unknown wavelength from the glow discharge lamp. We 
cannot use the micro-ruler to determine this wavelength because the intensity 
of the light from the lamp is too weak.  
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1 Problems

1.1 Theoretical competition

Problem 1

A young radio amateur maintains a radio link with two girls living in two
towns. He positions an aerial array such that when the girl living in town
A receives a maximum signal, the girl living in town B receives no signal
and vice versa. The array is built from two vertical rod aerials transmitting
with equal intensities uniformly in all directions in the horizontal plane.

∗Edited by B. Golli, Faculty of Education, University of Ljubljana, and J. Stefan Insti-
tute, Ljubljana, Slovenia, e-mail:bojan.golli@ijs.si
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a) Find the parameters of the array, i. e. the distance between the rods,
its orientation and the phase shift between the electrical signals sup-
plied to the rods, such that the distance between the rods is mini-
mum.

b) Find the numerical solution if the boy has a radio station transmit-
ting at 27 MHz and builds up the aerial array at Portorož. Using the
map he has found that the angles between the north and the direc-
tion of A (Koper) and of B (small town of Buje in Istria) are 72◦ and
157◦, respectively.

Problem 2

In a long bar having the shape of a rectangular parallelepiped with sides a,
b, and c (a � b � c), made from the semiconductor InSb flows a current
I parallel to the edge a. The bar is in an external magnetic field B which
is parallel to the edge c. The magnetic field produced by the current I can
be neglected. The current carriers are electrons. The average velocity of
electrons in a semiconductor in the presence of an electric field only is
v = µE, where µ is called mobility. If the magnetic field is also present,
the electric field is no longer parallel to the current. This phenomenon is
known as the Hall effect.

a) Determine what the magnitude and the direction of the electric field
in the bar is, to yield the current described above.

b) Calculate the difference of the electric potential between the oppo-
site points on the surfaces of the bar in the direction of the edge
b.

c) Find the analytic expression for the DC component of the electric
potential difference in case b) if the current and the magnetic field
are alternating (AC); I = I0 sin ωt and B = B0 sin(ωt + δ).

d) Design and explain an electric circuit which would make possible,
by exploiting the result c), to measure the power consumption of an
electric apparatus connected with the AC network.

Data: The electron mobility in InSb is 7.8 m2T/Vs, the electron con-
centration in InSb is 2.5·1022 m−3, I = 1.0 A, B = 0.10 T, b = 1.0 cm,
c = 1.0 mm, e0 = −1.6 · 10−19 As.
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Problem 3

In a space research project two schemes of launching a space probe out
of the Solar system are discussed. The first scheme (i) is to launch the
probe with a velocity large enough to escape from the Solar system di-
rectly. According to the second one (ii), the probe is to approach one of
the outer planets, and with its help change its direction of motion and
reach the velocity necessary to escape from the Solar system. Assume
that the probe moves under the gravitational field of only the Sun or the
planet, depending on whichever field is stronger at that point.

a) Determine the minimum velocity and its direction relative to the
Earth’s motion that should be given to the probe on launching ac-
cording to scheme (i).

b) Suppose that the probe has been launched in the direction deter-
mined in a) but with another velocity. Determine the velocity of the
probe when it crosses the orbit of Mars, i. e., its parallel and perpen-
dicular components with respect to this orbit. Mars is not near the
point of crossing, when crossing occurs.

c) Let the probe enter the gravitational field of Mars. Find the minimum
launching velocity from the Earth necessary for the probe to escape
from the Solar system.

Hint: From the result a) you know the optimal magnitude and the di-
rection of the velocity of the probe that is necessary to escape from
the Solar system after leaving the gravitational field of Mars. (You
do not have to worry about the precise position of Mars during the
encounter.) Find the relation between this velocity and the velocity
components before the probe enters the gravitational field of Mars;
i. e., the components you determined in b). What about the conser-
vation of energy of the probe?

d) Estimate the maximum possible fractional saving of energy in scheme
(ii) with respect to scheme (i). Notes: Assume that all the planets re-
volve round the Sun in circles, in the same direction and in the same
plane. Neglect the air resistance, the rotation of the Earth around its
axis as well as the energy used in escaping from the Earth’s gravita-
tional field.

Data: Velocity of the Earth round the Sun is 30 km/s, and the ratio of the
distances of the Earth and Mars from the Sun is 2/3.
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1.2 Experimental competition

Exercise A

Follow the acceleration and the deceleration of a brass disk, driven by an
AC electric motor. From the measured times of half turns, plot the angle,
angular velocity and angular acceleration of the disk as functions of time.
Determine the torque and power of the motor as functions of angular
velocity.

Instrumentation

1. AC motor with switch and brass disk

2. Induction sensor

3. Multichannel stop-watch (computer)

Instruction

The induction sensor senses the iron pegs, mounted on the disk, when
they are closer than 0.5 mm and sends a signal to the stop-watch. The
stop-watch is programmed on a computer so that it registers the time
at which the sensor senses the approaching peg and stores it in mem-
ory. You run the stop-watch by giving it simple numerical commands,
i. e. pressing one of the following numbers:

5 – MEASURE.

The measurement does not start immediately. The stop-watch waits
until you specify the number of measurements, that is, the number
of successive detections of the pegs:

3 – 30 measurements

6 – 60 measurements

Either of these commands starts the measurement. When a mea-
surement is completed, the computer displays the results in graphic
form. The vertical axis represents the length of the interval between
detection of the pegs and the horizontal axis is the number of the
interval.
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7 – display results in numeric form.

The first column is the number of times a peg has passed the detec-
tor, the second is the time elapsed from the beginning of the mea-
surement and the third column is the length of the time interval
between the detection of the two pegs.

In the case of 60 measurements:

8 – displays the first page of the table

2 – displays the second page of the table

4 – displays the results graphically.

A measurement can be interrupted before the prescribed number of mea-
surements by pressing any key and giving the disk another half turn.

The motor runs on 25 V AC. You start it with a switch on the mounting
base. It may sometimes be necessary to give the disk a light push or to
tap the base plate to start the disk.

The total moment of inertia of all the rotating parts is: (14.0 ± 0.5) ·
10−6 kgm2.

Exercise B

Locate the position of the centers and determine the orientations of a
number of identical permanent magnets hidden in the black painted block.
A diagram of one such magnet is given in Figure 1. The coordinates x, y
and z should be measured from the red corner point, as indicated in Fig-
ure 2.

Determine the z component of the magnetic induction vector ~B in the
(x, y) plane at z = 0 by calibrating the measuring system beforehand.

Find the greatest magnetic induction B obtainable from the magnet sup-
plied.

Instrumentation

1. Permanent magnet given is identical to the hidden magnets in the
block.

2. Induction coil; 1400 turns, R = 230 Ω
5



Fig. 1 Fig. 2

3. Field generating coils, 8800 turns, R = 990 Ω, 2 pieces

4. Black painted block with hidden magnets

5. Voltmeter (ranges 1 V, 3 V and 10 V recommended)

6. Electronic circuit (recommended supply voltage 24 V)

7. Ammeter

8. Variable resistor 3.3 kΩ
9. Variable stabilized power supply 0 – 25 V, with current limiter

10. Four connecting wires

11. Supporting plate with fixing holes

12. Rubber bands, multipurpose (e. g. for coil fixing)

13. Tooth picks

14. Ruler

15. Thread

Instructions

For the magnet-search only nondestructive methods are acceptable. The
final report should include results, formulae, graphs and diagrams. The
diagrams should be used instead of comments on the methods used wher-
ever possible.

The proper use of the induced voltage measuring system is shown in Fig-
ure 3.

6



This device is capable of responding to the magnetic field. The peak volt-
age is proportional to the change of the magnetic flux through the coil.

The variable stabilized power supply is switched ON (1) or OFF (0) by the
lower left pushbutton. By the (U) knob the output voltage is increased
through the clockwise rotation. The recommended voltage is 24 V. There-
fore switch the corresponding toggle switch to the 12 V – 25 V position.
With this instrument either the output voltage U or the output current I is
measured, with respect to the position of the corresponding toggle switch
(V,A). However, to get the output voltage the upper right switch should be
in the ’Vklop’ position. By the knob (I) the output current is limited bellow
the preset value. When rotated clockwise the power supply can provide
1.5 A at most.

Fig. 3 ’0’ zero adjust dial, ’1’ push reset button

Note: permeability of empty space µ0 = 1.2 · 10−6 Vs/Am.
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2 Solutions

2.1 Theoretical competition

Problem 1

a) Let the electrical signals supplied to rods 1 and 2 be E1 = E0 cos ωt and
E2 = E0 cos(ωt + δ), respectively. The condition for a maximum signal in
direction ϑA (Fig. 4) is:

2πa
λ

sin ϑA − δ = 2πN

and the condition for a minimum signal in direction ϑB :

2πa
λ

sin ϑB − δ = 2πN′ + π (2p.)

where N and N′ are arbitrary integers. In addition, ϑA − ϑB = ϕ, where

Fig. 4

ϕ is given. The problem can now be formulated as follows: Find the
parameters a, ϑA, ϑB , δ, N, and N′ satisfying the above equations such,
that a is minimum.

We first eliminate δ by subtracting the second equation from the first one:

a sin ϑA − a sin ϑB = λ(N − N′ − 1
2) .
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Using the sine addition theorem and the relation ϑB = ϑA − ϕ:

2a cos(ϑA − 1
2ϕ) sin 1

2ϕ = λ(N − N′ − 1
2)

or

a =
λ(N − N′ − 1

2)
2 cos(ϑA − 1

2ϕ) sin 1
2ϕ

.

The minimum of a is obtained for the greatest possible value of the de-
nominator, i. e.:

cos(ϑA − 1
2ϕ) = 1 , ϑA = 1

2ϕ ,

and the minimum value of the numerator, i. e.:

N − N′ = 1 .

The solution is therefore:

a = λ
4 sin 1

2ϕ
, ϑA = 1

2ϕ , ϑB = −1
2ϕ and δ = 1

2π − 2πN . (6p.)

(N = 0 can be assumed throughout without loosing any physically relevant
solution.)

b) The wavelength λ = c/ν = 11.1 m, and the angle between directions
A and B, ϕ = 157◦ − 72◦ = 85◦. The minimum distance between the
rods is a = 4.1 m, while the direction of the symmetry line of the rods is
72◦ + 42.5◦ = 114.5◦ measured from the north. (2 p.)
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Problem 2

a) First the electron velocity is calculated from the current I:

I = jS = ne0vbc, v = I
ne0bc

= 25 m/s .

The components of the electric field are obtained from the electron veloc-
ity. The component in the direction of the current is

E‖ = v
µ

= 3.2 V/m . (0.5p.)

The component of the electric field in the direction b is equal to the
Lorentz force on the electron divided by its charge:

E⊥ = vB = 2.5 V/m . (1p.)

The magnitude of the electric field is

E =
√

E2
‖ + E2

⊥ = 4.06 V/m . (0.5p.)

while its direction is shown in Fig. 5 (Note that the electron velocity is in
the opposite direction with respect to the current.) (1.5 p.)

Fig. 5

b) The potential difference is

UH = E⊥b = 25 mV (1p.)
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c) The potential difference UH is now time dependent:

UH = IBb
ne0bc

= I0B0

ne0c
sin ωt sin(ωt + δ) .

The DC component of UH is

UH = I0B0

2ne0c
cos δ . (3p.)

d) A possible experimental setup is-shown in Fig. 6

Fig. 6

(2 p.)
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Problem 3

a) The necessary condition for the space-probe to escape from the Solar
system is that the sum of its kinetic and potential energy in the Sun’s
gravitational field is larger than or equal to zero:

1
2mv2

a − GmM
RE

≥ 0 ,

where m is the mass of the probe, va its velocity relative to the Sun, M
the mass of the Sun, RE the distance of the Earth from the Sun and G the
gravitational constant. Using the expression for the velocity of the Earth,
vE =

√
GM/RE , we can eliminate G and M from the above condition:

v2
a ≥ 2GM

RE
= 2v2

E . (1p.)

Let v′
a be the velocity of launching relative to the Earth and ϑ the angle

between ~vE and ~v′
a (Fig. 7). Then from ~va = ~v′

a + ~vE and v2
a = 2v2

E it

Fig. 7

follows:
v′

a
2 + 2v′

avE cos ϑ − v2
E = 0

and
v′

a = vE

[
− cos ϑ +

√
1 + cos2 ϑ

]
.

The minimum velocity is obtained for ϑ = 0:

v′
a = vE(

√
2 − 1) = 12.3 km/s . (1p.)

b) Let v′
b and vb be the velocities of launching the probe in the Earth’s and

Sun’s system of reference respectively. For the solution (a), vb = v′
b + vE .

From the conservation of angular momentum of the probe:

mvbRE = mv‖RM (1p.)

12



and the conservation of energy:

1
2mv2

b − GmM
RE

= 1
2m(v2

‖ + v2
⊥) − GmM

RM
(1p.)

we get for the, parallel component of the velocity (Fig. 8):

v‖ = (v′
b + vE)k ,

and for the perpendicular component:

v⊥ =
√

(v′
b + vE)2(1 − k2) − 2v2

E(1 − k) . (1p.)

where k = RE/RM .

Fig. 8

c) The minimum velocity of the probe in the Mars’ system of reference
to escape from the Solar system, is v′′

s = vM(
√

2 − 1), in the direction
parallel to the Mars orbit (vM is the Mars velocity around the Sun). The
role of Mars is therefore to change the velocity of the probe so that it
leaves its gravitational field with this velocity.

(1 p.)

In the Mars’ system, the energy of the probe is conserved. That is, how-
ever, not true in the Sun’s system in which this encounter can be consid-
ered as an elastic collision between Mars and the probe. The velocity of
the probe before it enters the gravitational field of Mars is therefore, in

13



the Mars’ system, equal to the velocity with which the probe leaves its
gravitational field. The components of the former velocity are v′′

⊥ = v⊥
and v′′

‖ = v‖ − vM , hence:

v′′ =
√

v′′
‖

2 + v′′
⊥

2 =
√

v2
⊥ + (v‖ − vM)2 = v′′

s . (1p.)

Using the expressions for v⊥ and v‖ from (b), we can now find the relation
between the launching velocity from the Earth, v′

b, and the velocity v′′
s ,

v′′
s = vM(

√
2 − 1):

(v′
b+vE)2(1−k2)−2v2

E(1−k)+(v′
b+vE)2k2−2vM(v′

b+vE)k = v2
M(2−2

√
2) .

The velocity of Mars round the Sun is vM =
√

GM/RM =
√

k vE , and the
equation for v′

b takes the form:

(v′
b + vE)2 − 2

√
k

3
vE(v′

b + vE) + (2
√

2 k − 2)v2
E = 0 . (1p.)

The physically relevant solution is:

v′
b = vE

[√
k

3
− 1 +

√
k3 + 2 − 2

√
2 k

]
= 5.5 km/s . (1p.)

d) The fractional saving of energy is:

Wa − Wb

Wa
= v′

a
2 − v′

b
2

v′
a

2 = 0.80 ,

where Wa and Wb are the energies of launching in scheme (i) and in scheme
(ii), respectively. (1 p.)
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2.2 Experimental competition

Exercise A

The plot of the angle as a function of time for a typical measurement of
the acceleration of the disk is shown in Fig. 9.

Fig. 9 Angle vs. time

The angular velocity is calculated using the formula:

ωi(t′
i) = π

(ti+i − ti)
and corresponds to the time in the middle of the interval (ti, ti+1): t′

i =
1
2(ti+1 + ti). The calculated values are displayed in Table 1 and plotted in
Fig. 10.

Observing the time intervals of half turns when the constant angular ve-
locity is reached, one can conclude that the iron pegs are not positioned
perfectly symmetrically. This systematic error can be neglected in the
calculation of angular velocity, but not in the calculation of angular accel-
eration. To avoid this error we use the time intervals of full turns:

αi(t′′
i ) = ∆ωi∆ti

,

15



Fig. 10 Angular velocity vs. time

where ∆ti = t2i+2 − t2i,

∆ωi = 2π
(t2i+3 − t2i+1)

− 2π
(t2i+1 − t2i−1)

and t′′
i = t′

2i+1.

The angular acceleration as a function of time is plotted in Fig. 11.

The torque, M , and the power, P , necessary to drive the disk (net torque
and net power), are calculated using the relation:

M(t) = Iα(t)

and
P(t) = M(t)ω(t)

where the moment of inertia, I = (14.0 ± 0.5) · 10−6 kgm2, is given. The
corresponding angular velocity is determined from the plot in Fig. 10 by
interpolation. This plot is used also to find the torque and the power as
functions of angular velocity (Fig. 12 and 13).
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i t δt ϕ t′ ω α
ms ms rd ms s−1 s−2

1 0.0 0.0
272.0 5.78

2 543.9 543.9 3.14
758.7 7.31

3 973.5 429.6 6.28 3.38
1156.3 8.60

4 1339.0 365.5 9.42
1499.9 9.76

5 1660.8 327.8 12.57 5.04
1798.6 11.40

6 1936.3 275.5 15.71
2057.1 13.01

7 2177.8 241.5 18.85 5.96
2287.2 14.36

8 2396.6 218.8 21.99
2498.1 15.48

9 2599.6 203.0 25.73 9.40
2689.6 17.46

10 2779.5 179.9 28.27
2859.4 19.66

11 2939.3 159.8 31.42 18.22
3008.6 22.65

12 3078.0 138.7 34.56
3139.9 25.38

13 3201.8 123.8 37.70 25.46
3256.6 28.66

14 3311.4 109.6 40.84
3361.8 31.20

15 3472.1 100.7 43.98 26.89
3458.2 34.11

16 3504.2 92.1 47.12
3547.8 36.07

17 3591.3 87.1 50.27 21.72
3632.4 38.27

18 3673.4 82.1 53.41
3713.5 39.22

19 3753.5 80.1 56.55 4.76
3792.8 39.97

20 3832.7 78.6 59.69
3872.4 39.03

21 3912.6 80.5 62.83 −1.69
3952.7 39.22

22 3992.7 80.1 65.97
4032.8 39.22

23 4072.8 80.1 69.12 0.77
4112.4 39.67

24 4152.0 79.2 72.26
4192.3 39.03

25 4232.5 80.5 75.40 −0.15
4272.4 39.42

26 4312.3 79.7 78.54

Table 1
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Fig. 11 Angular acceleration vs. time

Fig. 12 Net torque (full line) and total torque (dashed line) vs.
angular velocity

To find the total torque and the power of the motor, the torque and the
power losses due to the friction forces have to be determined and added
to the corresponding values of net torque and power. By measuring the
angular velocity during the deceleration of the disk after the motor has

18



been switched off (Fig. 14), we can determine the torque of friction which
is approximately constant and is equal to M ′ = (3.1 ± 0.3) · 10−5 Nm.

Fig. 13 Net power (full line), power loses (dashed and dotted line)
and total power (dashed line) vs. angular velocity

Fig. 14 Angular velocity vs. time during deceleration
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The total torque and the total power are shown in Fig. 12 and 13.

Marking scheme

a) Determination of errors 1 p.

b) Plot of angle vs. time 1 p.

c) Plot of angular velocity and acceleration 3 p.

d) Correct times for angular velocity 1 p.

e) Plot of net torque vs. angular velocity 2 p. (Plot of torque vs. time
only, 1 p.)

f) Plot of net power vs. angular velocity 1 p.

g) Determination of friction 1 p.
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Exercise B

Two permanent magnets having the shape of rectangular parallelepipeds
with sides 50 mm, 20 mm and 8 mm are hidden in a block of polystyrene
foam with dimension 50 cm, 31 cm and 4.0 cm. Their sides are parallel
to the sides of the block. One of the hidden magnets (A) is positioned so
that its ~B (Fig. 15) points in z direction and the other (B) with its ~B in x or
y direction (Fig. 15).

Fig. 15 A typical implementation of the magnets in the block

The positions and the orientations of the magnets should be determined
on the basis of observations of forces acting on the extra magnet. The
best way to do this is to hang the extra magnet on the thread and move it
above the surface to be explored. Three areas of strong forces are revealed
when the extra magnet is in the horizontal position i. e. its ~B is parallel
to z axis, suggesting that three magnets are hidden. Two of these areas
producing an attractive force in position P (Fig. 16) and a repulsive force
in position R are closely together.

Fig: 16 Two ’ghost’ magnets appearing in the place of magnet B
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However, by inspecting the situation on the other side of the block, again
an attractive force in area P’ is found, and a repulsive one in area R’. This
is in the contradiction with the supposed magnets layout in Fig. 16 but
corresponds to the force distribution of magnet B in Fig. 15.

To determine the z position of the hidden magnets one has to measure
the z component of ~B on the surface of the block and compare it to the
measurement of Bz of the extra magnet as a function of distance from
its center (Fig. 18). To achieve this the induction coil of the measuring
system is removed from the point in which the magnetic field is measured
to a distance in which the magnetic field is practically zero, and the peak
voltage is measured.

In order to make the absolute calibration of the measuring system, the
response of the system to the known magnetic field should be measured.
The best defined magnetic field is produced in the gap between two field
generating coils. The experimental layout is displayed in Fig. 17.

Fig. 17 Calibration of the measuring system

The magnetic induction in the gap between the field generating coils is
calculated using the formula:

B = µONI
(2l + d)

.

Here N is the number of the turns of one of the coils, l its length , d
the width of the gap, and I the current through the ammeter. The peak
voltage, U , is measured when the induction coil is removed from the gap.
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Plotting the magnetic induction B as a function of peak voltage, we can
determine the sensitivity of our measuring system:

B
U

= 0.020 T/V .

(More precise calculation of the magnetic field in the gap, which is beyond
the scope of the exercise, shows that the true value is only 60 % of the
value calculated above.)

The greatest value of B is 0.21 T.

Fig. 18 Magnetic induction vs. distance

Marking scheme:

a) determination of x, y position of magnets (±1 cm) 1 p.

b) determination of the orientations 1 p.

c) depth of magnets (±4 mm) 2 p.

d) calibration (±50 %) 3 p.

e) mapping of the magnetic field 2 p.

f) determination of Bmax (±50 %) 1 p.
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Fig. 19 Distribution of marks for the theoretical (1,2,3) and the
experimental exercises. The highest mark for each exer-
cise is 10 points.
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Q1 

 
 
 
 
 

 
A plane monochromatic light wave, wavelength λ and frequency f, is incident normally on 
two identical narrow slits, separated by a distance d, as indicated in Figure 1.1. The light 
wave emerging at each slit is given, at a distance x in a direction θ at time t, by 

 
)]/(2cos[ λπ xftay −=  

 
where the amplitude a is the same for both waves. (Assume x is much larger than d). 
 
(i) Show that the two waves observed at an angle θ to a normal to the slits, have a resultant 
amplitude A which can be obtained by adding two vectors, each having magnitude a , and 
each with an associated direction determined by the phase of the light wave. 
 
Verify geometrically, from the vector diagram, that  

 
θcos2aA =  

 
where 
 

θ
λ
πβ sind=  

 
 
 (ii) The double slit is replaced by a diffraction grating with N equally spaced slits, adjacent 
slits being separated by a distance d. Use the vector method of adding amplitudes to show 
that the vector amplitudes, each of magnitude a, form a part of a regular polygon with 
vertices on a circle of radius R given by 

,
sin2 β
aR =  

Deduce that the resultant amplitude is  
 

β
β

sin
sin Na  

 

θ 

θ 

Figure 1.1 

d 
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and obtain the resultant phase difference relative to that of the light from the slit at the edge 
of the grating. 
 
(iii) Sketch, in the same graph, sin Nβ and (1/sinβ) as a function of β. On a separate graph 
show how the intensity of the resultant wave varies as a function of β. 
  
(iv) Determine the intensities of the principal intensity maxima. 

(v) Show that the number of principal maxima cannot exceed 







 +12
λ
d  

  
(vi) Show that two wavelengths δλλλ + and , where δλ << λ, produce principal maxima with 
an angular separation given by 

etc....2  ,1  ,0  e      wher
cos

±±=
∆

=∆ n
d

n
θ
λθ  

 
Calculate this angular separation for the sodium D lines for which 
 

 
2
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2
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Q2 

International Physics Olympiad 1956 

2. Early this century a model of the earth was proposed in which it was assumed to be a sphere of 
radius R consisting of a homogeneous isotropic solid mantle down to radius Rc. The core region 
within radius Rc contained a liquid. Figure 2.1 

 

 
 
 

The velocities of longitudinal and transverse seismic waves P and S waves respectively, are 
constant, VP, and V S within the mantle. In the core, longitudinal waves have a constant velocity 
VCP, < VP, and transverse waves are not propagated. 
An earthquake at E on the surface of the Earth produces seismic waves that travel through the Earth 
and are observed by a surface observer who can set up his seismometer at any point X on the 
Earth’s surface.  The angular separation between E and X, 2θ given by 

EOXAngle 2 =θ  

where O is the centre of the Earth. 

(i) Show that the seismic waves that travel through the mantle in a straight line will arrive at X at a 
time t (the travel time after the earthquake), is given by 
 









>=

R
R

v
Rt carccosfor               ,sin2 θθ , 

where v = vP for the P waves and v = vS for the S waves. 
 

(ii) For some of the positions of X such that the seismic P waves arrive at the observer after two 
refractions at the mantle-core interface. Draw the path of such a seismic P wave.  Obtain a 
relation between θ and i, the angle of incidence of the seismic P wave at the mantle-core interface, 
for P waves. 

 

 

 

R 

E X 

Figure 2.1 RC 
O 

2θ 

R 
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(iii) Using the data 

R = 6370 km  
RC = 3470 km  
vCP = 10.85 km s-1 

vS = 6.31 km s-1 

vCP   = 9.02 km s-1 

and the result obtained in (ii),draw a graph of θ against i. Comment on the physical consequences 
of the form of this graph for observers stationed at different points on the Earth's surface. 
Sketch the variation of the travel time taken by the P and S waves as a function of θ for 0 ≤  θ 
≤ 90 degrees. 

(iv) After an earthquake an observer measures the time delay between the arrival of the S wave, 
following the P wave, as 2 minutes 11 seconds. Deduce the angular separation of the earthquake 
from the observer using the data given in Section (iii). 
 

(v) The observer in the previous measurement notices that some time after the arrival of the P and 
S waves there are two further recordings on the seismometer separated by a time interval of 6 
minutes 37 seconds. Explain this result and verify that it is indeed associated with the angular 
separation determined in the previous section. 
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Q3 
 
Three particles, each of mass m, are in equilibrium and joined by unstretched massless springs, each 
with Hooke’s Law spring constant k. They are constrained to move in a circular path as indicated in 
Figure 3.1. 
 

 

 

 
 

 

(i) If each mass is displaced from equilibrium by small displacements u1, u2 and u3 respectively, 
write down the equation of motion for each mass. 
(ii) Verify that the system has simple harmonic solutions of 
the form 

tau nn ωcos= , 
 

with accelerations, )3,2,1(    where)( 2 =− nau nnω are constant amplitudes, and ω, the angular 
frequency, can have 3 possible values, 

 and 3,3 oo ωω 0.  where 
m
k

o =2ω . 

(iii) The system of alternate springs and masses is extended to N particles, each mass m is joined by 
springs to its neighbouring masses. Initially the springs are unstretched and in equilibrium. Write 
down the equation of motion of the nth mass (n = 1,2...N) in terms of its displacement and those of 
the adjacent masses when the particles are displaced from equilibrium. 
 

,cos2sin)( t
N
nsatu ssn ωφπ







 +=  

are oscillatory solutions where s = 1, 2,...N , n = 1, 2, ...N and where φ  is an arbitrary phase, 
providing the angular frequencies are given by 

,sin2 





=

N
s

os
πωω  

where ),......1( Nsas = are constant amplitudes independent of n. 

State the range of possible frequencies for a chain containing an infinite number of masses. 

 

u3 

u1 u2 

k 
k 

k 

m 

m 
m 

Figure 3.1 
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(iv) Determine the ratio 

1/ +nn uu  

for large  N, in the two cases: 

(a) low frequency solutions 

(b) maxmax   where, ωωω = is the maximum frequency solution. 

Sketch typical graphs indicating the displacements of the particles against particle number along 
the chain at time t for cases (a) and (b). 

 

(v) If one of the masses is replaced by a mass m' << m estimate any major change one would 
expect to occur to the angular frequency distribution. 

Describe qualitatively the form of the frequency spectrum one would predict for a diatomic chain 
with alternate masses m and m' on the basis of the previous result. 

Reminder 

AA

BABABA

BABABA

2cos1sin2
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1986 INTERNATIONAL PHYSICS 
OLYMPIAD 

EXPERIMENT 1.   

2½ hrs 

APPARATUS 

1. Spectrometer with collimator and telescope. 
2. 3 syringes; one for water, one for liquid A and one for liquid B. 
3. A beaker of water plus two sample tubes containing liquids A and B. 
4 3 retort stands with clamps. 
5. 12V shielded source of white light. 
6. Black card, plasticine, and black tape. 
7. 2 plastic squares with holes to act as stops to be placed over the ends of the telescope, with 

the use of 2 elastic bands. 
8. Sheets of graph paper. 
9. Three dishes to collect water plus liquids A and B lost from syringes. 

Please complete synopsis sheet in addition to answering this experimental problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
            
            
            
            
            
            
            
            
            
            
             

 

Pendant drop 

Collimator 

Telescope 

Light Drop 

θ 
Plan of Apparatus 



 2 
INSTRUCTIONS AND INFORMATION 

1. Adjust collimator to produce parallel light. This may be performed by the following      sequence of 
operations: 

(a) Focus the telescope on a distant object, using adjusting knob on telescope, so that the 
cross hairs and object are both in focus.  
(b) Position the telescope so that it is opposite the collimator with slit illuminated so that the 
slit can be viewed through the telescope. 
(c) Adjust the position of the collimator lens, using the adjusting knob on the collimator, 
so that the image of the slit is in focus on the cross hairs of the telescope's eyepiece. 
(d) Lock the spectrometer table, choosing an appropriate 'zero' on the vernier scale, so that 
subsequent angular measurements of the telescope's position can conveniently be made. 

2. Remove the eyepiece from telescope and place black plastic stops symmetrically over both 
ends of the telescope, using the elastic bands, so that the angle of view is reduced. 

3. Open up collimator slit. 
4. Use the syringes to suspend, vertically, a pendant drop symmetrically above the centre of the 
spectrometer table so that it is fully illuminated by the light from the collimator and can be viewed by 
telescope. 
5. The central horizontal region of the suspended drop will produce rainbows as a result of two 
reflections and k (k = 1,2,...) internal reflections of the light. The first order rainbow corresponds to 
one internal reflection. The second order rainbow corresponds to two 
Internal reflections. The k'th order rainbow corresponds to k internal reflections. Each rainbow 
contains all the colours of the spectrum. These can be observed directly by eye and their angular 
positions can bed accurately measured using the telescope. Each rainbow is due to white light rays 
incident on the drop at a well determined angle of incidence, that is different for each rainbow. 
 
6. The first order rainbow can be recognized as it has the greatest intensity and appears on the 
right hand* side of the drop. The second order rainbow appears with the greatest intensity on the 
left hand* side of the drop. These two rainbows are within an angular separation of 20° of each other 
for water droplets. The weak intensity fifth order rainbow can be observed on the right hand side of 
the drop located somewhere between the other two, 'blue', extreme ends of the first and second order 
rainbows. 
7. Light reflected directly from the external surface of the drop and that refracted twice but not 
internally reflected, will produce bright white glare spots that will hinder observations. 

8. The refractive indices, n, of the liquids are: 

Water nw  = 1.333 

Liquid A nA  =  1.467 

Liquid B nB   =  1.534 

In addition to the experimental report please complete the summary sheet. 
 
 
 
Footnote: This statement is correct if the collimator is to the left of the telescope, as indicated in the diagram. If 
the collimator is on the righthand side of the telescope the first order rainbow will appear on the lefthand side of 
the drop and the second order rainbow on the righthand side of the drop. 



 3 
Measurements 
 
1) Observe, by eye, the first and second order water rainbows. Measure the angle θ through which the 
telescope has to be rotated, from the initial direction for observing the parallel light from the 
collimator, to observe, using a pendant water droplet, the red light at the extreme end of the visible 
spectrum from: 
 
 (a) the first order rainbow on the right of the drop (k  =  1); 
 (b) the second order rainbow on the left of the drop (k  =  2);  
 (c)  the weak fifth order rainbow (k  =  5), between the first and second order rainbows. 
 
One of these angles may not be capable of measurement by the rotation of the telescope due to the 
mechanical constraints limiting the range of θ. If this is found to be the case, use a straight edge in 
place of the telescope to measure θ. 
(Place the appropriate dish on the spectrometer table to catch any falling droplets.) 
 
Deduce the angle of deviation, φ  , that is the angle the incident light is rotated by the two reflections 
and k reflections at the drop's internal surface, for (a), (b) and (c). Plot a graph of φ  against k. 
 
 
2.Determine φ  for the second order rainbows produced by liquids A and B using the red visible light 
at the extreme end of the visible spectrum. (Place respective dishes on table below to catch any falling 
liquid as the quantities of liquid are limited). 

Using graph paper plot
6

cos φ  against 
n
1 ,  n being the refractive index, for all three liquids and insert 

the additional point for n = 1. Obtain the best straight line through these points; measure its gradient 
and the value of φ  for which n = 2. 
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EXPERIMENT 2 
 
Apparatus 
RML Nimbus computer 

Ten sheets of graph paper. 

Please complete synopsis sheet in addition to answering this experimental problem. 

 
THIS IS A TWO AND A HALF HOUR EXAMINATION 

 
 
INFORMATION 
 
The microcomputer has been programmed to solve the Newtonian equations of motion for a two-
dimensional system of 25 interacting particles, in the xy plane. It is able to generate the positions and 
velocities of all particles at discrete, equally spaced time intervals. By depressing appropriate keys 
(which will be described), access to dynamic information about the system can be obtained. 
The system of particles is confined to a box which is initially (at time t =  0) arranged in a two-
dimensional square lattice. A picture of the system is displayed on the screen together with the 
numerical data requested. All particles are identical; the colours are to enable the particles to be 
distinguished. As the system evolves in time the positions and velocities of the particles will change. 
If a particle is seen to leave the box the program automatically generates a new particle that enters the 
box at the opposite face with the same velocity, thus conserving the number of particles in the box. 
Any two particles i and j, separated by a distance  rij interact with a well-defined potential Uij, 
 
It is convenient to use dimensionless quantities throughout the computation. The quantities given 
below are used throughout the calculations. 
 
 

Variable Symbol 

Distance r* 

Velocity v* 

Time t* 

Energy E* 

Mass of particle M* = 48 

Potential Uij* 

Temperature T* 

Kinetic Energy 
2**

2
1* vmEk =  
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INSTRUCTIONS 
 
The computer program allows you to access three distinct sets of numerical information and display 
them on the screen. Access is controlled by the grey function keys on the left-hand side of the 
keyboard, labelled F1, F2, F3, F4, and F10. These keys should be pressed and released - do not hold 
down a key, nor press it repeatedly. The program may take up to 1 second to respond. 
 
FIRST INFORMATION SET.  PROBLEMS 1 – 5 
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where 

*
ixv      is the dimensionless x – component of the velocity for the i’th particle, 
*
iyv      is the dimensionless y – component of the velocity for the i’th particle, 

and n is and integer with 1≥n . 
 
[Note: the summation over *

iyU  excludes the cases in which i = j] 
 

After depressing F1 it is necessary to input the integer )1( ≥nn  by depressing one of the white keys in 
the top row of the keyboard, before the information appears on the screen. 
 
The information is displayed in dimensionless time intervals Δt at dimensionless times 
 
S Δt**      (S = 0, 1, 2, .....) 
 
Δt** is set by the computer program to the value Δt** = 0•100000. 
 
The  value of S is displayed at the bottom right hand of the screen. Initially it has the value S = 0. The 
word "waiting" on the screen indicates that the calculation has halted and information concerning the 
value of S is displayed. 
 
Depressing the long bar (the "space" bar) at the bottom of the keyboard will allow the calculation of 
the evolution of the system to proceed in time steps Δ**t.   The current value of S is always displayed 
on the screen. Whilst the calculation is proceeding the word "running" is displayed on the screen. 
 
Depressing F1 again will stop the calculation at the time integer indicated by S on the screen, and 
display the current values of 

<vx,n>,  <vy,n> and <U> 

after depressing the integer n. The evolution of the system continues on pressing the long bar. 
The system can, if required, be reset to its original state at S = 0 by pressing F10 TWICE. 



 6 
 

SECOND INFORMATION SET: PROBLEM 6 
 
Depressing F2 initiates the computer program for the compilation of the histogram in problem 6. This 
program generates a histogram table of the accumulated number ΔN, of particle velocity components 
as a function of dimensionless velocity. The dimensionless velocity components, vx and vy are referred 
to collectively by vc. The dimensionless velocity range is divided into equal intervals Δ vc = 0.05. The 
centres of the dimensionless velocity "bins" have magnitudes 
  
 .),.........2  1,0(B            B ** ±±== cc Δvv  
 
When the long bar on the keyboard is pressed the 2 x 25 dimensionless velocity components are 
calculated at the current time step, and the program adds one, for each velocity component, into the 
appropriate velocity 'bin'. This process is continued, for each time step, until F3 is depressed. Once F3 
is depressed the (accumulated) histogram is displayed. The accumulation of counts can then be 
continued by pressing the long bar. (Alternatively if you wish to return to the initial situation, with 
zero in all bins, press F2). 
The accumulation of histogram data should continue for about 200 time steps after initiation. 
 
In the thermodynamic equilibrium the histogram can be approximated by the relation 











 −

=∆
α

2*)(24 cv

AeN  
where α is a constant associated with the temperature of the system, and A depends on the total 
number of accumulated velocity components. 
 
 
THIRD INFORMATION SET: PROBLEM 7 
 
Depressing F4 followed by the long bar at any time during the evolution of the system will initiate the 
program for Problem 7. The program will take some 30 seconds, in real time, before displaying a 
table containing the two 
Quantities 
 

[ ]
225

1

** )()(
25
12, ∑

=

−>=<
i

ii SRxSxRX  

 
and 

[ ]
225

1

** )()(
25
12, ∑

=

−>=<
i

ii SRySyRY  

 
where xi

* and yi
* are the dimensionless position components for the i'th particle. S is the integer time 

unit and SR is the fixed initial integer time at which the programme is initiated by depressing F4. It is 
convenient to introduce integer 

SZ = S - SR.. 
 
The programme displays a table of <RX,2> and <RY,2> for 

SZ = 0, 2, 4..……24. 
 
Prior to the display appearing on the screen a notice 'Running' will appear on 
the screen indicating that a computation is proceeding.  Depressing F4, followed by the long bar, 
again will initiate a new table with SR advanced to the point at which F4 was depressed. 
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COMPUTATIONAL PROBLEMS 
 
1  Verify that the dimensionless total linear momentum of the system is conserved for the times 
given by 

 S = 0, 40, 80, 120, 160. 
State the accuracy of the computer calculation. 
2. Plot the variation in dimensionless kinetic energy of the system with time using the time 
sequence 

S = 0, 2, 4, 6, 12, 18, 24, 30, 50, 70, 90, 130, 180. 
 

3.  Plot the variation in dimensionless potential energy of the system with time using the time 
sequence in 2. 
 
4. Obtain the dimensionless total energy of the system at times indicated in 2. Does the system 
conserve energy?  State the accuracy of the total energy calculation. 
 
5. The system is initially (at S = 0) NOT in thermodynamic equilibrium. After a period of time the 
system reaches thermodynamic equilibrium in which the total dimensionless kinetic energy fluctuates 
about a mean value of *

kE .   Determine this value of *
kE  and indicate the time, SD, after which the 

system is in thermodynamic equilibrium. 
 
6. Using the dimensionless accumulated velocity data, during thermodynamic equilibrium, draw 
up a histogram giving the number ΔN of velocity components against dimensionless velocity 
component, using the constant velocity component interval ΔVc* = 0.05, specified in the table 
available from the SECOND INFORMATION SET. Data accumulated from approximately 200 time 
steps should be used and the starting time integer S should be recorded. 
 
Verify that  ΔN satisfies the relation 

( )















−

=∆
α

2*24 Cv

AeN  
 
where C and A are constants. Determine the value of α . 
 
7. For the system of particles in thermodynamic equilibrium evaluate the average value of 

,   , 22 >< RR  where R is the straight line distance between the position of a particle at a fixed initial 
time number SR and time number S. The time number difference SZ = (S - SR) takes the values 

SZ = O, 2, 4, .…. 24. 

Plot <R2> against SZ for any appropriate value of SR. Calculate the gradient of the function in the 
linear region and specify the time number range for which this gradient is valid. 
In order to improve the accuracy of the plot repeat the previous calculations for three (additional) 
different values of SR and determine the AVERAGE <R2> for the four sets of results together with 
the 'linear' gradient and time number range. 
Deduce, with appropriate reasoning, the thermodynamic equilibrium state of the system, either solid 
or liquid. 
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Answers Question 1 
 
 (i) Vector Diagram 
 
 
 
 

  

 

If the phase of the light from the first slit is zero, the phase from second slit is 

θ
λ
πφ sin2 d=  

Adding the two waves with phase difference φ  where 





 −=

λ
πξ xft2 , 

( )
( ){ }βξβξφξ

φξφξφξ
+=++
+=++

coscos2)cos()cos(
2/)2/cos(2)cos()cos(

aaa
aaa  

This is a wave of amplitude βcos2aA = and phase β.   From vector 
diagram, in isosceles triangle OPQ, 

θ
λ
πφβ sin

2
1 d==   

 )2   ( βφ =NB
and  

.cos2 βaA =  

Thus the sum of the two waves can be obtained by the addition of two vectors of 
amplitude a and angular directions 0 and φ . 

(ii) Each slit in diffraction grating produces a wave of amplitude a with phase 2β relative to 
previous slit wave. The vector diagram consists of a 'regular' polygon with sides of 
constant length a and with constant angles between adjacent sides. 
Let O be the centre of circumscribing circle passing through the vertices of the 
polygon. Then radial lines such as OS have length R and bisect the internal angles 
of the polygon.  Figure 1.2. 

 

 

Figure 1.2 

d 
θ 

θ 



 2 

φ

φ

=

−==

SOT

OTSTSO

^

^^

     and

)180(
2
1

 

In the triangle TOS, for example 
 

βφ sin2)2/sin(2 RRa ==  as )2( βφ =  

βsin2
aR =∴     (1) 

 
As the polygon has N faces then: 

βφ NNZOTNZOT 2)(
^^

===  
 

Therefore in isosceles triangle TOZ, the amplitude of the resultant wave, TZ, is given by 
 

βNR sin2 . 
 

Hence form (1) this amplitude is  
 

β
β

sin
sin Na  

 
Resultant phase is  

( )

( )
β

φ

φφ

)1(

1
2
1

180
2
1

2
90

^^

^

−=

−−

−−





 −

−=

=

N

N

N

ZTOSTO

STZ

 

(iii) 
 

 
 
 
 
 
 

 
Intensity 

β
β

2

22

sin
sin NaI =  

β
β

Na sin
sin

1
 

β 



 3 

 
37C 

 
 

(iv) For the principle maxima ........210      where ±±== ppπβ  
 

 ' and  0'      
'
' 222

max βπββ
β
β

+===







= paNNaI    

 
 

(v) Adjacent max. estimate I1 : 
 

NN
pN

2
3  i.e  

2
32   ,1sin 2 πβππββ ±===   

 





 ±=

N
p

2
ππβ   does not give a maximum  as can be observed from the graph. 

23
2

3
1 22

2
2

1
Na

n

aI ==
π

 for N>>1 

 

Adjacent zero intensity occurs for 
N
ππρβ ±=   i.e.  

N
πδ ±=  

 

For phase differences much greater than    
sin

sinaI        , 22 aN
=








=

β
βδ . 

 
(vi) 

θ
λθ

λθθ
λ

πθ
λ
π
πβ

cos

cos
   w.r.t,atingDifferenti

..........2,1,0        sin  i.e.

maximum  principle  afor     

d
n

nd

nnd

n

∆
=∆

∆=∆

±±==

=

 

 
Substituting  m.102.1  and  2n  nm. 589.6   nm,0.589 6−×===∆+= dλλλ  

2

1 





−

∆
=∆

d
nd

n

λ

λθ   as 
2

1cos  and  sin 





−==

d
n

d
n λθλθ  

03 30.0or    102.5 rads−×=∆⇒ θ  
 

I 

0           π                    2π                      3π                     

β 
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v
RtR θθ sin2   sin2EX =∴=  

where v = vP for P waves and v = vS for S waves. 
  
This is valid providing X is at an angular separation less than or equal to X', the tangential ray 
to the liquid core. X' has an angular separation given by, from the diagram, 

 

,cos22 1 





= −

R
RCφ  

Thus 

 ,cosfor        ,   sin2 1 





≤= −

R
R

v
Rt Cθθ  

 
where v = vP for P waves and v = vS for shear waves. 
 

(ii) 3.831.0         and       5447.0 ==
P

CPC

v
v

R
R  

 

 

 

   
  
From Figure 2.2 
 

)1()90(
^^

αθθ −+−=⇒+= rAOECOA    (1) 

θ θ 

R 

O 

R 

φ 

E X 

X’ 

2.(i) 

r 

Figure2.1 

Figure 2.2 

α  

O 

X 
E 

B A 
C 

Rc 

θ 

i 

Answers Q2 
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(ii) Continued 
 
Snell’s Law gives: 
 

.
sin
sin

CPv
v

r
i P=       (2) 

 
From the triangle EAO, sine rule gives 

.
sinsin i

R
x

RC =       (3) 

 
Substituting (2) and (3) into (1) 
 




















−+








−= −− i

R
R

ii
v
v C

P

CP sinsinsinsin90 11θ   (4) 

 
 
(iii) 
 
 
           
           
           
           
           
           
           
           
           
           
           
           
            
            

Plot  of  θ agains t  i .  
 

 
 
 
 
Substituting into 4: 

i = 0 gives θ  =  90 

i = 90° gives θ  =  90.8° 

Substituting numerical values for i = 0 →  90° one finds a minimum value at i = 55°; the 
minimum values of 0, θMIN = 75•8°. 

For Information Only 
 

For minimum 0, =
di
dθθ .   0

sin1

cos

sin1

cos
1

22
=









−










−









−










−⇒

i
R

R

i
R

R

i
v
v

i
v
v

C

C

P

CP

P

CP

   

Substituting i = 55.0o  gives LHS=0, this verifying the minimum occurs at this 
value of i.  Substituting i = 55.0o  into (4) gives θ = 75.80. 

0 550 900 

900 

75.80 
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Physical Consequence 
 
 
As θ has a minimum value of 75•8° observers at position for which 2 θ <151•6° will not 
observe the earthquake as seismic waves are not deviated by angles of less than 151•6°. 
However for 2 θ ≤  114° the direct, non-refracted, seismic waves will reach the observer. 
 
 
 

 
 
           
           
           
           
           
   
(iv)  Using the result 
 

 
v

rt θsin2
=  

 the time delay Δt is given by 
 

 







−=∆

PS vv
Rt 11sin2 θ  

  
Substituting the given data 
 

θsin
85.10

1
31.6
1)6370(2131 



 −=  

 
Therefore the angular separation of E and X is  
 

o84.172 =θ  
 

This result is less than oC

R
R

114
6370
3470cos2cos2 11 =






=







 −−  

And consequently the seismic wave is not refracted through the core. 

0                       cos min
1 θθ 








= −

R
RC

C   900 

900 
 

1800 

Refracted 
waves 

θ 
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(v) 

 

  
 
 

The observations are most likely due to reflections from the mantle-core interface.   Using the 
symbols given in the diagram, the time delay is given by 
 

 
symmetryby  EX  ED as  11)ED(2'

11)DXED('

=







−=∆









−+=∆

PS

PS

vv
t

vv
t

 

  
In the triangle EYD, 
 

 
1cossin                                             cos2(ED)

)cos()sin((ED)
22222

222

=+−+=

−+=

θθθ

θθ

CC

C

RRRR

RRR
 

Therefore 

 







−−+=∆

PS
CC vv

RRRRt 11 cos22' 22 θ  

Using (ii) 
 

 
37s  6mor   7.396

cos2
sin

' 22

s

RRRR
R

tt CC

⇒

−+
∆

=∆ θ
θ  

 
Thus the subsequent time interval, produced by the reflection of seismic waves at the mantle core 
interface, is consistent with angular separation of 17.840. 
 

E X Y 

R R 
D 

θ θ 

O RC 
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Answer Q3 
 Equations of motion: 
 
 

)()(

)()(

)()(

32312
3

2

21232
2

2

13122
1

2

uukuuk
dt

ud
m

uukuuk
dt

ud
m

uukuuk
dt

ud
m

−+−=

−+−=

−+−=

 

  
 

: and cos)0()(  ngSubstituti 2

m
ktutu onn == ωω  

(c)     0)0()2()0()0(

(b)     0)0()0()2()0(

(a)     0)0()0()0()2(   

3
22

2
2

1
2

3
2

2
22

1
2

3
2

2
2

1
22

=−+−−

=−−+−

=−−−

uuu

uuu

uuu

ooo

ooo

ooo

ωωωω

ωωωω

ωωωω

 

Solving for u1(0) and u2(0) in terms of  u3(0) using (a) and (b) and substituting into (c) gives the 
equation equivalent to  

0)3(   2222 =− ωωωo  
22 3 oωω = ,  23 oω  and  0 

oo ωωω 3  ,3= and 0 
 

(ii) Equation of motion of the n’th particle: 

)()(

)()(

1
2

12

2

112

2

nnonn
n

nnnn
n

uuuuk
dt

ud

uukuuk
dt

ud
m

−+−=

−+−=

−+

−+

ω
 

Substituting t
N

nsutu snn ωπ cos2sin)0()( 





=  

θθ

πωω

πππωπω

πππωπω

πππωπω

2cos1sin2    As

),.....2,1(      :2cos12

2sin2cos2sin22sin

)1(2sin
2
12sin)1(2sin

2
122sin

)1(2sin2sin2)1(2sin2sin

2

22

22

22

22

−=

=













−=∴















−














=














−















 −−






+






 +=














−















 −+






−






 +=














−

Ns
N

s

N
ns

N
s

N
ns

N
ns

N
sn

N
ns

N
sn

N
ns

N
sn

N
ns

N
sn

N
ns

os

os

os

os

 

This gives 

),...2,1    sin2 N (s
N
s

os =





=
πωω  

.
2

  to1 range  toingcorrespond ; when 22  to0 from  valueshavecan  NsN
m
k

os =∞→=ωω  

n = 1,2……N 
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(iv) For s’th mode 
 







 +









=
+

N
sn

N
ns

u
u

n

n

π

π

)1(2sin

2sin

1  















+
























=
+

N
s

N
ns

N
s

N
ns

N
ns

u
u

n

n

ππππ

π

2sin2cos2cos2sin

2sin

1

 

 

(a)  For small 1  so and  ,02sin and 12cos   thus,0  ,
1

≅≈





=≅






≈








+n

n

u
u

N
ns

N
ns

N
s ππω . 

(b)  The highest mode,  oωω 2max = ,  corresponds to s = N/2 
 

 as   1
1

−=∴
+n

n

u
u ( )

( ) 1
)1(2sin

2sin
−=

+ π
π

n
n  

 
Case (a) 

 
Case (b) 
N odd 

 
 

N even 
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(vi) If m' << m, one can consider the frequency associated with m' as due to vibration of m' 
between two adjacent, much heavier, masses which can be considered stationary 
relative to m'. 

 
 
The normal mode frequency of m', in this approximation, is given by 
 

 

 
 
 
 

'
2'

2'

2'

2

m
k

m
k

kxxm

=

=

−=

ω

ω



 

 
 
 
 
 
 
 
For small m', ω' will be much greater than ωmax, 
 

 
 
 
DIATOMIC SYSTEM 

More light masses, m', will increase the number of frequencies in region of ω' giving a band-
gap-band spectrum. 

 

 
 
 

 

m‘ m m 

0                 2ωo                  ω   ω 

BAND 

BAND GAP BAND
 

0             ω 
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SUMMARY SHEET 
 

EXPERIMENT 1 
 

1. FOR WATER AND RED LIGHT AT EXTREME END OF SPECTRUM 
 
 

k = 1 First Order Rainbow θ1 =129.0° 
 

φ 1 = 137.0 ±5.0° 
k = 2 Second Order Rainbow  θ2= 129.0° φ 2 = 231.0 ±3.0° 
k = 5 Fifth Order Rainbow  θ5= 126.0° φ 5 = 486.0 ±4.0° 

  

2. LIQUIDS A AND B USING SECOND ORDER RAINBOWS 

For Liquid A θ2 = 105.0° φ 2= 255.0 ±3.0° 

For Liquid B θ2  = 89.5° φ 2= 270.5 ±3.0° 

  
 

      

Gradient of graph  = 0.84 ±0.07 

Extrapolated, n =2, θ2, value of φ          = 304 ±25o 

    
 
 
 
 
 
 

 
 
 
 
 
 
 

θ2 = 0.0..o 

0     1       2       3       4       5 

500 
 
 
400 
 
 
300 
 
 
200 
 
 
100 

o
kφ  

k 

Figure E 1.1. 

φ 2= 0.0..o For n = 1 
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Figure E 1.2 
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SUMMARY SHEET 

EXPERIMENT 2 

Is the total momentum conserved?    YES /NO 

Accuracy of computer calculation    
1.0

0000018.0100 ≈0.002% 0:1 

(RMS velocity = 0.1) 
 

Time Total Energy 

0 -1.61499 

2 -1.62886 

4 -1.62878 

6 -1.62301 

12 -1.62882 

18 -1.62599 

24 -1.62796 

30 -1.62703 

50 -1.62753 

70 -1.62676 

90 -1.62580 

130 -1.62713 

180 -1.62409 
 
Does the system conserve energy? YES/NO  (~ ±1%) 

 
Equilibrium value of Ek* 
 
Equilibrium time SD 

(Average 24 to 180) 
 
(see Fig. E 2.1 ) 

= 0.534 ±0.05 
 

≅ (10 to 20 ) 1.0×  

Value of S recorded  > 20, e.g. 60 

Value of α  
(for SD=60) 

 
(see Fig. E2.2 ) 

 
= 0.503 

 
Accuracy of α    

= ±0.02 
 
 
For what time number range is graph, obtained using first value of SR, linear?   SZ = 18 to 24 
 
 
 
 
 



 4 

Gradient of this graph in linear region     ≅ 0.027 to 0.47  
  
Accuracy of gradient       = 0.002 
 
Gradient of AVERAGE <R2> in linear region    = 0.035 
 
Accuracy of this gradient      = ± 0.01 

* delete as appropriate 
 
 
Is the system a liquid/solid?      Liquid/Solid* 
 
 
 

Mean Momentum of the system at requested steps (S) 

 
S 

 
<VX,1> 

 
<VY,1> 

 
<PX> 

 
<PY>     

         0 0.0000000 0.0000000 0.000000 0.000000     
40 0.0000010 0.0000016 0.000048 0.000077   . p.E.  
80 0.0000018 0.0000001 0.000086 0.000005     
120 0.0000014 0.0000007 0.000067 0.000034     
160 0.0000016 0.0000010 0.000077 0.000048     
        -2-

        K . E .   
 

Energy of the system at requested steps (S) 
 
 
 
 

S 

 
 
<VX,2> 

 
 

<VY,2> 

 
 
<KE> = T* 

 
 
<U>  

 
 
<E>= Total Energy 

  

0 0.0173874 0.0142851 0.760140 -4.7502660 -1.61499   
2 0.0162506 0.0131025 0.704474 -4.6666675 -1.62886   
4 0.0124966 0.0089562 0.514867 -4.2873015 -1.62878  ¢0 80 120 
       ti  $ 6 0.0077405 0.0039113 0.279643 -3.8053113 -1.62301   
12 0.0118740 0.0120959 0.575278 -4.4081878 -1.62882   
       Fi  E2 1 
18 0.0099579 0.0075854 0.421039 -4.0940627 -1.62599   

24 0.0108577 0.0116978 0.541332 -4.3385782 -1.62796  Variation of K.E and P.E 
30 0.0126065 01000340 0.543372 -4.3407997 -1.62703   
50 0.0127138 0.0103334 0.553133 -4.3613165 -1.62753   
70 0.0088657 0.0158292 0.592678 -4.4388669 -1.62676   
90 0.0107740 0.0076446 0.442087 -4.1357699 -1.62580   
130 0.0073008 0.0177446 0.601090 -4.4564333 -1.62713   
180 0.0097161 0.0096426 0.464609 -4.1773882 -1.62409   
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All values are in reduced units. <KE> is the mean kinetic energy per atom. <U*> is twice the 
potential energy.   <VX,2> and <VY,2> are the mean values of the squares of the X and Y velocity 
components, as described in the question. Similarly <VX,1> and <VY,1> are the mean values of the 
velocity components. <PX> and <PY> are the mean momentum per particle. 
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     0 
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          ½<U> 
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Figure E 2.1 
 

Variation of K.E and P.E. 

0              40                 80                120             160 

Maxwell Boltzmann Distribution 
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N 
    N 
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V 



 6 

 
 

 
 

 

  

   <Rz> curves as a function of time 
 
 
 
 
 
 
 

 
TYPICAL RESULTS : NOTE THE LARGE VARIATIONS IN THE VALUES OF <R2> 
 
 

LnN 
 
 
   7.0 
 
 
    
   6.0 
 
 
 
   5.0 
 
 
   4.0 

411 Steps 

0             20                40                60   V 

Figure E2.2 

(b) 

10-2<R2> 
 
       
        8 
 
 
 
      6 
 
 
 
        4 
 
 
 
        2 

0                6                12                 18              24 
Time step   s 

 
 

Figure E2,3 



 7 

Time Number 
SZ - S-SR SR = 261 

<R2> 
SR = 301 
<R2> 

SR = 334 
<R2> 

SR = 370 
<R2> 

AVERAGE 
<R2> 

0 0 0 0 0 0 

2 0.00088 0.00067 0.00091 0.00079 0.00081 

         4 0.00287 0.00276 0.00382 0.00298 0.00311 

         6 0.00523 0.00628  
. 

 

0.00623 0.00658 

8 0.00797 0.01101 0.01449 0.01039 0.01097 

10 0.01143 0.01656 0.02095 0.01523 0.01604 

12 0.01528 0.02235 0.02768 0.02022 0.02138 

14 0.01874 0.02845 0.03453 0.02564 0.02684 

16 0.02184 0.03539 0.04157      0.03160 0.03260 

18 0.02526 0.04293 0.04902 0.03833  0.03889 

20 0.02979 0.05080 0.05718 0.04532 0.04577 

22 0.03538 0.05918 0.06605 0.0510 0.05303 

24 0.04063      0.06784      0.07533 0.05569 0.05987 

 
 
 
 

0.00858 



Problems of the 18th International Physics Olympiad

(Jena, 1987)

Gunnar Friege & Gunter Lind1

Leibniz-Institute for Science Education (IPN) at the University of Kiel, Germany

Abstract
The 18th International Physics Olympiad took place in 1987 in the German Democratic

Republic (GDR). This article contains the competition problems, their solutions and also a

(rough) grading scheme.

Introduction

The 18th international Physics olympics in 1987 was the second International Physics

Olympiad hosted by the German Democratic Republic (GDR) . The organisation was lead by

the ministry for education and the problems were formulated by a group of professors of

different universities. However, the main part of the work was done by the physics

department of  the university of Jena. The company Carl-Zeiss and a special scientific school

in Jena were involved also.

In the competition three theoretical and one experimental problem had to be solved. The

theoretical part was quite difficult. Only the first of the three problems (“ascending moist air”)

had a medium level of difficulty. The points given in the markings were equal distributed.

Therefore, there were lots of good but also lots of unsatisfying solutions. The other two

theoretical problems were rather difficult. About half of the pupils even did not find an

adequate start in solving these problems. The third problem (“infinite LC-grid") revealed

quite a few complete solutions. The high level of difficulty can probably be explained with

the fact that many pupils nearly had no experience with the subject. Concerning the second

problem (“electrons in a magnetic field”) only a few pupils worked on the last part 3 (see

below).

The experimental problem (“refracting indices”) was much more easier than the theoretical

problems. There were lots of different possibilities of solution and most of the pupils

                                           

1 Contact: Leibniz-Institute for Science Education (IPN) at the University of Kiel
Olshausenstrasse 62, 24098 Kiel, Germany
ipho@ipn.uni-kiel.de



managed to come up with partial or complete solutions. Over the half of all teams got more

points in the experimental part than in the theoretical part of the competition.

The problems and their solutions are based on the original German and English versions of

the competition problems. Only minor changes have been made. Despite the fact that

nowadays almost all printed figures are generated with the aid of special computer

programmes, the original hand-made figures are published here.

Theoretical Problems

Problem 1: Ascending moist air

Moist air is streaming adiabatically across a mountain range as indicated in the figure.

Equal atmospheric pressures of 100 kPa are measured at meteorological stations M0 and M3

and a pressure of 70 kPa at station M2. The temperature of the air at M0 is 20° C.

As the air is ascending, cloud formation sets in at 84.5 kPa.

Consider a quantity of moist air ascending the mountain with a mass of 2000 kg over each

square meter. This moist air reaches the mountain ridge (station M2) after 1500 seconds.

During that rise an amount of 2.45 g of water per kilogram of air is precipitated as rain.

1. Determ

2. What is

decreas

3. What te

4. Determ

stream 
2

ine temperature T1 at M1 where the cloud ceiling forms.

 the height h1 (at M1) above station M0 of the cloud ceiling assuming a linear

e of atmospheric density?

mperature T2 is measured at the ridge of the mountain range?

ine the height of the water column (precipitation level) precipitated by the air

in 3 hours, assuming a homogeneous rainfall between points M1 and M2.



3

5. What temperature T3 is measured in the back of the mountain range at station M3?

Discuss the state of the atmosphere at station M3 in comparison with that at station M0.

Hints and Data

The atmosphere is to be dealt with as an ideal gas. Influences of the water vapour on the

specific heat capacity and the atmospheric density are to be neglected; the same applies to the

temperature dependence of the specific latent heat of vaporisation. The temperatures are to be

determined to an accuracy of 1 K, the height of the cloud ceiling to an accuracy of 10 m and

the precipitation level to an accuracy of 1 mm.

Specific heat capacity of the atmosphere in the pertaining temperature range:

cp = 1005 J ⋅ kg-1 ⋅ K-1

Atmospheric density for p0 and T0 at station M0: ρ0 = 1.189 kg ⋅ m-3

Specific latent heat of vaporisation of the water within the volume of the cloud:

Lv = 2500 kJ ⋅ kg-1

p

v

c 1.4
c

= χ =   and  g = 9.81 m ⋅ s-2

Solution of problem 1:

1. Temperature T1 where the cloud ceiling forms
11

1
1 0

0

pT T 279K
p

χ−⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
(1)

2. Height h1 of the cloud ceiling:

0 1
0 1 1p p g h

2
ρ +ρ

− = ⋅ ⋅ , with 1 0
1 0

0 1

p T
p T

ρ = ρ ⋅ ⋅ .

1h 1410 m= (2)

3. Temperature T2 at the ridge of the mountain.

The temperature difference when the air is ascending from the cloud ceiling to the

mountain ridge is caused by two processes:

− adiabatic cooling to temperature Tx,
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− heating by ∆T by condensation.

T2 = Tx + ∆T (3)
11

2
x 1

1

pT T 265K
p

χ−⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
(4)

For each kg of air the heat produced by condensation is Lv  ⋅ 2.45 g = 6.125 kJ.

p

6.125 kJT 6.1K
c kg

∆ = ⋅ = (5)

T2 = 271 K (6)

4. Height of precipitated water column

h = 35 mm (7)

5. Temperature T3 behind the mountain
1
x1

3
3 2

2

pT T 300 K
p

−
⎛ ⎞

= ⋅ =⎜ ⎟
⎝ ⎠

(8)

The air has become warmer and dryer. The temperature gain is caused by condensation of

vapour.

Problem 2: Electrons in a magnetic field

A beam of electrons emitted by a point source P enters the magnetic field B of  a toroidal coil

(toroid) in the direction of the lines of force. The angle of the aperture of the beam 2 ⋅ α0  is

assumed to be small (2 ⋅ α0  << 1). The injection of the electrons occurs on the mean radius R

of the toroid with acceleration voltage V0.

Neglect any interaction between the electrons. The magnitude of B , B, is assumed to be

constant.
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1. To guide the electron in the toroidal field a homogeneous magnetic deflection field 1B  is

required. Calculate 1B  for an electron moving on a circular orbit of radius R in the torus.

2. Determine the value of B  which gives four focussing points separated by / 2π  as

indicated in the diagram.

Note: When considering the electron paths you may disregard the curvature of the

magnetic field.

3. The electron beam cannot stay in the toroid without a deflection field 1B , but will leave it

with a systematic motion (drift) perpendicular to the plane of the toroid.

a) Show that the radial deviation of the electrons from the injection radius is finite.

b) Determine the direction of the drift velocity.

Note: The angle of aperture of the electron beam can be neglected. Use the laws of

conservation of energy and of angular momentum.

Data:

11 1e 1.76 10 C kg
m

−= ⋅ ⋅ ; V0 = 3 kV; R = 50 mm

Solution of problem 2:

1. Determination of B:

The vector of the velocity of any electron is divided into components parallel with and

perpendicular to the magnetic field B :

v v v⊥= + (1)

The Lorentz force F e (v B)= − ⋅ ×  influences only the perpendicular component, it acts as

a radial force:

2vm
r
⊥⋅  = e ⋅ v⊥ ⋅ B (2)

Hence the radius of the circular path that has been travelled is

m vr
e B

⊥= ⋅ (3)
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and the period of rotation which is independent of v⊥  is

2 r 2 mT
v B e⊥

⋅ π⋅ ⋅π ⋅
= =

⋅
(4)

The parallel component of the velocity does not vary. Because of α0 << 1 it is

approximately equal for all electrons:

0 0 0 0v v cos v= ⋅ α ≈ (5)

Hence the distance b between the focusing points, using eq. (5), is

0 0b v T v T= ⋅ ≈ ⋅ (6)

From the law of conservation of energy follows the relation between the acceleration

voltage V0 and the velocity v0:

2
0 0

m v e V
2
⋅ = ⋅ (7)

Using eq. (7) and eq. (4) one obtains from eq. (6)

0
2 mb 2 V
B e
⋅ π

= ⋅ ⋅ ⋅ (8)

and because of 2 Rb
4
⋅ π ⋅

=  one obtains

2
0 2

4 m VsB 2 V 1.48 10
R e m

−= ⋅ ⋅ ⋅ = ⋅ (9)

2. Determination of B1:

Analogous to eq. (2)

2
0

0 1
vm e v B
R

⋅ = ⋅ ⋅ (10)

must hold.

From eq. (7) follows

2
1 0 2

1 m VsB 2 V 0.37 10
R e m

−= ⋅ ⋅ ⋅ = ⋅ (11)



3. Finiteness of r1 and direction of the drift velocity

In the magnetic field the lines of force are circles with their centres on the symmetry axis

(z-axis) of the toroid.

In accordance with the symmetry of the problem, polar coordinates r and ϕ are introduced

into the plane perpendicular to the z-axis (see figure below) and the occurring vector

quantities (velocity, magnetic field B , Lorentz force) are divided into the corresponding

components.

Since the angle of aper

injected tangentially in

In a static magnetic fie

( 2 2
r

mE v v
2

ϕ= + +

The radial points of in

vr = 0

Using eq. (12) one obt

2 2 2
0 zv v vϕ= +

Such an inversion poin

( 0 rr R v v , vϕ= ⋅ =

To find further inversi

components of velocit

vϕ will be determined 

force obviously has no

Therefore it cannot pro
7

ture of the beam can be neglected examine a single electron

to the toroid with velocity v0 on radius R.

ld the kinetic energy is conserved, thus

)2 2
z 0

mv v
2

= (12)

version of the electron are defined by the condition

ains

(13)

t is obviously given by

)z0, v 0 .= =

on points and thus the maximum radial deviation of the electron the

y vϕ and vz in eq. (13) have to be expressed by the radius.

by the law of conservation of angular momentum. The Lorentz

 component in the ϕ - direction (parallel to the magnetic field).

duce a torque around the z-axis. From this follows that the



z-component of the angular momentum is a constant, i.e. Lz = m ⋅ vϕ ⋅ r = m ⋅ v0 ⋅ R and

therefore vϕ = v0 ⋅ 
R
r

(14)

vz will be determined from the equation of motion in the z-direction. The z-component of

the Lorentz force is Fz = - e ⋅ B ⋅ vr. Thus the acceleration in the z-direction is

z r
ea B v
m

= − ⋅ ⋅ . (15).

That means, since B is assumed to be constant, a change of vz is related to a change of r as

follows:

z
ev B r
m

∆ =− ⋅ ⋅∆

Because of ∆ r = r − R  and  ∆ vz = vz  one finds

( )z
ev B r R
m

= − ⋅ ⋅ − (16)

Using eq. (14) and eq. (15) one obtains for eq. (13)

2 2
2R r1 A 1

r R
⎛ ⎞ ⎛ ⎞= + ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(17)

where 
0

e RA B
m v

= ⋅ ⋅

Discussion of the curve of the right side of eq. (17) gives the qualitative result shown in

the following diagram:

Hence r1 is finite. Since R  ≤ 

direction of the negative z-ax
8

 r  ≤  r1  eq. (16) yields vz  <  0. Hence the drift is in the

is.



Problem 3: Infinite LC-grid

When sine waves propagate in an infinite LC-grid (see the figure below) the phase of the ac-

voltage across two successive capacitors differs by Φ.

a) Determine ho

b) Determine the

c) State under w

of ω. Determ

d) Suggest a sim

equations wh

Formulae:

cos cos 2α − β = −

sin sin 2α − β = ⋅

Solution of prob

a) 

Current law:

Voltage law:
w Φ depends on ω, L and C (ω is the angular frequency of the sine wave).

 velocity of propagation of the waves if the length of each unit is .

hat conditions the propagation velocity of the waves is almost independent

ine the velocity in this case.

ple mechanical model which is an analogue to the above circuit and derive

ich establish the validity of your model.

sin sin
2 2

α +β α −β⎛ ⎞ ⎛ ⎞⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

cos sin
2 2

α +β α −β⎛ ⎞ ⎛ ⎞⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

lem 3:

 

 

9

n 1 n nL C LI I I 0− + − = (1)

n 1 n 1 nC L CV V V 0− −+ − = (2)
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Capacitive voltage drop: n 1 n 1C C
1V I
C− −= ⋅

ω⋅
(3)

Note: In eq. (3) n 1CI −  is used instead of n 1CI −  because the current leads the voltage by 90°.

Inductive voltage drop: n 1 n 1L LV L I− −= ω⋅ ⋅ (4)

Note: In eq. (4) n 1LI −  is used instead of n 1LI −  because the current lags behind

the voltage by 90°.

The voltage nCV  is given by: ( )nC 0V V sin t n= ⋅ ω⋅ + ⋅ϕ (5)

Formula (5) follows from the problem.

From eq. (3) and eq. (5): ( )nC 0I C V cos t n= ω⋅ ⋅ ⋅ ω⋅ + ⋅ϕ (6)

From eq. (4) and eq.  (2) and with eq. (5)

n 1

0
L

V 1I 2 sin t n sin
L 2 2−

⎡ ⎤⎛ ⎞ ϕ⎛ ⎞= ⋅ ⋅ ω⋅ + − ⋅ϕ ⋅⎢ ⎥⎜ ⎟⎜ ⎟ω⋅ ⎝ ⎠⎝ ⎠⎣ ⎦
(7)

n

0
L

V 1I 2 sin t n sin
L 2 2

⎡ ⎤⎛ ⎞ ϕ⎛ ⎞= ⋅ ⋅ ω⋅ + + ⋅ϕ ⋅⎢ ⎥⎜ ⎟⎜ ⎟ω⋅ ⎝ ⎠⎝ ⎠⎣ ⎦
(8)

Eqs. (6), (7) and (8) must satisfy the current law. This gives the dependence of ϕ on ω, L

and C.

( ) ( )0
0

V0 V C cos t n 2 sin 2 cos t n sin
L 2 2

ϕ ⎡ ϕ ⎤⎛ ⎞= ⋅ω⋅ ⋅ ω⋅ + ⋅ϕ + ⋅ ⋅ ⋅ ⋅ ω⋅ + ⋅ϕ ⋅ −⎜ ⎟⎢ ⎥ω⋅ ⎝ ⎠⎣ ⎦

This condition must be true for any instant of time. Therefore it is possible to divide by

V0 ⋅ cos (ω⋅t + n⋅ϕ).

Hence 2 2L C 4 sin .
2
ϕ⎛ ⎞ω ⋅ ⋅ = ⋅ ⎜ ⎟

⎝ ⎠
 The result is

L C2 arcsin
2

⎛ ⎞ω⋅ ⋅
ϕ = ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
  with  20

L C
≤ ω ≤

⋅
(9).

b) The distance  is covered in the time ∆ t thus the propagation velocity is

v
t

ω⋅
= =
∆ ϕ

    or    v
L C2 arcsin
2

ω⋅
=

⎛ ⎞ω⋅ ⋅
⋅ ⎜ ⎟

⎝ ⎠

(10)



c) 

Slightly dependent me

This is true only for sm

0v
L C

=
⋅

d) The energy is conserv

terms of a) one obtain

C C

n

1W C V2= ⋅ ⋅∑

and the inductive energ

nL L

n

1W L I2= ⋅ ⋅∑

From this follows the s

(C C

n

1W C V2= ⋅∑

The relation to mechan

quantities ( nCV and nLI

between the locus x an

To produce an analogy

Q, the current I = Q
i

 an

expressed in terms of t
11

ans arc sin L C
2

⎛ ⎞ω⋅ ⋅
ω⎜ ⎟⎜ ⎟

⎝ ⎠
∼ , since v is constant in that case.

all values of ω. That means L C 1
2

ω⋅ ⋅  and therefore 

(11)

ed since only inductances and capacitances are involved. Using the

s the capacitive energy

n
2 (12)

y

2 (13)

tandard form of the law of conservation of energy

)n n
2 2

LL I+ ⋅ (14)

ics is not recognizable in this way since two different physical

) are involved and there is nothing that corresponds to the relation

d the velocity v = x
i
.

 to mechanics the energy has to be described in terms of the charge

d the constants L and C. For this purpose the voltage nCV  has to be

he charges nLQ  passing through the coil.



One obtains:

( )n n n 1

22
L L L

n

A B

L 1W Q Q Q
2 2 C −

⎡ ⎤= ⋅ + −⎢ ⎥⋅⎣ ⎦∑
(15)

Mechanical analogue:

A (kinetic part):
nLQ

i
vn ; L      m

B (potential part): nLQ        xn

xn: displacement and vn: velocity.

However, nLQ  could equally be another quantity (e.g. an angle). L could be e.g. a moment of

inertia.

From the structure of the problems follows: Interaction only with the nearest neighbour (the

force rises linearly with the distance). A possible model could be:

Another model

Experimental 

Problem 4: Re

Find the refract

a) Determine 

methods.

Illustrate yo

calculate th
...
12

 is:

Problems

fractive indices

ive indices of a prism, np, and a liquid, nl. Ignore dispers

the refractive index np of a single prism by two different 

ur solution with accurate diagrams and deduce the relati

e refractive index. (One prism only should be used).
...
...
...
ion.

experimental

ons necessary to



b) Use two identical prisms to determine the refractive index nL of a liquid with nL < np.

Illustrate your solution with accurate diagrams and deduce the relations necessary to

calculate the refractive index.

Apparatus:

Two identical prisms with angles of 30°, 60° and 90°; a set square, a glass dish, a round table,

a liquid, sheets of graph paper, other sheets of paper and a pencil.

Formulae: ( )sin sin cos cos sinα ±β = α ⋅ β ± α ⋅ β

Additional remarks: You may mark the opaque sides of the prisms with a pencil. The use of

the lamp is optional.

Solution of problem 4:

a) Calculation of the refractive index of the prism

First method:

Draw a straight line 

prism with its rectan

the prism in the direc

seen in the short face

M and measure the l
13

A − B on a sheet of paper and let this be your line of sight. Place the

gular edge facing you onto the line (at point Ρ on the line). Now turn

tion of the arrow until the dark edge of total reflection which can be

 of the prism coincides with the 90° edge of the prism. Mark a point

ength c1. Measure also the length of the short face of the prism.
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The following equations apply:

T
p

1sin
n

α = (1)

p
sin n
sin

α
=

β
(2)

β = 60° − αT (3)

γ = 30° + α (4)

( ) 1

sin a
sin 90 c

γ
=

° −α
(5)

From eq. (5) follows with eq. (4) and the given formulae:

( )
1

a 1 1cos sin 30 cos 3 sin
c 2 2
⋅ α = ° + α = ⋅ α + ⋅ ⋅ α

1

22
1 1

2a csin
2 a a c c

−
α =

⋅ − ⋅ +
(6)

From eqs. (2), (3) and (1) follows:

( ) ( )p
p T T T

nsin n sin 60 3 cos sin
2

α = ⋅ ° −α = ⋅ ⋅ α − α

( )
1

22
p

1n 2 sin 1 1
3

⎧ ⎫= + ⋅ ⋅ α + +⎨ ⎬
⎩ ⎭

(7)

When measuring c1 and a one notices that within the error limits of ± 1 mm a equals c1.

Hence: p
1sin and n 1.53
2

α = = . (8)



Second method:

Place edge

hypotenuse

angle of 60

that prism 

the prism. T

The follow

htan c
tan60 3

β =

°= =

sin sin 6β =

p
1n
2

⎛= ⋅ ⎜
⎝

With the m

pn 1.53.=
15

 C of the prism on edge A of a sheet of paper and look along the prism

 at edge A so that your direction of sight B-A and the table surface form an

°. Then shift the prism over the edge of the paper into the position shown, such

edge C can be seen inside the prism collinear with edge A of the paper outside

he direction of sight must not be changed while the prism is being displaced.

ing equations apply:

2h
b

c sinh b 3
1 sin

⎫ ⋅ β⎪ = > = ⋅ =⎬
− β⎪⎭

(9)

p p

1 30
n 2 n

° ⋅ =
⋅

(10)

2c 3
b
⎞ +⎟
⎠

(11)

easured values c = 29 mm and b = 11.5 mm, it follows

(12)



b) Determination of the refractive index of the liquid by means of two prisms

Plac

Som

sligh

the 6

an il

the d

coin

Whi

L. In

illus
e the two prisms into a glass dish filled with water as shown in the figure above.

e water will rise between the hypotenuse surfaces. By pressing and moving the prisms

tly against each other the water can be made to cover the whole surface. Look over

0° edges of the prisms along a line of sight L (e.g. in the direction of a fixed point on

luminated wall). Turn the glass dish together with the two prisms in such a way that

ark shadow of total reflection which can be seen in the short face of prism 1

cides with the 60° edge of that prism (position shown in the figure below).

le turning the arrangement take care to keep the 60° edge (point K) on the line of sight

 that position measure the length b1 with a ruler (marking, reading). The figure below

trates the position described.
16
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If the refractive index of the prism is known (see part a) the refractive index of the liquid

may be calculated as follows:

22
1

asin
a b

α =
+

(13)

130 ; 30 60β = α − ° γ = ° −β = °−α       (14, 15)

1
p

2

sin n
sin

γ
=

γ
  refraction at the short face of prism 1. (16)

The angle of total reflection tδ  at the hypotenuse surface of prism 1 in the position

described is:

t 230
2
π
−δ = °− γ (17)

1
t

p

sin60 arcsin
n

⎛ ⎞γ
δ = °+ ⎜ ⎟

⎝ ⎠
(18)

From this we can easily obtain n1:

1
1 p t p

p

sinn n sin n sin 60 arcsin
n

⎧ ⎫γ
= ⋅ δ = ⋅ ° +⎨ ⎬

⎩ ⎭
(19)

Numerical example for water as liquid:

b1 = 1.9 cm; α = 55.84°; γ1 = 4.16°; δt = 62.77°; a = 2.8 cm; with np = 1.5 follows

n1= 1.33. (20)



18

Grading Scheme

Theoretical problems

Problem 1: Ascending moist art

part 1 2

part 2 2

part 3 2

part 4 2

part 5 2

10

Problem 2: Electron in a magnetic field

part 1 3

part 2 1

part 3 6

10

Problem 3: Infinite LC-grid

part a 4

part b 1

part c 1

part d 4

10

Problem 4: Refractive indices

part a, first method 5

part a, second method 5

part b 10

20
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THEORY 1
Spectroscopy of Particle Velocities

Basic Data
The absorption and emission of a photon is a reversible process. A good example is to be
found in the excitation of an atom from the ground state to a higher energy state and the at-
oms´ subsequent return to the ground state. In such a case we may detect the absorption of a
photon from the phenomenon of spontaneous emission or fluorescence. Some of the more
modern instrumentation make use of this principle to identify atoms, and also to measure or
calculate the value of the velocity in the velocity spectrum of the electron beam.

In an idealised experiment (see fig. 19.1) a single-charged ion travels in the opposite direction
to light from a laser source with velocity v. The wavelength of light from the laser source is
adjustable. An ion with velocity Zero can be excited to a higher energy state by the applica-
tion of laser light having a wavelength of  λ= 600 nm. If we excite a moving ion, our knowl-
edge on Dopplers´ effect tells us that we need to apply laser light of a wavelength other than
the value given above.

There is given a velocity spectrum embracing velocity magnitude from
s
m0v1  to

s
m000,6v 2  . (see fig. 19.1)
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Questions
1.1
1.1.1
What range of wavelength of the laser beam must be used to excite ions of all velocities in the
velocity spectrum given above ?

1.1.2
A rigorous analysis of the problem calls for application of the principle from the theory of
special relativity

c
v1

c
v1






Determine the error when the classical formula for Dopplers´ effect is used to solve the prob-
lem.

1.2
Assuming the ions are accelerated by a potential U before excited by the laser beam, deter-
mine the relationship between the width of the velocity spectrum of the ion beam and the ac-
celerating potential. Does the accelerating voltage increase or decrease the velocity spectrum
width ?

1.3
Each ion has the value

kg
sA104

m
e 6 

 , two energy levels corresponding to wavelength

nm600)1(  and wavelength nm10 3)1()2(  . Show that lights of the two wave-
lengths used to excite ions overlap when no accelerating potential is applied. Can accelerating
voltage be used to separate the two spectra of laser light used to excite ions so that they no
longer overlap ? If the answer is positive, calculate the minimum value of the voltage re-
quired.
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Solution

1.1
1.1.1
Let v be the velocity of the ion towards the laser source relative to the laser source,
ν́ the frequency of the laser light as observed by the observer moving with the ion (e.g. in the
frame in which the velocity of the ion is 0) and
ν the frequency of the laser light as observed by the observer at rest with respect to the laser
source.
Classical formula for Doppler´s effect is given as









c
v1 .............................................................................................................. (1)

Let ν* be the frequency absorbed by an ion (characteristic of individual ions) and
νL be the frequency of the laser light used to excite an ion at rest,
hence:
ν*  =  νL

For a moving ion, the frequency used to excite ions must be lower than ν*.
Let  νH be the frequency used to excite the moving ion.

When no accelerating voltage is applied

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH

νL

0

v = 6 . 103 m/s

ν*

ν*

λ1

λ2

νL < νH

νL  =  ν*

Calculation of frequency  νH absorbed by moving ions.









c
v1* L where  ν*  =  νH = 5 . 1014 Hz and v = 6 . 103 m/s .......... (2)

The difference in the values of the frequency absorbed by the stationary ion and the ion mov-
ing with the velocity v LH 
The difference in the values of the wavelengths absorbed by the stationary ion and the ion
moving with the velocity v HL 
(higher frequency implies shorter wavelength)
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HL
HL

cc







from (2)

**
c

c
1

*
c

HL 











 





In this case

nm1012m
105
106 3

14

3

HL







1.1.2
The formula for calculation of ν́ as observed by the observer moving towards light source
based on the principle of the theory of special relativity,

c
v1

c
v1






where v is the magnitude of the velocity of the observer towards the light source,
ν́ is the frequency absorbed by the ion moving with the velocity v towards the light source
(also observed by the observer moving with velocity v towards the laser source) and
ν  is the frequency of laser light as observed by an observer at rest.

(To put in a metaphoric way, the moving ion “sees” the laser light of frequency ν́ even
though the scientist who operates the laser source insists that he is sending a laser beam of
frequency ν).

..............
c
v

c
v1

c
v1...............

c
v

c
v1

c
v1 2

22

2

2































































































 ...........

c
v1

1
c2

v1
c
v1...........

c
v1

1
c
v1

c
v1 2

2
2
1

2

2

The second term in the brackets represents the error if the classical formula for Doppler´s ef-
fect is employed.

5102
c
v 

10
5

10

2

2

102
1021

104
2
1

c
v1

1
c2

v 





















The error in the application of classical formula for Doppler´s effect however is of the order
of the factor 2.10-10. This means that classical formula for Doppler´s effect can be used to
analyze the problem without loosing accuracy.
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1.2 When acceleration voltage is used

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH´

νL´

vH´

vL´

ν* = 5 . 1014 Hz

ν* = 5 . 1014 Hz

λH´

λL´

Lowest limit of the kinetic energy of ions   Uevm
2
1 2

L  and
m

Ue2vL




Highest limit of the kinetic energy of ions   Uevm
2
1vm

2
1 22

H 

and
m

Ue2vv 2
H




Spectrum width of velocity spectrum
m

Ue2
m

Ue2vvv 2
LH





 ................ (3)

(Note that the final velocity of accelerated ions is not the sum of v and
m

Ue2  as veloc-

ity changes with time).

In equation (3) if
m

Ue2  is negligibly small, the change in the width of the spectrum is

negligible, by the same token of argument if
m

Ue2  is large or approaches ∞ , the width 

of the spectrum of the light used in exciting the ions becomes increasingly narrow and ap-
proaches 0.

1.3
Given two energy levels of the ion, corresponding to wavelength λ(1) = 600 nm and
λ(2) = 600+10-2 nm
For the sake of simplicity, the following sign notations will be adopted:
The superscript in the bracket indicates energy level (1) or (2) as the case may be. The sign ´
above denotes the case when accelerating voltage is applied, and also the subscripts H and L
apply to absorbed frequencies (and also wavelengths) correspond to the high velocity and low
velocity ends of the velocity spectrum of the ion beam respectively.
The subscript following λ (or ν) can be either 1 or 2, with number 1 corresponding to lowest 
velocity of the ion and number 2 the highest velocity of the ion. When no accelerating voltage
is applied, the subscript 1 implies that minimum velocity of the ion is 0, and the highest veloc-
ity of the ion is 6000 m/s. If accelerating voltage U is applied, number 1 indicates that the
wavelength of laser light pertains to the ion of lowest velocity and number 2 indicates the ion
of the highest velocity.
Finally the sign  *  indicates the value of the wavelength (λ*)  or frequency (ν*)  absorbed by 
the ion (characteristic absorbed frequency).
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When no accelerating voltage is applied:
For the first energy level:

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH(1)

νL
(1)

0

v=6.103 m/s

ν(1)* = 5 . 1014 Hz

ν(1)* = 5 . 1014 Hz

λ1
(1)

λ2
(1)

νH(1)* = νL
(1)* = ν(1)* = 5 . 1014 Hz

Differences in frequencies of laser light used to excite ions = νH(1)–νL
(1)

Differences of wavelengths of laser light used to excite ions = λL
(1) - λH

(1)

nm012,0
105

6000
*

v
14)1(

L







For the second energy level:

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH(2)

νL
(2)

0

v = 6000 m/s

ν(2)* = 5 . 1014 Hz

ν(2)* = 5 . 1014 Hz

λH
(2)

λL
(2)

νH(2)* = νL
(2)* = ν(2)* = 5 . 1014 Hz

Differences in frequencies of laser light used to excite ions         νH(2)–νL
(2)

Differences in wavelengths of laser light used to excite ions        λL
(2)–λH

(2)

This gives nm012,0
105

6000
14 



Hence the spectra of laser light (ab-
sorption spectrum) used to excite an
ion at two energy levels overlap as
shown in fig. 19.4.
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When accelerating voltage is applied:
Let  λH

(1)´ and λL
(1)´ be the range of the wavelengths used to excite ions in the first energy

level, when accelerating voltage is applied. (Note the prime sign to denote the situation in
which the accelerating voltage is used), and let  λH

(2)´ and λL
(2)´ represent the range of the

wavelengths used to excite ions in the second energy level also when an accelerating voltage
is applied.

Condition for the two spectra not to overlap:





 )1(
L

)2(
H (see fig. 19.4) ..................................................................................... (4)

(Keep in mind that lower energy means longer wavelengths and vice versa).

From condition (3):
*

v
HL 
 .................................................................... (5)

The meanings of this equation is if the velocity of the ion is v, the wavelength which the ion
“sees” is λL, when λH is the wavelength which the ion of zero-velocity “sees”.
Equation (5) may be rewritten in the context of the applications of accelerating voltage in or-
der for the two spectra of laser light will not overlap as follows:

*
v)N(

H
)N(

L 








 where N is the order of the energy level ............................. (6)

The subscript L relates λ to lowest velocity of the ion which “sees” frequency ν*. The lowest 

velocity in this case is
m

Ue2  and the subscript H relates λ to the highest velocity of the 

ion, in this case
m

Ue2v 2 
 .

Equation (6) will be used to calculate
 width of velocity spectrum of the ion accelerated by voltage U
 potential U which results in condition given by (4)

Let us take up the second energy level (lower energy level of the two ones) of the ion first:

*
v)2(

H
)2(

L 





 .............................................................................................................. (7)

substitute

m
Ue2v 



λH
(1) = 600 + 10-3 nm

v* = 5 . 1014 Hz
v = 0 m/s

  m
105
m

Ue2

10001,0600 14
9)2(

H 






  ...................................................................... (8)
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Considering the first energy level of the ion

*
v)1(

H
)1(

L 





 ................................................................................................................ (9)

In this case

m
Ue2vv 2 



ν*= 5 . 1014 Hz
v = 6000 m/s
λH

(1) = 600 . 10-9 m

m
105

m
Ue2v

10600 14

2

9)1(
L 







  ............................................................................. (10)

Substitute 
 )2(

H from (8) and 
)1(

L from (10) in (4) one gets

  14

2

9
14

9

105
m

Ue2v
10600

105
m

Ue2

10001,0600










 

1414

2

105
m

Ue2

105
m

Ue2v
500













U1042U10421036500 666 

assume that U is of the order of 100 and over,

then 500U108
U4

91U108 66 










500109
U2

1 3 


324U2 

V162U

The minimum value of accelerating voltage to avoid overlapping of absorption
spectra is approximately 162 V
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THEORY 2
Maxwell´s Wheel

Introduction
A cylindrical wheel of uniform density, having the mass M = 0,40 kg, the radius R = 0,060 m
and the thickness d = 0,010 m is suspended by means of two light strings of the same length
from the ceiling. Each string is wound around the axle of the wheel. Like the strings, the mass
of the axle is negligible. When the wheel is turned manually, the strings are wound up until
the centre of mass is raised 1,0 m above the floor. If the wheel is allowed to move downward
vertically under the pulling force of the gravity, the strings are unwound to the full length of
the strings and the wheel reaches the lowest point. The strings then begin to wound in the op-
posite sense resulting in the wheel being raised upwards.

Analyze and answer the following questions, assuming that the strings are in vertical position
and the points where the strings touch the axle are directly below their respective suspending
points (see fig. 19.5).
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Questions
2.1
Determine the angular speed of the wheel when the centre of mass of the wheel covers the
vertical distance s.

2.2
Determine the kinetic energy of the linear motion of the centre of mass Er after the wheel
travels a distance s = 0,50 m, and calculate the ratio between Er and the energy in any other
form in this problem up to this point.
Radius of the axle = 0,0030 m

2.3
Determine the tension in the string while the wheel is moving downward.

2.4
Calculate the angular speed ώ as a function of the angleΦ when the strings begin to unwind 
themselves in opposite sense as depicted in fig. 19.6.
Sketch a graph of variables which describe the motion (in cartesian system which suits the
problem) and also the speed of the centre of mass as a function of Φ.

Fig. 19.6

2.5
If the string can withstand a maximum tension Tm = 10 N, find the maximum length of the
string which may be unwound without breaking by the wheel.
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Solution

2.1
conservation of energy: 2

AI2
1sgM  .......................................................... (1)

where ω is the angular speed of the wheel and  IA is the moment of inertia about the axis
through A.

Note: If we would take the moment of inertia about S instead of A we would have
22

S vm
2
1I

2
1sgM 

where v is the speed of the centre of mass along the vertical.
This equation is the same as the above one in meanings since

2
SA rMII  and 2

S RMI 

From (1) we get
AI

sgM2 


substitute 22
A RMrM

2
1I 

2
Rr

sg2
2

2 




Putting in numbers we get
s

rad4,72
1036

2
1109

50,081,92
46









2.2
Kinetic energy of linear motion of the centre of mass of the wheel is

J1076,91094,7240,0
2
1rM

2
1vM

2
1E 362222

T
 

Potential energy of the wheel
J962,150,081,940,0sgMEP 

Rotational kinetic energy of the wheel

J899,14,721081,140,0
2
1I

2
1E 232

SR  

3
3

R

T 1013,5
899,1

1076,9
E
E 
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2.3
Let

2
T be the tension in each string.

Torque τ  which causes the rotation is given by     AIrgM

where α is the angular acceleration    
AI

rgM 


The equation of the motion of the wheel is M.g–T = M.a

Substituting  a = α. r and 22
A RMrM

2
1I  we get

















 22

2

22

2

r2R
r21gM

rMRM
2
1

rgMgMT

Thus for the tension
2
T in each string we get

N96,1
1092106,3

1092
1

2
81,940,0

r2R
r2

1
2

gM
2
T

63

6

22

2






























 



N96,1
2
T



2.4

After the whole length of the strings is
completely unwound, the wheel con-
tinues to rotate about A (which is at
rest for some interval to be discussed).
Let be the angular speed of the cen-
tre of mass about the axis through A.
The equation of the rotational motion
of the wheel about A may be written as

 
AI ,

where τ is the torque about A, IA is the
moment of inertia about the axis A and
is the angular acceleration about the
axis through A.
Hence  

AIcosrgM

and
AI
cosrgM 



Multiplied with gives:

AI
cosrgM 




 or 
dt
d

I
cosrgM

dt
d

2
1

A

2
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this gives

 C
I

sinrgM2

A

2



 [C = arbitrary constant]

If  Φ= 0 [s = H] than is 

That gives
AI

HgM2 
 and therefore

AI
HgM2C 



Putting these results into the equation above one gets












H
r

1
I

sinHgM2

A



For
H
r <<< 1 we get:

A
MAX I

HgM2 


and

A
MAX I

HgM2rrv 


Component of the displacement
along x-axis is x = r.sinΦ-r
along y-axis is y = r.cosΦ-r
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2.5
Maximum tension in each string occurs MAX

The equation of the motion is   rMgMT 2
MAXMAX 

Putting in T = 20 N and
A

MAX I
sgM2 

 (where s is the maximum length of the

strings supporting the wheel without breaking) and 







 2

2

A r
2

R
MI the numbers one

gets:












 



64

3

10921036
s1034

181,940,020 This gives: s = 1,24 m

The maximum length of the strings which support maximum tension without breaking is

1,24 m .
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THEORY 3
Recombination of Positive and Negative Ions in Ionized Gas

Introduction
A gas consists of positive ions of some element (at high temperature) and electrons. The posi-
tive ion belongs to an atom of unknown mass number Z. It is known that this ion has only one
electron in the shell (orbit).
Let this ion be represented by the symbol A(Z-1)+

Constants:

electric field constant
mV
sA1085,8 12

O 


 

elementary charge sA10602,1e 19  

mJ10037,2
4

eq 28

O

2
2 


 

Planck´s constant sJ10054,1 34  

(rest) mass of an electron kg10108,9m 31
e



Bohr´s atomic radius m1092,5
qm

r 11
2B







Rydberg´s energy J10180,2
r2

qE 18

B

2

R





(rest) mass of a proton J10503,1cm 102
P



Questions:
3.1
Assume that the ion which has just one electron left the shell.
A(Z-1)+ is in the ground state.
In the lowest energy state, the square of the average distance of the electron from the nucleus
or r2 with components along x-, y- and z-axis being (Δx)2, (Δy)2 and (Δz)2 respectively and

     2222
O zyxr  and also the square of the average momentum by

     2z
2

y
2

x
2
O pppp  , whereas

x2
p x 


 ,

y2
p y 


 and

z2
p z 


 .

Write inequality involving   2O
2

O rp  in a complete form.
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3.2
The ion represented by A(Z-1)+ may capture an additional electron and consequently emits a
photon.
Write down an equation which is to be used for calculation the frequency of an emitted pho-
ton.

3.3
Calculate the energy of the ion A(Z-1)+ using the value of the lowest energy. The calculation
should be approximated based on the following principles:

3.3.A

The potential energy of the ion should be expressed in terms of the average value of
r
1 .

(ie.
Or
1 ; r0 is given in the problem).

3.3.B
In calculating the kinetic energy of the ion, use the average value of the square of the momen-
tum given in 3.1 after being simplified by    22

O
2

O rp 

3.4
Calculate the energy of the ion A(Z-2)+ taken to be in the ground state, using the same principle
as the calculation of the energy of A(Z-1)+ . Given the average distance of each of the two elec-
trons in the outermost shell (same as r0 given in 3.3) denoted by r1 and r2, assume the average
distance between the two electrons is given by r1+r2 and the average value of the square of the
momentum of each electron obeys the principle of uncertainty ie.

22
1

2
1 rp  and 22

2
2
2 rp 

hint: Make use of the information that in the ground state r1 = r2

3.5
Consider in particular the ion A(Z-2)+ is at rest in the ground state when capturing an additional
electron and the captured electron is also at rest prior to the capturing. Determine the numeri-
cal value of Z, if the frequency of the emitted photon accompanying electron capturing is
2,057 . 1017 rad/s. Identify the element which gives rise to the ion.
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Solution

3.1
     2222

0 zyxr 

     2z
2

y
2

x
2
0 pppp 

since

x2
p x 




y2
p y 




z2
p z 




gives

     















 222

2
2
0 z

1
y
1

x
1

4
p



and

     
3
r

zyx
2
0222 

thus 22
0

2
0 4

9rp 

3.2
ev


...... speed of the external electron before the capture

iV


....... speed of A(Z-1)+ before capturing

fV


...... speed of A(Z-1)+ after capturing

En = h.ν  ......  energy of the emitted photon

conservation of energy:

         )2Z(2
fe

)1Z(2
ie

2
ee AEVm2M

2
1AEVmM

2
1vm

2
1

where E[A(Z-1)+) and E[A(Z-2)+] denotes the energy of the electron in the outermost shell of
ions A(Z-1)+ and A(Z-2)+ respectively.

conservation of momentum:

    1
c

hVm2MVmMvm feiee







where 1


is the unit vector pointing in the direction of the motion of the emitted photon.
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3.3
Determination of the energy of A(Z-1)+ :

potential energy =
0

2

00

2

r
qZ

r4
eZ 







kinetic energy =
m2

p2



If the motion of the electrons is confined within the x-y-plane, principles of uncertainty in 3.1
can be written as

   222
0 yxr 

   2y
2

x
2
0 ppp 

    2
0

2

2
0

2
0

2

22

2
2
0 r

4
4r

2
r
2

4y
1

x
1

4
p 

























thus
22

0
2
0 rp 

 
0

2

ee

2

0

2

e

2
0)1Z(

r
qZ

rm2r
qZ

m2
p

AE 









 

Energy minimum exists, when 0
dr
dE

0

 .

Hence

0
r
qZ

rmdr
dE

2
0

2

3
ee

2

0










this gives 2
e

2

0

mqZ
r
1






hence

  2
R

B

2222
e

2
e

2
2

2

e
2

e

2
)1Z( ZE

r2
ZqqZ

2
mmqZ

qZ
mqZ

m2
AE 











 











 








   2
R

1Z ZEAE 
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3.4
In the case of A(Z-1)+ ion captures a second electron

potential energy of both electrons =
0

2

r
qZ2 



kinetic energy of the two electrons = 2
0e

22

rmm2
p2









potential energy due to interaction between the two electrons =
0

2

21

2

r2
q

rr
q







 
0

2

2
0

2

2
0e

2
)2Z(

r2
q

r
qZ2

rm
AE








 

total energy is lowest when 0
dr
dE

0



hence

2
0

2

3
0

2

3
0e

2

r2
q

r
qZ2

rm
20













hence







 






 





4
1Z

r
1

2
1Z2

2
mq

r
1

B
2

e
2

0 

 











 








 














2
2
1Z2mq

2
1Z2q

2
mq

m
AE

e
22

2

2
e

2

e

2
)2Z(

  2

2
2

2

2
2

e

2
2

e)2Z( 4
1Zq

4
1Zqm

2
1Z2q

4
m

AE








 














 


























 



this gives

 
2

R
)2Z(

4
1ZE2AE 
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3.5
The ion A(Z-1)+ is at rest when it captures the second electron also at rest before capturing.
From the information provided in the problem, the frequency of the photon emitted is given
by

Hz
2

10057,2
2

17










The energy equation can be simplified to       hAEAE )2Z()1Z( 
that is



















  

2

R
2

R 4
1ZE2ZE

putting in known numbers follows

1734
2

218 10607,21005,1
4
1Z2Z10180,2 


















  

this gives
07,12ZZ2 

with the physical sensuous result 1,4
2

5111Z 




This implies Z = 4, and that means Beryllium
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EEXXPPEERRIIMMEENNTTSS

EXPERIMENT 1: Polarized Light

General Information
Equipment:

 one electric tungsten bulb made of frosedt-surface glass complete with mounting
stand, 1 set

 3 wooden clamps, each of which contains a slit for light experiment
 2 glass plates; one of which is rectangular and the other one is square-shaped
 1 polaroid sheet (circular-shaped)
 1 red film or filter
 1 roll self adhesive tape
 6 pieces of self-adhesive labelling tape
 1 cellophane sheet
 1 sheet of black paper
 1 drawing triangle with a handle
 1 unerasable luminocolour pen 312, extra fine and black colour
 1 lead pencil type F
 1 lead pencil type H
 1 pencil sharpener
 1 eraser
 1 pair of scissors

IImmppoorrttaanntt IInnssttrruuccttiioonnss ttoo bbee FFoolllloowweedd
1. There are 4 pieces of labelling tape coded for each contestant. Stick the tape one each

on the instrument marked with the sign #. Having done this, the contestant may pro-
ceed to perform the experiment to answer the questions.

2. Cutting, etching, scraping or folding the polaroid is strictly forbidden.
3. If marking is to be made on the polaroid, use the lumino-colour pen provided and put

the cap back in place after finishing.
4. When marking is to be made on white paper sheet, use the white tape.
5. Use lead pencils to draw or sketch a graph.
6. Black paper may be cut into pieces for use in the experiment, but the best way of using

the black paper is to roll it into a cylinder as to form a shield around the electric bulb.
An aperture of proper size may be cut into the side of the cylinder to form an outlet for
light used in the experiment.

7. Red piece of paper is to be folded to form a double layer.

The following four questions will be answered by performing the experiment:
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Questions
1.1
1.1.a
Locate the axis of the light transmission of the polaroid film. This may be done by observing
light reflected from the surface of the rectangular glass plate provided. (Light transmitting
axis is the direction of vibration of the electric field vector of light wave transmitted through
the polaroid). Draw a straight line along the light transmission axis as exactly as possible on
the polaroid film. (#)
1.1.b
Set up the apparatus on the graph paper for the experiment to determine the refractive index
of the glass plate for white light.
When unpolarized light is reflected at the glass plate, reflected light is partially polarized.
Polarization of the reflected light is a maximum if the tangens of incident angle is equal to the
refractive index of the glass plate, or:  tan α  =  n.
Draw lines or dots that are related to the determination of the refractive index on the graph
paper. (#)

1.2
Assemble a polariscope to observe birefringence in birefringent glass plate when light is nor-
mally incident on the plastic sheet and the glass plates.
A birefringent object is the object which splits light into two components, with the electric
field vectors of the two components perpendicular to each other. The two directions of the
electric field vectors are known as birefringent axes characteristic of birefringent material.
These two components of light travel with different velocity.
Draw a simple sketch depicting design and functions of the polariscope assembled.
Insert a sheet of clear cellophane in the path of light in the polariscope. Draw lines to indicate
birefringent axes (#). Comment briefly but concisely on what is observed, and describe how
berefringent axes are located.

1.3
1.3.a
Stick 10 layers of self-adhesive tape provided on the glass plate as shown below. Make sure
that each layer recedes in equal steps.

G square glass plate as a
substrate for the cellophane
layers
T 10 layers of cellophane
sheet
S steps about 3 mm up to 4
mm wide

Insert the assembled square plate into the path of light in the polariscope. Describe conditions
for observing colours. How can these colours be changed ? Comment on the observations
from this experiment.
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1.3.b
Prepare monochromatic red light by placing doubly-folded red plastic sheet in the path of
white light. Mark on the assembled square plate to show the steps which allow the determina-
tion of the difference of the optical paths of the two components of light from berefringent
phenomenon, described under 1.2 (#).
Estimate the difference of the optical paths from two consecutive steps.

1.4
1.4.a
With the polariscope assembled, examine the central part of the drawing triangle provided.
Describe relevant optical properties of the drawing triangle pertaining to birefringence.
1.4.b
Comment on the results observed. Draw conclusions about the physical properties of the ma-
terial of which the triangle is made.

Additional Cautions
Be sure that the following items affixed with the coded labels provided accompany the report.

1. (#) Polarized film with the position of the transmission axis clearly marked.
2. (#) Graph paper with lines and dots denoting experimental setup for determining re-

fractive index.
3. (#) Sheet of cellophane paper with marking indicating the positions of birefringent

axis.
4. (#) Square glass plate affixed with self-adhesive tape with markings to indicate the po-

sitions of birefringent axis.
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SSoolluuttiioonn

In this experiment the results from one experimental stage are used to solve problems in the
following experimental stages. Without actually performing all parts of the experiment, solu-
tion cannot be meaningfully discussed.
It suffices that some transparent crystals are anisotropic, meaning their optical properties vary
with the direction. Crystals which have this property are said to be doubly refracting or ex-
hibit birefringece.
This phenomenon can be understood on the basis of wave theory. When a wavefront enters a
birefringent material, two sets of Huygens wavelets propagate from every point of the enter-
ing wavefront causing the incident light to split into two components of two different veloci-
ties. In some crystals there is a particular direction (or rather a set of parallel directions) in
which the velocities of the two components are the same. This direction is known as optic
axes. the former is said to be uniaxial, and the latter biaxial.
If a plane polarized light (which may be white light or monochromatic light) is allowed to
enter a uniaxial birefringed material, with its plane of polarization making some angle, say
45° with the optic axis, the incident light is splitted into two components (ordinary and ex-
traordinary) travelling with two different velocities. Because of different velocities their
phases different.
Upon emerging from the crystal, the two components recombine to from a resultant wave.
The phase difference between the two components causes the resultant wave to be either line-
arly or circularly or elliptical polarized depending on the phase difference between the two
components. The type of polarization can be determined by means of an analyser which is a
second polaroid sheet provided for this experiment.
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EXPERIMENT 2: Electron Tube

Introduction
Free electrons in a metal may be thought of as being “electron gas” confined in potential or 
energy walls. Under normal conditions or even when a voltage is applied near the surface of
the metal, these electrons cannot leave the potential walls (see fig. 19.11)
If however the metal or the electron gas is heated, the electrons have enough thermal energy
(kinetic energy) to overcome the energy barrier W (W is known as “work function”). If a 
voltage is applied across the metal and the anode, these thermally activated electrons may
reach the anode.
The number of electrons arriving at the anode per unit time depends on the nature of the cath-
ode and the temperature, i.e. all electrons freed from the potential wall will reach the anode no
longer increase with applied voltage (see fig. 19.11)
The saturated current corresponding to the number of thermally activated electrons freed from
the metal surface per unit time obeys what is generally known as Richardson´s equation i.e.

Tk
W

2
B eTCI 




where
C is a constant
T temperature of the cathode in Kelvin
k Boltzmann´s constant = 1,38 . 10-23 J/K

Determine the value of the work function W of tungsten metal in the form of heating filament
of the vacuum tube provided.
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The following items of equipment are placed at the disposal of the contestants:
 Electron tube AZ 41 which is a high-vacuum, full-wave rectifying diode. The cathode

is made from a coated tungsten filament the work function of which is to be ascer-
tained. According to the manual prepared by its manufacturer, no more than 4 V
should be used when applying heating current to the cathode. Since the tube has two
anodes, it is most desirable to have them connected for all measurements. The diagram
in fig. 19.14 is a guide to identifying the anodes and the cathode.

 multimeter 1 unit, internal resistance for voltage measurement: 10MΩ
 battery 1,5 V (together with a spare)
 battery 9 V; four units can be connected in series as shown in fig. 19.15
 connectors
 resistors; each of which has specifications as follows:

1000Ω ± 2% (brown, black, black, brown, brown, red)
100Ω ± 2% (brown, black, black, black, brown, red)
47,5Ω ± 1% (yellow, violet, green, gold, brown)

 resistors; 4 units, each of which has the resistance of about 1Ω and coded
 connecting wires
 screw driver
 graph paper (1 sheet)
 graph of specific resistance of tungsten as a function of temperature; 1 sheet
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Solve the following problems:

2.1
Determine the resistance of 4 numerically-coded resistors. Under no circumstances must the
multimeter be used as an ohmmeter.

2.2
Determine the saturated current for 4 different values of cathode temperatures, using 1,5 V
battery to heat the cathode filament. A constant value of voltage between 35 V –40 V be-
tween the anode and the cathode is sufficient to produce a saturated current. Obtain this value
of voltage by connecting the four 9 V batteries in series. Describe how the different values of
temperature are determined.

2.3
Determine the value of W. Explain the procedures used.
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SSoolluuttiioonn

2.1
Connect the circuit as shown in fig. 19.17

RX .... resistance to be determined
R ...... known value of resistance
Measure potential difference across RX and R.
Chose the value of R which gives comparable
value of potential difference across RX.
In this particular case R = 47,5Ω

V
V

R
R XX 

where VX and V are values of potential differences across RX and R respectively.
RX can be calculated from the above equation.
(The error in RX depends on the errors of VX and VR).

2.2
Connect the circuit as shown in fig. 19.18

 Begin the experiment by measuring the
resistance R0 of the tungsten cathode
when there is no heating current

 Add resistor R = 1000Ω into the cath-
ode circuit, determine resistance R1 of
the tungsten cathode, calculate the resis-
tance of the current-carrying cathode.

 Repeat the experiment, using the resistor
R = 100Ω in the cathode circuit, deter-
mine resistance R2 of tungsten cathode with heating current in the circuit.

 Repeat the experiment, using the resistor R = 47,5Ω in the cathode circuit, determine
resistance R3 of tungsten cathode with heating current in the circuit.

 Plot a graph of
0

3

0

2

0

1

R
R

and
R
R

,
R
R as a function of temperature, put the value of

1
R
R

0

0  to coincide with room temperature i.e. 18°C approximately and draw the re-

maining part of the graph parallel to the graph of specific resistance as a function of
temperature provided in the problem. From the graph, read values of the temperature
of the cathode T1, T2 and T3 in Kelvin.
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From the equation Tk
W

2 eTCI 




we get Cln
Tk

W
T
Iln 2 




Plot a graph of 2T
Iln against

T
1 .

The curve is linear. Determine the slope m from this graph.
k
Wm 

Work function W can be calculated using known values of m and k (given in the problem).

Error in W depends on the error of T which in turn depends on the error of measured R.
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Abstract 
 
The article contains problems given at the 20th International Physics Olympiad (1989) 

and their solutions. The 20th IPhO was the third IPhO organized in Warsaw, Poland. 
 

Logo 
 

 The emblem of the XX International Physics 
Olympiad contains a picture that is a historical record of 
the first hypernuclear event observed and interpreted in 
Warsaw by M. Danysz and J. Pniewski3

 In the event observed above the hyperon Λ, bound with nucleon, decays like a free 
particle through a week (slow) process only. This fact strongly suggested the existence of a 
new quantum number that could explain suppression of the decay, even in presence of 
nucleons. Indeed, this was one of the observations that, 30 months later, led to the concept of 
strangeness.  

. The collision 
of a high-energy particle with a heavy nucleus was 
registered in nuclear emulsion. Tracks of the secondary 
particles emitted in the event, seen in the picture (upper 
star), consist of tracks due to fast pions (“thin tracks”) 
and to much slower fragments of the target nucleus 
(“black tracks”). The “black track” connecting the upper 
star (greater) with the lower star (smaller) in the figure 
is due to a hypernuclear fragment, in this case due to a 
part of the primary nucleus containing an unstable 
hyperon Λ instead of a nucleon. Hyperfragments 

(hypernuclei) are a new kind of matter in which the nuclei contain not only protons and 
neutrons but also some other heavy particles. 

 
Introduction 

 
Theoretical problems (including solutions and marking schemes) were prepared 

especially for the 20th IPhO by Waldemar Gorzkowski. The experimental problem (including 
the solution and marking scheme) was prepared especially for this Olympiad by Andrzej 
Kotlicki. The problems were refereed independently (and many times) by at least two persons 

 
1 This article has been sent for publication in Physics Competitions in October 2003 
2 e-mail: gorzk@ifpan.edu.pl 
3 M. Danysz and J. Pniewski, Bull. Acad. Polon. Sci., 3(1) 42 (1952) and Phil. Mag., 44, 348 (1953). Later the 
same physicists, Danysz and Pniewski, discovered the first case of a nucleus with two hyperons (double 
hyperfragment). 



after any change was made in the text to avoid unexpected difficulties at the competition. This 
work was done by: 

 
First Problem: 
Andrzej Szadkowski, Andrzej Szymacha, Włodzimierz Ungier 

Second Problem: 
Andrzej Szadkowski, Andrzej Szymacha, Włodzimierz Ungier, Stanisław Woronowicz 

Third Problem: 
Andrzej Rajca, Andrzej Szymacha, Włodzimierz Ungier 

Experimental Problem: 
Krzysztof Korona, Anna Lipniacka, Jerzy Łusakowski, Bruno Sikora 
 
Several English versions of the texts of the problems were given to the English-

speaking students. As far as I know it happened for the first time (at present it is typical). The 
original English version was accepted (as a version for the students) by the leaders of the 
Australian delegation only. The other English-speaking delegations translated the English 
originals into English used in their countries. The net result was that there were at least four 
English versions. Of course, physics contained in them was exactly the same, while wording 
and spelling were somewhat different (the difference, however, were not too great).  

This article is based on the materials quoted at the end of the article and on personal 
notes of the author.  

 
THEORETICAL PROBLEMS 

 
Problem 1 
 
Consider two liquids A and B insoluble in each other. The pressures pi (i = A or B) of 

their saturated vapors obey, to a good approximation, the formula: 
 

i
i

oi T
pp βα

+=)/ln( ;     i = A or B, 

 
where po denotes the normal atmospheric pressure, T – the absolute temperature of the vapor, 
and iα  and iβ  (i = A or B) – certain constants depending on the liquid. (The symbol ln 
denotes the natural logarithm, i.e. logarithm with base e = 2.7182818…) 

 The values of the ratio pi/p0 for the liquids A and B at the temperature 40°C and 90°C 
are given in Tab. 1.1. 

Table 1.1 

t [°C] pi/p0 
i = A i = B 

40 0.284 0.07278 
90 1.476 0.6918 

The errors of these values are negligible. 

A. Determine the boiling temperatures of the liquids A and B under the pressure p0. 



B. The liquids A and B were poured into a vessel in which the layers shown in Fig. 1.1 
were formed. The surface of the liquid B has been covered with a thin layer of a non-volatile 
liquid C, which is insoluble in the liquids A and B and vice versa, thereby preventing any free 
evaporation from the upper surface of the liquid B, The ratio of molecular masses of the 
liquids A and B (in the gaseous phase) is: 

 
.8/ == BA µµγ  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.1                                                                               Fig. 1.2 

 
The masses of the liquids A and B were initially the same, each equal to m = 100g. The 

heights of the layers of the liquids in the vessel and the densities of the liquids are small 
enough to make the assumption that the pressure in any point in the vessel is practically equal 
to the normal atmospheric pressure p0. 

The system of liquids in the vessel is slowly, but continuously and uniformly, heated. It 
was established that the temperature t of the liquids changed with time τ as shown 
schematically in the Fig. 1.2. 

Determine the temperatures t1 and t2 corresponding to the horizontal parts of the 
diagram and the masses of the liquids A and B at the time τ1. The temperatures should be 
rounded to the nearest degree (in °C) and the masses of the liquids should be determined to 
one-tenth of gram. 

REMARK: Assume that the vapors of the liquids, to a good approximation, 

(1) obey the Dalton law stating that the pressure of a mixture of gases is equal to 
the sum of the partial pressures of the gases forming the mixture and 

(2) can be treated as perfect gases up to the pressures corresponding to the 
saturated vapors. 

 
Solution 
 
PART A 

The liquid boils when the pressure of its saturated vapor is equal to the external pressure. 
Thus, in order to find the boiling temperature of the liquid i (i - A or B), one should determine 
such a temperature Tbi (or tbi) for which pi/p0 = 1. 

Then 0)/ln( 0 =ppi , and we have: 

i

i
biT

β
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t1 

τ τ1 
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t 
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p0 
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p0 p0 



The coefficients iα  and iβ  are not given explicitly. However, they can be calculated 
from the formula given in the text of the problem. For this purpose one should make use of 
the numerical data given in the Tab. 1.1.  

For the liquid A, we have: 

.
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After subtraction of these equations, we get: 
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K)15.27340(
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Thus, the boiling temperature of the liquid A is equal to 

bAT = 3748.49K/10.711 ≈  349.95 K. 

In the Celsius scale the boiling temperature of the liquid A is 

=bAt (349.95 – 273.15)°C = 76.80°C ≈  77°C. 

For the liquid B, in the same way, we obtain: 

≈Bα  -5121.64 K, 
≈Bβ 13.735, 
≈bBT 372-89 K, 
≈bBt 99.74°C ≈100°C. 

PART B 

As the liquids are in thermal contact with each other, their temperatures increase in time 
in the same way. 

At the beginning of the heating, what corresponds to the left sloped part of the diagram, 
no evaporation can occur. The free evaporation from the upper surface of the liquid B cannot 
occur - it is impossible due to the layer of the non-volatile liquid C. The evaporation from the 
inside of the system is considered below. 



Let us consider a bubble formed in the liquid A or in the liquid B or on the surface that 
separates these liquids. Such a bubble can be formed due to fluctuations or for many other 
reasons, which will not be analyzed here. 

The bubble can get out of the system only when the pressure inside it equals to the 
external pressure 0p  (or when it is a little bit higher than 0p ). Otherwise, the bubble will 
collapse. 

The pressure inside the bubble formed in the volume of the liquid A or in the volume of 
the liquid B equals to the pressure of the saturated vapor of the liquid A or B, respectively. 
However, the pressure inside the bubble formed on the surface separating the liquids A and B 
is equal to the sum of the pressures of the saturated vapors of both these liquids, as then the 
bubble is in a contact with the liquids A and B at the same time. In the case considered the 
pressure inside the bubble is greater than the pressures of the saturated vapors of each of the 
liquids A and B (at the same temperature). 

Therefore, when the system is heated, the pressure 0p  is reached first in the bubbles that 
were formed on the surface separating the liquids. Thus, the temperature 1t corresponds to a 
kind of common boiling of both liquids that occurs in the region of their direct contact. The 
temperature 1t  is for sure lower than the boiling temperatures of the liquids A and B as then 
the pressures of the saturated vapors of the liquids A and B are less then 0p  (their sum equals 
to 0p  and each of them is greater than zero). 

In order to determine the value of 1t  with required accuracy, we can calculate the values 
of the sum of the saturated vapors of the liquids A and B for several values of the temperature 
t and look when one gets the value 0p . 

From the formula given in the text of the problem, we have: 
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Thus, we have to calculate the values of the following function: 

B
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(where 15.2730 =t °C) and to determine the temperature 1tt = , at which )(ty  equals to 1. 
When calculating the values of the function )(ty  we can divide the intervals of the 
temperatures t  by 2 (approximately) and look whether the results are greater or less than 1.  

We have: 



Table 1.2 

t  )(ty  

40°C < 1 (see Tab. 1.1) 

77°C > 1 (as 1t  is less than bAt ) 

59°C 0.749 < 1 

70°C 1.113 > 1 

66°C 0.966 < 1 

67°C 1.001 > 1 

66.5°C 0.983 < 1 

Therefore, ≈1t  67° C (with required accuracy). 

Now we calculate the pressures of the saturated vapors of the liquids A and B at the 
temperature ≈1t  67°C, i.e. the pressures of the saturated vapors of the liquids A and B in each 
bubble formed on the surface separating the liquids. From the equations (1) and (2), we get: 

≈Ap  0.734 0p , 
≈Bp  0.267 0p , 

)001.1( 00 pppp BA ≈=+ . 

These pressures depend only on the temperature and, therefore, they remain constant 
during the motion of the bubbles through the liquid B. The volume of the bubbles during this 
motion also cannot be changed without violation of the relation 0ppp BA =+ . It follows from 
the above remarks that the mass ratio of the saturated vapors of the liquids A and B in each 
bubble is the same. This conclusion remains valid as long as both liquids are in the system. 
After total evaporation of one of the liquids the temperature of the system will increase again 
(second sloped part of the diagram). Then, however, the mass of the system remains constant 
until the temperature reaches the value 2t  at which the boiling of the liquid (remained in the 
vessel) starts. Therefore, the temperature 2t  (the higher horizontal part of the diagram) 
corresponds to the boiling of the liquid remained in the vessel. 

The mass ratio BA mm /  of the saturated vapors of the liquids A and B in each bubble 
leaving the system at the temperature 1t  is equal to the ratio of the densities of these vapors 

BA ρρ / . According to the assumption 2, stating that the vapors can be treated as ideal gases, 
the last ratio equals to the ratio of the products of the pressures of the saturated vapors by the 
molecular masses: 

µ
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Thus, 

0.22≈
B

A

m
m . 

We see that the liquid A evaporates 22 times faster than the liquid B. The evaporation of 
100 g of the liquid A during the “surface boiling” at the temperature 1t  is associated with the 



evaporation of 100 g / 22 ≈4.5 g of the liquid B. Thus, at the time 1τ  the vessel contains 95.5 
g of the liquid B (and no liquid A). The temperature 2t  is equal to the boiling temperature of 
the liquid B: =2t 100°C. 

 
Marking Scheme 
 

1. physical condition for boiling      1 point 
2. boiling temperature of the liquid A (numerical value)   1 point 
3. boiling temperature of the liquid B (numerical value)   1 point 
4. analysis of the phenomena at the temperature 1t     3 points 
5. numerical value of 1t         1 point 
6. numerical value of the mass ratio of the saturated vapors in the bubble 1 point 
7. masses of the liquids at the time 1τ       1 point 
8. determination of the temperature 2t       1 point 

REMARK: As the sum of the logarithms is not equal to the logarithm of the sum, the 
formula given in the text of the problem should not be applied to the mixture of the saturated 
vapors in the bubbles formed on the surface separating the liquids. However, the numerical 
data have been chosen in such a way that even such incorrect solution of the problem gives 
the correct value of the temperature 1t  (within required accuracy). The purpose of that was to 
allow the pupils to solve the part B of the problem even if they determined the temperature 1t  
in a wrong way. Of course, one cannot receive any points for an incorrect determination of the 
temperature 1t  even if its numerical value is correct. 

 
Typical mistakes in the pupils' solutions 

 
Nobody has received the maximum possible number of points for this problem, 

although several solutions came close. Only two participants tried to analyze proportion of 
pressures of the vapors during the upward movement of the bubble trough the liquid B. Part 
of the students confused Celsius degrees with Kelvins. Many participants did not take into 
account the boiling on the surface separating the liquids A and B, although this effect was the 
essence of the problem. Part of the students, who did notice this effect, assumed a priori that 
the liquid with lower boiling temperature "must" be the first to evaporate. In general, this need 
not be true: if γ were, for example, 1/8 instead 8, then liquid A rather than B would remain in 
the vessel. As regards the boiling temperatures, practically nobody had any essential 
difficulties. 

 
Problem 2 
 
 Three non-collinear points P1, P2 and P3, with known masses m1, m2 and m3, interact 

with one another through their mutual gravitational forces only; they are isolated in free space 
and do not interact with any other bodies. Let σ denote the axis going through the center-of-
mass of the three masses, and perpendicular to the triangle P1P2P3. What conditions should 
the angular velocities ω of the system (around the axis σ) and the distances: 

 
P1P2 = a12, P2P3 = a23, P1P3 = a13, 

 
fulfill to allow the shape and size of the triangle P1P2P3 unchanged during the motion of the 
system, i.e. under what conditions does the system rotate around the axis σ as a rigid body? 



 
Solution 
 
As the system is isolated, its total energy, i.e. the sum of the kinetic and potential 

energies, is conserved. The total potential energy of the points P1, P2 and P3 with the masses 
1m , 2m  and 3m  in the inertial system (i.e. when there are no inertial forces) is equal to the 

sum of the gravitational potential energies of all the pairs of points (P1,P2), (P2,P3) and (P1,P3). 
It depends only on the distances 12a , 23a  and 23a  which are constant in time. Thus, the total 
potential energy of the system is constant. As a consequence the kinetic energy of the system 
is constant too. The moment of inertia of the system with respect to the axis σ  depends only 
on the distances from the points P1, P2 and P3 to the axis σ  which, for fixed 12a , 23a  and 23a  
do not depend on time. This means that the moment of inertia I  is constant. Therefore, the 
angular velocity of the system must also be constant: 

 =ω const. (1) 
This is the first condition we had to find. The other conditions will be determined by 

using three methods described below. However, prior to performing calculations, it is 
desirable to specify a convenient coordinates system in which the calculations are expected to 
be simple. 

Let the positions of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  be given by 
the vectors 1r , 2r  and 3r . For simplicity we assume that the origin of the coordinate system is 
localized at the center of mass of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  and 
that all the vectors 1r , 2r  and 3r  are in the same coordinate plane, e.g. in the plane (x,y). Then 
the axis σ  is the axis z . 

In this coordinate system, according to the definition of the center of mass, we have: 

 0321 =++ 221 rrr mmm  (2) 

Now we will find the second condition by using several methods. 
FIRST METHOD 

Consider the point P1 with the mass 1m . The points P2 and P3 act on it with the forces: 
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where G denotes the gravitational constant. 

In the inertial frame the sum of these forces is the centripetal force 

1
2

11 rF ωmr −= , 

which causes the movement of the point P1 along a circle with the angular velocity ω . (The 
moment of this force with respect to the axis σ  is equal to zero.) Thus, we have: 

 .13121 rFFF =+  (5) 

In the non-inertial frame, rotating around the axis σ  with the angular velocity ω , the 
sum of the forces (3), (4) and the centrifugal force 



1
2

11' rF ωmr =  

should be equal to zero: 

 .0' 13121 =++ rFFF  (6) 

(The moment of this sum with respect to any axis equals to zero.) 

The conditions (5) and (6) are equivalent. They give the same vector equality: 
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From the formula (2), we get: 

 331122 rrr mmm −−=  (8) 

Using this relation, we write the formula (7) in the following form: 
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i.e. 
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The vectors 1r  and 3r  are non-col1inear. Therefore, the coefficients in the last formula 
must be equal to zero: 
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The first equality leads to: 
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and hence, 

1213 aa = . 

Let aaa == 1213 . Then the second equality gives: 

 GMa =32ω  (9) 

where 

 321 mmmM ++=  (10) 

denotes the total mass of the system. 



In the same way, for the points P2 and P3, one gets the relations: 

a) the point P2: 

1223 aa = ;     GMa =32ω  

b) the point P3: 

2313 aa = ;     GMa =32ω  

Summarizing, the system can rotate as a rigid body if all the distances between the 
masses are equal: 

 aaaa === 132312 , (11) 

the angular velocity ω  is constant and the relation (9) holds. 
SECOND METHOD 

At the beginning we find the moment of inertia I  of the system with respect to the axis 
σ . Using the relation (2), we can write: 
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 Of course, 

 22
ii r=r  i = 1, 2, 3 

The quantities jirr2 (i, j = 1, 2, 3) can be determined from the following obvious relation: 

jijijijijijiij rra rrrrrrrrrr 22)( 2222222 −+=−+=−=−= . 

We get: 
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With help of this relation, after simple transformations, we obtain: 
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The moment of inertia I  of the system with respect to the axis σ , according to the definition 
of this quantity, is equal to 
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The last two formulae lead to the following expression: 
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where M (the total mass of the system) is defined by the formula (10). 

In the non-inertial frame, rotating around the axis σ  with the angular velocity ω , the 
total potential energy totV  is the sum of the gravitational potential energies 
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of all the masses and the potential energies 
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of the masses im  (i = 1, 2, 3) in the field of the centrifugal force: 
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A mechanical system is in equilibrium if its total potential energy has an extremum. In 
our case the total potential energy totV  is a sum of three terms. Each of them is proportional to: 
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The extrema of this function can be found by taking its derivative with respect to a and 
requiring this derivative to be zero. We get: 
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It leads to: 

GMa =32ω     or    ).( 321
32 mmmGa ++=ω  

We see that all the terms in totV  have extrema at the same values of aaij = . (In addition, 
the values of a and ω  should obey the relation written above.) It is easy to show that it is a 
maximum. Thus, the quantity totV  has a maximum at aaij = . 

This means that our three masses can remain in fixed distances only if these distances 
are equal to each other: 

aaaa === 132312  

and if the relation 

GMa =32ω , 
where M the total mass of the system, holds. We have obtained the conditions (9) and (11) 
again. 

THIRD METHOD 

Let us consider again the point P1 with the mass 1m  and the forces 21F  and 31F  given by 
the formulae (3) and (4). It follows from the text of the problem that the total moment (with 
respect to any fixed point or with respect to the mass center) of the forces acting on the point 
P1 must be equal to zero. Thus, we have: 

0131121 =×+× rFrF  

where the symbol ×  denotes the vector product. Therefore 
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Using the formula (8), the last relation can be written as follows: 
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The vectors 1r  and 3r  are non-col1inear (and different from 0). Therefore 

013 ≠×rr  

and  
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hence, 

.1312 aa =  

Similarly, one gets: 

).(  2312 aaa ==  

We have re-derived the condition (11). 

Taking into account that all the distances ija  have the same value a, from the equation 
(7) concerning the point P1, using the relation (2) we obtain: 
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This is the condition (9). The same condition is got in result of similar calculations for the 
points P2 and P3. 



The method described here does not differ essentially from the first method. In fact 
they are slight modifications of each other. However, it is interesting to notice how 
application of a proper mathematical language, e.g. the vector product, simplifies the 
calculations. 

The relation (9) can be called a “generalized Kepler’s law” as, in fact, it is very similar 
to the Kepler’s law but with respect to the many-body system. As far as I know this 
generalized Kepler’s law was presented for the first time right at the 20th IPhO. 

 
Marking scheme 
 
1. the proof that =ω const 1 point 
2. the conditions at the equilibrium (conditions for the forces  

and their moments or extremum of the total potential energy) 3 points 
3. the proof of the relation aaij =  4 points 

4. the proof of the relation GMa =32ω  2 points 
 
Remarks and typical mistakes in the pupils' solutions 
 
No type of error was observed as predominant in the pupils' solutions. Practically all the 

mistakes can be put down to the students' scant experience in calculations and general lack of 
skill. Several students misunderstood the text of the problem and attempted to prove that the 
three masses should be equal. Of course, this was impossible. Moreover, it was pointless, 
since the masses were given. Almost all the participants tried to solve the problem by 
analyzing equilibrium of forces and/or their moments. Only one student tried to solve the 
problem by looking for a minimum of the total potential energy (unfortunately, his solution 
was not fully correct). Several participants solved the problem using a convenient reference 
system: one mass in the origin and one mass on the x-axis. One of them received a special 
prize. 

 
Problem 3 
 
The problem concerns investigation of transforming the electron microscope with 

magnetic guiding of the electron beam (which is accelerated with the potential difference U = 
511 kV) into a proton microscope (in which the proton beam is accelerated with the potential 
difference –U). For this purpose, solve the following two problems: 

A. An electron after leaving a device, which accelerated it with the potential difference 
U, falls into a region with an inhomogeneous field B generated with a system of stationary 
coils L1, L2, … , Ln. The known currents in the coils are i1, i2, … , in, respectively. 

What should the currents i1’, i2’, … , in’ in the coils L1, L2, … , Ln be, in order to guide 
the proton (initially accelerated with the potential difference –U) along the same trajectory 
(and in the same direction) as that of the electron? 

HINT: The problem can be solved by finding a condition under which the equation 
describing the trajectory is the same in both cases. It may be helpful to use the relation: 
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d p = 
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2
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2
1 p2. 

 



B. How many times would the resolving power of the above microscope increase or 
decrease if the electron beam were replaced with the proton beam? Assume that the resolving 
power of the microscope (i.e. the smallest distance between two point objects whose circular 
images can be just separated) depends only on the wave properties of the particles. 

Assume that the velocities of the electrons and protons before their acceleration are zero, 
and that there is no interaction between own magnetic moment of either electrons or protons 
and the magnetic field. Assume also that the electromagnetic radiation emitted by the moving 
particles can be neglected. 

NOTE: Very often physicists use 1 electron-volt (1 eV), and its derivatives such as 1 
keV or 1 MeV, as a unit of energy. 1 electron-volt is the energy gained by the electron that 
passed the potential difference equal to 1 V. 

Perform the calculations assuming the following data: 

Rest energy of electron: Ee = mec2 = 511 keV 
Rest energy of proton:  Ep = mpc2 = 938 MeV 

 
Solution 
 
PART  A 

At the beginning one should notice that the kinetic energy of the electron accelerated 
with the potential difference U = 511 kV equals to its rest energy 0E . Therefore, at least in the 
case of the electron, the laws of the classical physics cannot be applied. It is necessary to use 
relativistic laws. 

The relativistic equation of motion of a particle with the charge e in the magnetic field 
B  has the following form: 

Ldt
d Fp =  

where vp γ0m= denotes the momentum of the particle (vector) and 

BvF ×= eL  

is the Lorentz force (its value is evB  and its direction is determined with the right hand rule). 
0m  denotes the (rest) mass of the particle and v  denotes the velocity of the particle. The 

quantity γ  is given by the formula: 
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The Lorentz force LF  is perpendicular to the velocity v  of the particle and to its momentum 
vp γ0m= . Hence, 

0=⋅=⋅ pFvF LL . 

Multiplying the equation of motion by p  and making use of the hint given in the text of the 
problem, we get: 

0
2
1 2 =p

dt
d . 



It means that the value of the particle momentum (and the value of the velocity) is constant 
during the motion: 

== γvmp 0  const;               v = const. 

The same result can be obtained without any formulae in the following way: 

The Lorentz force LF  is perpendicular to the velocity v  (and to the momentum p as 
vp γ0m= ) and, as a consequence, to the trajectory of the particle. Therefore, there is no force 

that could change the component of the momentum tangent to the trajectory. Thus, this 
component, whose value is equal to the length of p , should be constant: =p const. (The same 
refers to the component of the velocity tangent to the trajectory as vp γ0m= ). 

Let s denotes the path passed by the particle along the trajectory. From the definition of 
the velocity, we have: 

.v
dt
ds

=  

Using this formula, we can rewrite the equation of motion as follows: 

Ldt
d

ds
d
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ds

ds
dv Fppp === , 

vds
d LFp = . 

Dividing this equation by p and making use of the fact that p = const, we obtain: 

vppds
dv LFp

=  

and hence 

vpds
d LFt =  

where vp // vpt ==  is the versor (unit vector) tangent to the trajectory. The above equation 
is exactly the same for both electrons and protons if and only if the vector quantity: 

vp
LF  

is the same in both cases. 

Denoting corresponding quantities for protons with the same symbols as for the 
electrons, but with primes, one gets that the condition, under which both electrons and protons 
can move along the same trajectory, is equivalent to the equality: 
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However, the Lorentz force is proportional to the value of the velocity of the particle, 
and the directions of any two vectors of the following three: t (or v), FL, B determine the 
direction of the third of them (right hand rule). Therefore, the above condition can be written 
in the following form: 
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This means that at any point the direction of the field B should be conserved, its 
orientation should be changed into the opposite one, and the value of the field should be 
multiplied by the same factor p'/p. The magnetic field B is a vector sum of the magnetic fields 
of the coils that are arbitrarily distributed in the space. Therefore, each of this fields should be 
scaled with the same factor -p'/p. However, the magnetic field of any coil is proportional to 
the current flowing in it. This means that the required scaling of the fields can only be 
achieved by the scaling of all the currents with the same factor -p'/p: 

nn i
p
pi '' −= . 

Now we shall determine the ratio p'/p. The kinetic energies of the particles in both cases 
are the same; they are equal to == UeEk 511 keV. The general relativistic relation between 
the total energy E of the particle with the rest energy E0 and its momentum p has the 
following form: 

222
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2 cpEE +=  

where c denotes the velocity of light. 

The total energy of considered particles is equal to the sum of their rest and kinetic 
energies: 

kEEE += 0 . 

Using these formulae and knowing that in our case ek EUeE == , we determine the 
momenta of the electrons (p) and the protons (p’). We get:  

a) electrons: 

,)( 2222 cpEEE eee +=+  
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b) protons 
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It is worthwhile to notice that our protons are 'almost classical', because their kinetic 
energy )( ek EE =  is small compared to the proton rest energy pE . Thus, one can expect that 
the momentum of the proton can be determined, with a good accuracy, from the classical 
considerations. We have: 
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On the other hand, the momentum of the proton determined from the relativistic 
formulae can be written in a simpler form since Ep/Ee » 1. We get: 
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In accordance with our expectations, we have obtained the same result as above. 
PART  B 

The resolving power of the microscope (in the meaning mentioned in the text of the 
problem) is proportional to the wavelength, in our case to the length of the de Broglie wave: 

p
h

=λ  

where h denotes the Planck constant and p is the momentum of the particle. We see that λ  is 
inversely proportional to the momentum of the particle. Therefore, after replacing the electron 
beam with the proton beam the resolving power will be changed by the factor p/p' ≈1/35. It 
means that our proton microscope would allow observation of the objects about 35 times 
smaller than the electron microscope. 
 

Marking scheme 
 
1. the relativistic equation of motion     1 point 
2. independence of p and v of the time     1 point 
3. identity of eB/p in both cases     2 points 
4. scaling of the fields and the currents with the same factor  1 point 
5. determination of the momenta (relativistically)   1 point 
6. the ratio of the momenta (numerically)    1 point 
7. proportionality of the resolving power toλ     1 point 
8. inverse proportionality of λ  to p     1 point 
9. scaling of the resolving power     1 point 
 
Remarks and typical mistakes in the pupils' solutions 
 

Some of the participants tried to solve the problem by using laws of classical mechanics 
only. Of course, this approach was entirely wrong. Some students tried to find the required 
condition by equating "accelerations" of particles in both cases. They understood the 
"acceleration" of the particle as a ratio of the force acting on the particle to the "relativistic" 
mass of the particle. This approach is incorrect. First, in relativistic physics the relationship 
between force and acceleration is more complicated. It deals with not one "relativistic" mass, 



but with two "relativistic" masses: transverse and longitudinal. Secondly, identity of 
trajectories need not require equality of accelerations. 

The actual condition, i.e. the identity of eB/p in both cases, can be obtained from the 
following two requirements: 

1° in any given point of the trajectory the curvature should be the same in both cases; 
2° in the vicinity of any given point the plane containing a small arc of the trajectory 

should be oriented in space in both cases in the same way. 

Most of the students followed the approach described just above. Unfortunately, many 
forgot about the second requirement (they neglected the vector character of the quantity eB/p). 
 

 
EXPERIMENTAL PROBLEM1

 
 

The following equipment is provided: 

1. Two piezoelectric discs of thickness 10 mm with evaporated electrodes (Fig. 4.1) fixed in 
holders on the jaws of the calipers; 
 
 
 
 
 
 
    Fig. 4.1 
 
 
 
 
 
 
2. The calibrated sine wave oscillator with a photograph of the control panel, explaining the 
functions of the switches and regulators; 
3. A double channel oscilloscope with a photograph of the control panel, explaining the 
functions of the switches and regulators; 
4. Two closed plastic bags containing liquids; 
5. A beaker with glycerin (for wetting the discs surfaces to allow better mechanical coupling); 
6. Cables and a three way connector; 
7. A stand for support the bags with the liquids; 
8. Support and calipers. 

A piezoelectric material changes its linear dimensions under the influence of an electric 
field and vice-versa, the distortion of a piezoelectric material induces an electrical field. 
Therefore, it is possible to excite the mechanical vibrations in a piezoelectric material by 
applying an alternating electric field, and also to induce an alternating electric field by 
mechanical vibrations. 

 
1  The Organizing Committee planned to give another experimental problem: a problem on high Tc 
superconductivity. Unfortunately, the samples of superconductors, prepared that time by a factory, were of very 
poor quality. Moreover, they were provided after a long delay. Because of that the organizers decided to use this 
problem, which was also prepared, but considered as a second choice. 

 10 mm 

   Electrodes 



A. Knowing that the velocity of longitudinal ultrasonic waves in the material of the disc 
is about 3104 ⋅  m/s, estimate roughly the resonant frequency of the mechanical vibrations 
parallel to the disc axis. Assume that the disc holders do no restrict the vibrations. (Note that 
other types of resonant vibrations with lower or higher frequencies may occur in the discs.) 

 Using your estimation, determine experimentally the frequency for which the 
piezoelectric discs work best as a transmitter-receiver set for ultrasound in the liquid. Wetting 
surfaces of the discs before putting them against the bags improves penetration of the liquid in 
the bag by ultrasound. 

B. Determine the velocity of ultrasound for both liquids without opening the bags and 
estimate the error. 

C. Determine the ratio of the ultrasound velocities for both liquids and its error. 

Complete carefully the synopsis sheet. Your report should, apart from the synopsis 
sheet, contain the descriptions of:  

- method of resonant frequency estimation; 
- methods of measurements; 
- methods of estimating errors of the measured quantities and of final results. 

Remember to define all the used quantities and to explain the symbols. 

 

Synopsis Sheet1

A 

 

Formula for estimating the resonant frequency: 

 

Results (with units): 

Measured best transmitter frequency (with units): 

 

Error: 

B 

Definition of measured quantity: 

 

 

 

Symbol: Results: Error: 

Final formula for ultrasound velocity in liquid: 

 

           Velocity of ultrasound (with units): Error: 

Liquid A   

Liquid B   

 
Ratio of velocities: 

 
Error: 

 

Solution (draft)1

 
1 In the real Synopsis Sheet the students had more space for filling. 

 



 
 A. As the holders do not affect vibrations of the disc we may expect antinodes on the 

flat surfaces of the discs (Fig. 4.2; geometric proportions not conserved). One of the 
frequencies is expected for  

 

f
vl

22
1 == λ , 

 
where v  denotes the velocity of longitudinal ultrasonic wave (its value is given in the text of 
the problem), f  - the frequency and l  - the thickness of the disc. Thus: 

 

l
vf
2

= . 

 
Numerically 5102 ⋅=f Hz = 200 kHz. 

 

  

 

 

 

 

                                                                                                                     

 
 

 
 

Fig. 4.2 

 One should stress out that different modes of vibrations can be excited in the disc with 
height comparable to its diameter. We confine our considerations to the modes related to 
longitudinal waves moving along the axis of the disc as the sound waves in liquids are 
longitudinal. We neglect coupling between different modes and require antinodes exactly at 
the flat parts of the disc. We assume also that the piezoelectric effect does not affect velocity 
of ultrasound. For these reasons the frequency just determined should be treated as only a 
rough approximation. However, it indicates that one should look for the resonance in vicinity 
of 200 kHz. 

The experimental set-up is shown in Fig. 4.3. The oscillator (generator) is connected to 
one of the discs that works as a transmitter and to one channel of the oscilloscope. The second 
disc is connected to the second channel of the oscilloscope and works as a receiver. Both discs 
are placed against one of the bags with liquid (Fig. 4.4). The distance d  can be varied. 

 

                                                                                                                                                         
1 This draft solution is based on the camera-ready text of the more detailed solution prepared by Dr. Andrzej 
Kotlicki and published in the proceedings [3] 
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Fig. 4.3 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 4.4 

One searches for the resonance by slowly changing the frequency of the oscillator in the 
range 100 – 1000 kHz and watching the signal on the oscilloscope. In this way the students 
could find a strong resonance at frequency 220≈f  kHz. Other resonance peaks could be 
found at about 110 kHz and 670 kHz. They should have been neglected as they are 
substantially weaker. (They correspond to some other modes of vibrations.) Accuracy of these 
measurements was 10 kHz (due to the width of the resonance and the accuracy of the scale on 
the generator).  

 B. The ultrasonic waves pass through the liquid and generate an electric signal in the 
receiver. Using the same set-up (Fig. 4.3 and 4.4) we can measure dependence of the phase 
shift between the signals at Y1 and Y2 vs. distance between the piezoelectric discs d  at the 
constant frequency found in point A. This phase shift is 0/2 ϕπϕ +=∆ lvdf , where lv  denotes 
velocity of ultrasound in the liquid. 0ϕ  denotes a constant phase shift occurring when 
ultrasound passes trough the bag walls (possibly zero). The graph representing dependence 

)( ϕ∆d  should be a straight line. Its slope allows to determine lv  and its error. In general, the 

  d 

Bag with liquid 

Oscilloscope 
 

 
Oscillator 

(Generator) 

 

  d 

Y1 

Y2 



measurements of ϕ∆  are difficult for many reflections in the bag, which perturb the signal. 
One of the best ways is to measure d only for πϕ n=∆  (n - integer) as such points can be 
found rather easy.  Many technical details concerning measurements can be found in [3] (pp. 
37 and 38). 

The liquids given to the students were water and glycerin. In the standard solution the 
author of the problem received the following values: 

vwater = 310)10.050.1( ⋅±  m/s;   vglycerin = 310)10.096.1( ⋅±  m/s. 

The ratio of these values was 15.031.1 ± . 

The ultrasonic waves are partly reflected or scattered by the walls of the bag. This effect 
somewhat affects measurements of the phase shift. To minimize its role one can measure the 
phase shift (for a given distance) or distance (at the same phase shift) several times, each time 
changing the shape of the bag. As regards errors in determination of velocities it is worth to 
mention that the most important factor affecting them was the error in determination of the 
frequency. This error, however, practically does not affect the ratio of velocities. 

 
Marking Scheme 
 
Frequency estimation 

1. Formula           1 point 
2. Result (with units)          1 point 
3. Method of experimental determining the resonance frequency    1 point 
4. Result (if within 5% of standard value)       2 points 
5. Error           1 point 

Measurements of velocities 
1. Explanation of the method        2 points 
2. Proper number of measurements in each series       3 points 
3. Result for velocity in the first liquid (if within 5% of standard value)     2 points 
4. Error of the above          1 point 
5. Result for velocity in the second liquid (if within 5% of standard value) 2 points 
6. Error of the above          1 point 

Ratio of velocities 
1. Result (if within 3% of standard value)       2 points 
2. Error of the above          1 point 

 
Typical mistakes 
 
The results of this problem were very good (more than a half of competitors obtained 

more than 15 points). Nevertheless, many students encountered some difficulties in estimation 
of the frequency. Some of them assumed presence of nodes at the flat surfaces of the discs 
(this assumption is not adequate to the situation, but accidentally gives proper formula). In 
part B some students tried to find distances between nodes and antinodes for ultrasonic 
standing wave in the liquid. This approach gave false results as the pattern of standing waves 
in the bag is very complicated and changes when the shape of the bag is changed. 
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Figure 1    Diffraction of a parallel X-ray beam along the z-axis.
The angle between the crystal and the y-axis is �.
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Figure 2. The cubic latice of
Potassium Chloride in which
the K+ and Cl-wons have
almost the same size.

Figure 3.  Scattering of X-rays by a powder of KCl crystals
results in the production of concentric dark circles on a
photographic plate.

Figure 1    The spaceship Atlantis (A) with a satellite
(S) in an orbit around the earth. The orbit lies in the
earth’s equatorial plane.
The magnetic field (B) is perpendicular to the
diagram and is directed towards the reader.
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A sudden change in the shape of the crust of a
neutron star results in a sudden change of the
angular velocity.
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Figure 2    The experimental setup: a board and the
two boxes containing the LED and the photo-diode.
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WKHQ�WKH�ILUVW�PLQLPXP��QH[W�WR�WKH�SULQFLSDO�PD[LPXP��RFFXUV��7KH�SRVLWLRQ�RI�WKLV
PLQLPXP�RQ�WKH�VFUHHQ�LV�JLYHQ�E\�

7KH�ZLGWK�RI�WKH�SULQFLSDO�PD[LPXP�LV�DFFRUGLQJO\�

$�VLPLODU�WUHDWPHQW�FDQ�EH�PDGH�IRU�WKH�\�GLUHFWLRQ��LQ�ZKLFK�WKHUH�DUH�1��VOLWV�ZLWKVHSDUDWLRQ�G���7KH�SRVLWLRQV�DQG�ZLGWKV�RI�WKH�SULQFLSDO�PD[LPDO�DUH�

$Q�DOWHUQDWLYH�PHWKRG�RI�VROXWLRQ�LV�WR�FDOFXODWH�WKH�LQWHQVLW\�IRU�WKH���GLPHQVLRQDO
JULG�DV�D�IXQFWLRQ�RI�WKH�DQJOH�WKDW�WKH�EHDP�PDNHV�ZLWK�WKH�VFUHHQ�

E�� ,Q�WKH�[�GLUHFWLRQ�WKH�EHDP�
VHHV
�D�JULG�ZLWK�VSDFLQJ�D��VR�WKDW�LQ�WKLV�GLUHFWLRQ�ZH
KDYH�



,Q�WKH�\�GLUHFWLRQ��WKH�EHDP�
VHHV
�D�JULG�ZLWK�HIIHFWLYH�VSDFLQJ�D�FRV����
$QDORJRXVO\��ZH�REWDLQ�

,Q�WKH�]�GLUHFWLRQ��WKH�EHDP�
VHHV
�D�JULG�ZLWK�HIIHFWLYH�VSDFLQJ�D�VLQ�����7KLV�JLYHV
ULVH�WR�SULQFLSDO�PD[LPD�ZLWK�SRVLWLRQ�DQG�ZLGWK�

7KLV�SDWWHUQ�LV�VXSHULPSRVHG�RQ�WKH�SUHYLRXV�RQH��6LQFH�VLQ����LV�YHU\�VPDOO��RQO\
WKH�]HURWK�RUGHU�SDWWHUQ�ZLOO�EH�VHHQ��DQG�LW�LV�YHU\�EURDG��VLQFH�1��VLQ�������1��7KH�GLIIUDFWLRQ�SDWWHUQ�IURP�D�SODQH�ZDYH�IDOOLQJ�RQ�D�WKLQ�SODWH�RI�D�FXELF�FU\VWDO�
DW�D�VPDOO�DQJOH�RI�LQFLGHQFH�WR�WKH�QRUPDO��ZLOO�EH�DOPRVW�LGHQWLFDO�WR�WKDW�IURP�D
WZR�GLPHQVLRQDO�JULG�

F�� ,Q�%UDJJ�UHIOHFWLRQ��WKH�SDWK�GLIIHUHQFH�IRU�FRQVWUXFWLYH�LQWHUIHUHQFH�EHWZHHQ
QHLJKERXULQJ�SODQHV�

+HUH� �LV�WKH�DQJOH�RI�GLIIUDFWLRQ�
7KLV�LV�WKH�VDPH�FRQGLWLRQ�IRU�D�PD[LPXP�DV�LQ�VHFWLRQ�E�

G�� )RU�WKH�GLVWDQFH�����D��EHWZHHQ�QHLJKERXULQJ�.�LRQV�ZH�KDYH�

0DUNLQJ�%UHDNGRZQ

D SRVLWLRQ�RI�SULQFLSDO�PD[LPD ��
ZLGWK�RI�SULQFLSDO�PD[LPD ��

E ODWWLFH�FRQVWDQWV ��
HIIHFW�RI�WKLFNQHVV ��

F %UDJJ�UHIOHFWLRQ ��
G &DOFXODWLRQ�RI�.�.�VSDFLQJ ��



6ROXWLRQ�RI�TXHVWLRQ���

D��� 6LQFH�P�����P���WKH�$WODQWLV�WUDYHOV�DURXQG�WKH�HDUWK�ZLWK�D�FRQVWDQW�VSHHG��7KHPRWLRQ�RI�WKH�VDWHOOLWH�LV�FRPSRVHG�RI�WKH�FLUFXODU�PRWLRQ�RI�WKH�$WODQWLV�DERXW�WKH
HDUWK�DQG��SRVVLEO\��D�FLUFXODU�PRWLRQ�RI�WKH�VDWHOOLWH�DERXW�WKH�$WODQWLV�
)RU�P��ZH�KDYH�

)RU�P��ZH�KDYH�

8VLQJ�WKH�DSSUR[LPDWLRQ�

DQG�HTXDWLRQ������RQH�ILQGV�

VR�
���

,I����LV�FRQVWDQW��� � �� ��!����VLQ���� �� ��! �� ��� �� �%
��!����FRV���� �� ��! �� �%��� �� ��%��



D��� 7KH�VLWXDWLRQ�LV�VWDEOH�LI�WKH�PRPHQW�� ��FKDQJHV�VLJQ�LQ�D
PDQQHU�RSSRVHG�WR�WKDW�LQ�ZKLFK�WKH�VLJQ�RI��������FKDQJHV�
VLJQ�������� ����� ����� ����� ����� �����

����������������������������������������������������������

� ��� �%�� ��% �%�� ���%
�������������������������������������������������������������������

VLJQ�0����� ����� ����� � ����� ����� �����
����������������������������������������������������������

� ��� �%�� ��% �%�� ���%
7KH�HTXLOLEULXP�DERXW�WKH�DQJOHV���HQ�%�LV�WKXV�VWDEOH��ZKHUHDV�WKDW�DURXQG�%��
DQG��%���LV�XQVWDEOH�

E�� )RU�VPDOO�YDOXHV�RI���HTXDWLRQ�����EHFRPHV�

7KLV�LV�WKH�HTXDWLRQ�RI�D�VLPSOH�KDUPRQLF�PRWLRQ�
7KH�VTXDUH�RI�WKH�DQJXODU�IUHTXHQF\�LV�

VR�

F��� $FFRUGLQJ�WR�/HQ]
V�ODZ��WKHUH�ZLOO�EH�D�FXUUHQW�IURP�WKH�VDWHOOLWH��6��WRZDUGV�WKH
VKXWWOH��$��

F��� )RU�WKH�WRWDO�HQHUJ\�RI�WKH�V\VWHP�ZH�KDYH�

$�VPDOO�FKDQJH�LQ�WKH�UDGLXV�RI�WKH�RUELW�FRUUHVSRQGV�WR�D�FKDQJH�LQ�WKH�HQHUJ\�RI�

,Q�WKH�VLWXDWLRQ�XQGHU�F��HQHUJ\�LV�DEVRUEHG�IURP�WKH�V\VWHP�DV�D�FRQVHTXHQFH�RIZKLFK�WKH�UDGLXV�RI�WKH�RUELW�ZLOO�GHFUHDVH�
,V�D�FXUUHQW�VRXUFH�LQVLGH�WKH�VKXWWOH�LQFOXGHG�LQ�WKH�FLUFXLW��ZKLFK�PDLQWDLQV�D�QHW
FXUUHQW�LQ�WKH�RSSRVLWH�GLUHFWLRQ��HQHUJ\�LV�DEVRUEHG�E\�WKH�V\VWHP�DV�D
FRQVHTXHQFH�RI�ZKLFK�WKH�UDGLXV�RI�WKH�RUELW�ZLOO�LQFUHDVH�
)URP�WKH�DVVXPSWLRQV�LQ�F��ZH�KDYH�

1XPHULFDO�DSSOLFDWLRQ�JLYHV�IRU�WKH�WLPH��W�������������V��ZKLFK�LV�DERXW�WKH�SHULRG
RI�WKH�V\VWHP�



0DUNLQJ�EUHDNGRZQ�

D� ���
D� ���
E���� $WODQWLV�LQ�XQLIRUP�FLUFXODU�PRWLRQ �����
����� FDOFXODWLRQ�RI�WKH�SHULRG�6 �����
����� HTXDWLRQ�RI�PRWLRQ�RI�WKH�VDWHOOLWH �����
����� HTXDWLRQ�RI�PRWLRQ�IRU�VPDOO�DQJOHV �����
����� SHULRG�RI�RVFLOODWLRQV ���
F���� ���
F���� FDOFXODWLRQ�RI�WKH�WLPH�WKH�FXUUHQW�KDV�WR�EH�PDLQWDLQHG �����
����� LQFUHDVH�RU�GHFUHDVH�RI�WKH�UDGLXV�RI�WKH�RUELW �����

6ROXWLRQ�RI�TXHVWLRQ���

D�� �VW�PHWKRG

)RU�HTXLOLEULXP�ZH�KDYH��)F� �)J���1�ZKHUH�1�LV�QRUPDO�WR�WKH�VXUIDFH�

5HVROYLQJ�LQWR�KRUL]RQWDO�DQG�YHUWLFDO
FRPSRQHQWV��ZH�ILQG�

)URP�

ZH�ILQG�

ZKHUH�

7KLV�PHDQV�WKDW��DOWKRXJK�U�GHSHQGV�RQ�[�DQG�\��WKH�FKDQJH�LQ�WKH�IDFWRU�LQ�IURQW�RI
[G[�LV�VR�VOLJKW�WKDW�ZH�FDQ�WDNH�LW�WR�EH�FRQVWDQW��7KH�VROXWLRQ�RI�(T������LV�WKHQ�DQ
HOOLSVH�



DQG�IURP�WKLV�LW�IROORZV�WKDW�

�QG�PHWKRG

)RU�D�SRLQW�PDVV�RI���NJ�RQ�WKH�VXUIDFH�

7KH�IRUP�RI�WKH�VXUIDFH�LV�VXFK�WKDW�8SRW���8NLQ� �FRQVWDQW��)RU�WKH�HTXDWRU��0� ���U� �UH��DQG�IRU�WKH�SROH��0� �%����U� �US��ZH�KDYH�

7KXV�

E�� $V�D�FRQVHTXHQFH�RI�WKH�VWDU�TXDNH��WKH
PRPHQW�RI�LQHUWLD�RI�WKH�FUXVW�,P�GHFUHDVHVE\� �

)URP�WKH�FRQVHUYDWLRQ�RI�DQJXODU
PRPHQWXP��ZH�KDYH�

$IWHU�WKH�LQWHUQDO�IULFWLRQ�KDV�HTXDOL]HG�WKH�DQJXODU�YHORFLWLHV�RI�WKH�FUXVW�DQG�WKH
FRUH��ZH�KDYH�



0DUNLQJ�EUHDNGRZQ

D �VW�PHWKRG ��H[SUHVVLRQV�IRU�WKH�IRUFHV ��
��HTXDWLRQ�IRU�WKH�VXUIDFH ��
��HTXDWLRQ�RI�HOOLSVH ��
��IODWWHQLQJ�IDFWRU ��

�QG�PHWKRG ��HQHUJ\�HTXDWLRQ ��
��IODWWHQLQJ�IDFWRU ��

E ��FRQVHUYDWLRQ�RI�DQJXODU�PRPHQWXP�IRU�FUXVW ����
��FRQVHUYDWLRQ�RI�DQJXODU�PRPHQWXP�IRU�FUXVW�DQG�FRUH ����
��PRPHQW�RI�LQHUWLD�IRU�D�VSKHUH ��
��UDWLR�UF�U ��



6ROXWLRQ�RI�TXHVWLRQ���

�� 7KH�OLQHDULW\�RI�WKH�SKRWR�GLRGH�

7KH�OLQHDULW\�RI�WKH�SKRWR�GLRGH�FDQ�EH�FKHFNHG�E\�XVLQJ�WKH�LQYHUVH�VTXDUH�ODZ�EHWZHHQ
GLVWDQFH�DQG�LQWHQVLW\��6XSSRVH�WKDW�WKH�PHDVXUHG�GLVWDQFH�EHWZHHQ�WKH�/('�DQG�WKH
�ER[�FRQWDLQLQJ�WKH��3'�LV�[��7KH�LQWHQVLW\�RI�WKH�OLJKW�IDOOLQJ�RQ�WKH�3'�VDWLVILHV�

,I�WKH�LQWHQVLW\�LV�LQGHHG�SURSRUWLRQDO�WR�WKH�FXUUHQW�IORZLQJ�WKURXJK�WKH�3'��LW�ZLOO�DOVR�EH
SURSRUWLRQDO�WR�WKH�YROWDJH��9�[���PHDVXUHG�DFURVV�WKH�UHVLVWRU�5���)URP�����LW�WKHQ
IROORZV�WKDW�

7R�REWDLQ�WKH�FRUUHFW�YDOXH�RI�9�[���RQH�VKRXOG�VXEWUDFW�IURP�WKH�PHDVXUHG�YROWDJH�9�WKH�YROWDJH�9��WKDW�RQH�PHDVXUHV�ZKHQ�WKH�/('�LV�WXUQHG�RII��EXW�WKH�/('�ER[�LV�VWLOO�LQSODFH�LQ�IURQW�RI�WKH�3'��
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3ORWWHG�RQ�D�JUDSK��RQH�ILQGV�D�SHUIHFW�VWUDLJKW�OLQH�



�� 7KH�OLJKW�LQWHQVLW\�DV�D�IXQFWLRQ�RI�WKH�HOHFWULFDO�SRZHU�RI�WKH�/('

7KH�SKRWR�FXUUHQW�L3'�LV�GHWHUPLQHG�IURP�WKH�YROWDJH�9�RYHU�5�� ��06��7KH�PHWHU�LWVHOIKDV�DQ�LQWHUQDO�UHVLVWDQFH�RI�����06�LQ�WKH�����P9�UDQJH�DQG����06�LQ�WKH�RWKHU
UDQJHV��:H�KDYH�WKHQ��L3'� ������9�UHVS��L3'� �����9��ZKHUH�9�LV�LQ�YROWV�DQG�L3'�LQ��$�7KH�FXUUHQW�LQ�DPSqUHV�WKURXJK�WKH�/('�LV�WKH�YROWDJH�RYHU�5��LQ�YROWV��GLYLGHG�E\�����
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7KH�HIILFLHQF\�LV�SURSRUWLRQDO�WR��L����L���3/('��,Q�WKH�JUDSK�RI��L����L���3/('�DJDLQVW�L/('�WKHPD[LPDO�HIILFLHQF\�FRUUHVSRQGV�WR�L/('� ������������$���6HH�ILJXUH����

�� 'HWHUPLQDWLRQ�RI�WKH�PD[LPDO�HIILFLHQF\�
7KH�/('�HPLWV�D�FRQLFDO�EHDP�ZLWK�F\OLQGULFDO�V\PPHWU\��6XSSRVH�ZH�PHDVXUH�WKH�OLJKW
LQWHQVLW\�ZLWK�D�3'�RI�VHQVLWLYH�DUHD�G��DW�D�GLVWDQFH�UL�IURP�WKH�D[LV�RI�V\PPHWU\��/HW�WKHLQWHQVLW\�RI�WKH�OLJKW�WKHUH�EH�0�UL���WKHQ�ZH�KDYH��
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7KH�HIILFLHQF\� �0�3/('��������

0DUNLQJ�EUHDNGRZQ

��OLQHDULW\�RI�WKH�3'
��LQYHUVH�VTXDUH�ODZ ����
��QXPEHU�RI�PHDVXULQJ�SRLQWV�>���!��>���!��>����! ������������
��GDUN�FXUUHQW ����
��FRUUHFW�JUDSK ��

��GHWHUPLQDWLRQ�RI�FXUUHQW�DW�PD[LPDO�HIILHQF\
��SULQFLSOH ����
��QXPEHU�RI�PHDVXULQJ�SRLQWV�>���!��>���!��>����!� ������������
��JUDSK�HIILFLHQF\�FXUUHQW ����
��GHWHUPLQDWLRQ�RI�FXUUHQW�DW�PD[LPDO�HIILFLHQF\ ����

��GHWHUPLQDWLRQ�RI�WKH�PD[LPDO�HIILFLHQF\
��GHWHUPLQDWLRQ�RI�WKH�HPLWWHG�OLJKW�LQWHQVLW\ ����

��YLD�HVWLPDWLRQ�RI�WKH�FRQH�FURVV�VHFWLRQ ����
��YLD�PHDVXUHPHQW�RI�WKH�LQWHQVLW\�GLVWULEXWLRQ ����

��GHWHUPLQDWLRQ�RI�WKH�PD[LPXP�HIILFLHQF\ ��



6ROXWLRQ�RI�TXHVWLRQ���

�� 7KHRU\ /HW ��WKH�PRPHQW�RI�LQHUWLD�RI�WKH�GLVN�EH ��,
��WKH�PDVV�RI�WKH�ZHLJKW ��P
��WKH�PRPHQW�RI�WKH�IULFWLRQDO�IRUFH ��0I��PDJQHWLF�ILHOG�VWUHQJWK ��%
��WKH�UDGLXV�RI�WKH�D[OH ��U
��WKH�PRPHQW�RI�WKH�PDJQHWLF�IRUFH ��0%

)RU�WKH�PRWLRQ�RI�WKH�URWDWLQJ�GLVN�ZH�KDYH�

:H�VXSSRVH�WKDW�0I�LV�FRQVWDQW�EXW�QRW�QHJOLJLEOH��%HFDXVH�WKH�GLVN�PRYHV�LQ�WKHPDJQHWLF�ILHOG��HGG\�FXUUHQWV�DUH�VHW�XS�LQ�WKH�GLVN��7KH�PDJQLWXGH�RI�WKHVH�FXUUHQWV�LV
SURSRUWLRQDO�WR�%�DQG�WR�WKH�DQJXODU�YHORFLW\��7KH�/RUHQW]�IRUFH�DV�D�UHVXOW�RI�WKH�HGG\
FXUUHQWV�DQG�WKH�PDJQHWLF�ILHOG�LV�WKXV�SURSRUWLRQDO�WR�WKH�VTXDUH�RI�%�DQG�WR�WKH�DQJXODU
YHORFLW\��L�H�

6XEVWLWXWLQJ�WKLV�LQWR�(T�������ZH�ILQG�

$IWHU�VRPH�WLPH��WKH�GLVN�ZLOO�UHDFK�LWV�ILQDO�FRQVWDQW�DQJXODU�YHORFLW\��WKH�DQJXODU
DFFHOHUDWLRQ�LV�QRZ�]HUR�DQG�IRU�WKH�ILQDO�YHORFLW\�YH�ZH�ILQG�
7KH�ILQDO�FRQVWDQW�YHORFLW\�LV�WKXV�D�OLQHDU�IXQFWLRQ�RI�P�
�� 7KH�H[SHULPHQW

7KH�ILQDO�FRQVWDQW�VSHHG�LV�GHWHUPLQHG�E\�PHDVXULQJ�WKH�WLPH�WDNHQ�WR�IDOO�WKH�ODVW����FP
>WKLV�LV�WKH�ZLGWK�RI�D�VKHHW�RI�SDSHU@�
,Q�WKH�ILUVW�SODFH�LW�LV�QHFHVVDU\�WR�FKHFN�WKDW�WKH�ILQDO�VSHHG�KDV�EHHQ�UHDFKHG��7KLV�LV
GRQH�E\�DOORZLQJ�WKH�ZHLJKW�WR�IDOO�RYHU�GLIIHUHQW�KHLJKWV��,W�LV�FOHDU�WKDW��ZLWK�WKH�ZHDNHU
PDJQHW��WKH�QHFHVVDU\�KHLJKW�EHIRUH�WKH�FRQVWDQW�VSHHG�LV�DWWDLQHG�ZLOO�EH�ODUJHU�
0HDVXUHPHQWV�IRU�WKH�ZHDN�PDJQHW�V\VWHP�



���������������������WLPH�WDNHQ�WR�IDOO���������������������
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�������������V�

�� )LQDO�FRQVWDQW�VSHHG�PHDVXUHPHQWV�IRU�ERWK�PDJQHW�V\VWHPV�DQG�IRU�VHYHUDO
FKRLFHV�RI�ZHLJKW�

0HDVXUHPHQWV�IRU�WKH�ZHDN�PDJQHW�
ZHLJKW
VPDOO
ODUJH
ERWK

7��V�
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7��V�
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7��V�
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�7!��V�
�����������
�����������
�����������

�Y!��P�V�
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0HDVXUHPHQWV�IRU�WKH�VWURQJ�PDJQHW�
ZHLJKW
VPDOO
ODUJH
ERWK

7��V�
����
����
����

7��V�
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7��V�
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�7!��V�
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�Y!��P�V�
�����������
�����������
����������

�� 'LVFXVVLRQ�RI�WKH�UHVXOWV�

��$�JUDSK�EHWZHHQ�YH�DQG�WKH�ZHLJKW�VKRXOG�EH�PDGH���)URP�(T������ZH�REVHUYH�WKDW�
��ERWK�VWUDLJKW�OLQHV�VKRXOG�LQWHUVHFW�RQ�WKH�KRUL]RQWDO�D[LV�
��IURP�WKH�VTXDUH�URRW�RI�WKH�UDWLR�RI�WKH�VORSHV�ZH�KDYH�LPPHGLDWHO\�WKH����
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T H E O R E T I C A L      P R O B L E M S 
 
Problem 1 
The figure 1.1 shows a solid, homogeneous ball radius R. Before falling to the floor its center of mass is 
at  rest, but the ball is spinning with angular velocity ω0 about a horizontal axis through its center. The 
lowest point of the ball is at a height h above the floor. 
 

 
When released, the ball falls under gravity, and rebounds to a new height such that its lowest point is now 
ah above the floor. The deformation of the ball and the floor on impact may be considered negligible. 
Ignore the presence of the air. The impact time, although, is finite. 
 
The mass of the ball is m, the acceleration due the gravity is g, the dynamic coefficient of friction between 
the ball and the floor is µk, and the moment of inertia of the ball about the given axis is: 

I = 
5

2 2mR
 

You are required to consider two situations, in the first, the ball slips during the entire impact time, and in 
the second the slipping stops before the end of the impact time. 
 
Situation I: slipping throughout the impact. 
Find: 
a) tan θ , where θ is the rebound  angle indicated in the diagram; 
b) the horizontal distance traveled in flight between the first and second impacts; 
c) the minimum value of ω0 for this situations. 
 
Situation II: slipping for part of the impacts. 
Find, again: 
a) tan θ; 
b) the horizontal distance traveled in flight between the first and second impacts. 
Taking both of the above situations into account, sketch the variation of tan θ with ω0. 

 

Problem 2 
In a square loop with a side length L, a large number of balls of negligible radius and each with a charge q 
are moving at a speed u with a constant separation a between them, as seen from a frame of reference that 
is fixed with respect to the loop. The balls are arranged on the loop like the beads on a necklace, L being 
much greater than a, as indicated in the figure 2.1. The no conducting wire forming  
the loop has a homogeneous charge density per unit length in the in the frame of the loop. Its total charge 
is equal and opposite to the total charge of the balls in that frame. 



Consider the situation in which the loop moves with velocity v parallel to its side AB (fig. 2.1) through a 
homogeneous electric field of strength E which is perpendicular to the loop velocity and makes an angle θ 
with the plane of the loop. 
 

 
Taking into account relativistic effects, calculate the following magnitudes in the frame of reference of an 
observer who sees the loop moving with velocity v: 
a) The spacing between the balls on each of the side of the loop, aAB , aBC , aCD , y aDA. 
b) The value of the net charge of the loop plus balls on each of the side of the loop: QAB ,  QBC , QCD y, QDA  
c) The modulus M of the electrically produced torque tending to rotate the system of the loop and the 

balls. 
d) The energy W due to the interaction of the system, consisting of the loop and the balls with the electric 

field. 
 All the answers should be given in terms of quantities specified in the problem. 
Note. The electric charge of an isolated object is independent of the frame of reference in which the 
measurements takes place. Any electromagnetic radiation effects should be ignored. 
 
Some formulae of special relativity 
 
Consider a reference frame S’ moving with velocity V with reference to another reference frame S. The 
axes of the frames are parallel, and their origins coincide a t  = 0. V is directed along the positive direction 
of the x axis. 
 
Relativistic sum of velocities 
 
If a particle is moving with velocity u’ in the x’ direction , as measured in S’, the velocity of the particle 
measured in S is given by: 

2c
Vu

1

Vu
u ′

+

+′
=                                                                                                                                              

Relativistic Contraction 
 
If an object at rest in frame S  has length  L0 in the x-direction, an observer in frame S’ (moving at velocity 
V in the x-direction} will measure its length to be: 
 

L =
2

2

0 1
c

v
L −                                             

 
 



Problem   3 Cooling Atoms by laser 
To study the properties of isolated atoms with a high degree of precision they must be kept almost at rest 
for a length of time. A method has recently been developed to do this. It is called “laser cooling” and is 
illustrated by the problem below. 
 
In a vacuum chamber a well collimated beam of Na23 atoms (coming from the evaporation of a sample at 
103 K) is illuminated head-on with a high intensity laser beam (fig. 3.1). The frequency of laser is chosen 
so there will be resonant absorption of a photon by those atoms whose velocity is v0. When the light is 
absorbed, these atoms are exited to the first energy level, which has a mean value E above the ground 
state and uncertainty of Γ  (fig. 3.2). 
 
 

 
For this process, the atom’s decrease in velocity ∆v1 is given by ∆v1 = v1 – v0. Light is then emitted by the 
atom as it returns to its ground state. The atom’s velocity changes by ∆v’   =  v’

1 – v1 and its direction of 
motion changes by an angle ϕ  (fig. 3.3). 
 

 
 
This sequence of absorption and emission takes place many times until the velocity of the atoms has 
decreased by a given amount ∆v such that resonant absorption of light at frequency v no longer occurs. It 
is then necessary to change the frequency of laser so as to maintain resonant absorption. The atoms 
moving at the new velocity are further slowed down until some of them have a velocity close to zero. 
 
As first approximation we may ignore any atomic interaction processes apart from the spontaneous 
absorption and emission light described above. 
Furthermore, we may assume the laser to be so intense that the atoms spend practically no time in the 
ground state.  
  
 
Questions 
 
a) Find the laser frequency needed ensure the resonant absorption of the light by those atoms whose 

kinetic energy of the atoms inside the region behind the collimator. Also find the reduction in the 
velocity of these atoms, ∆v1, after the absorption process. 

 
b) Light of the frequency calculated in question a) is absorbed by atoms which velocities lie within a   

range ∆v0. Calculate this velocity range. 



c) When an atom emits light, its direction of motion changes by ϕ  from initial direction. Calculate ϕ. 
d) Find the maximum possible velocity decrease  ∆v  for a given frequency. 
e) What is the approximate number N  of absorption-emission events necessary to reduce the velocity of 

an atom from is initial value vo 
 -found in question a) above- almost to zero? Assume the atom travels in a straight line. 
f)Find the time t that the process in question e takes. Calculate the distance ∆S an atom travels in this 

time. 
 Data 
  E = 3,36⋅10-19 J 
  Γ = 7,0⋅10-27 J 
  c = 3⋅108 ms-1 
  mp = 1,67⋅10-27 kg 
  h = 6,62⋅10-34 Js 
  k = 1,38⋅10-23 JK-1 
where c is speed of light, h is Planck’s constant, k is the Boltzmann constant, and mp is the mass of 
proton. 
 

T H E O R E T I C A L    P R O B L E M S.    S O L U T I O N S 
 
Solution Problem 1 
a) Calculation of the velocity at the instant before impact 
Equating the potential gravitational energy to the kinetic energy at the instant before impact we can arrive 
at the pre-impact velocity v0: 

             mgh =  
2

2
0mv

          (1)  

              from which we may solve for v0 as follows: 
 

             V0  =  gh2           (2)  

b) Calculation of the vertical component of the velocity at the instant after impact  
Let v2x and v2y be the horizontal and vertical components, respectively, of the velocity of the mass center 
an instant after impact. The height attained in the vertical direction will be αh and then:  

2
2yv  =  hg2 α            (3)   

from which, in terms of α (or the restitution coefficient  c  = α ):  

v2y  =  hg2 α  =  cv0          (4)   

c) General equations for the variations of linear and angular momenta in the time interval of the  
Impact     

 
    Considering that the linear impulse of the forces is equal to the variation of the linear momentum and 
that the angular impulse of the torques is equal to the variation of the angular momentum, we have: 

              Iy =   ∫
2

1

)(
t

t

dttN   =  mv0    +  mv2y   =  m (1 + c)  gh2      (5)   

                Ix  =    ( )dttf
t

t

r∫
2

1

  =  mv2x        (6)    



                Iθ  =    ( )dttRf
t

t

r∫
2

1

=   R ( )dttf
t

t

r∫
2

1

  =   I (ωo  −  ω2)     (7)    

Where Ix, Iy and Iθ are the linear and angular impulses of the acting forces and ω2  is the angular velocity 
after impact. The times t1 and t2 correspond to the beginning and end of impact.   
 
Variants   
At the beginning of the impact the ball will always be sliding because it has a certain angular velocity ω0. 
There are, then, two possibilities: 
 
I. The entire impact takes place without the friction being able to spin the ball enough for it to stop at the 

contact point and go into pure rolling motion.    
 
II. For a certain time  t  ∈  (t1, t2), the point that comes into contact with the floor has a velocity equal to 

zero and from  that moment the friction is zero. Let us look at each case independently. 
 
Case  I 
In this variant, during the entire moment of impact, the ball is sliding and the friction relates to the normal 
force as: 
fr  =  µ kN(t)           (8)  
Substituting (8) in relations (6) and (7), and using (5), we find that: 
 

    I x  =  µ k ∫
2

1

)(
t

t

dttN   =  µ kIy  =  µ k (1 + c ) gh2  =  mv2x      (9) 

 and: 

        Iθ  =  R µ k  ∫
1

1

)(
t

t

dttN   =  R µ k m(1 + c) gh2   =  I(µ 0  −  µ 2)     (10) 

 which can give us the horizontal component of the velocity v2x and the final angular velocity in the form: 

       V2x  =  µ k (1 + c) gh2          (11)   

      ω2  =  ω0  −  
I

cmRk )1( +µ
 gh2         (12) 

With this we have all the basic magnitudes in terms of data. The range of validity of the solution under 
consideration may be obtained from (11) and (12). This solution will be valid whenever at the end of the 
impact the contact point has a velocity in the direction of the negative x. That is, if: 
 
    ω2R  >  v2x  
 

    ω0  −  
I

cmRk )1( +µ
  gh2   >  

R

ck )1( +µ
gh2                                              

 

    ω0  >  )1(
2

c
R

ghk +
µ









+1

2

I

mR
        (13) 

          so, for angular velocities below this value, the solution is not valid. 
 
Case  II 
In this case, rolling is attained for a time t between the initial time t1 and the final time t2 of the impact. 
Then the following relationship should exist between the horizontal component of the velocity v2x and the 
final angular velocity: 
   ω2R  =  v2x           (14) 
Substituting  (14) and  (6) in  (7), we get that: 
 



   mRv2x  =  I 






 −
R

v x2
0ω          (15) 

 which can be solved for the final values: 

    V2x  =  

R

I
mR

I

+

0ω
  =  

ImR

RI

+2
0ω

  =  
7

2
ω0R       (16) 

 and: 

    ω2  =  
ImR

I

+2
0ω

  =  
7

2
 ω0         (17) 

Calculation of the tangents of the angles  
 
Case  I  
For  tan θ we have, from (4) and (11), that:  

     tan θ  =  
y

x

v

v

2

2   =  
ghc

ghck

2

2)1( +µ
  =µ k 

c

c)1( +
  

     tan θ  =  µ k 
c

c)1( +
          (18) 

 i.e., the angle is independent of ω0. 
 
Case  II 
Here (4) and (16) determine for  tan θ  that: 

    tan θ  =  
y

x

v

v

2

2   =  
2

0

mRI

RI

+
ω

  
ghc 2

1
  =

ghcmRI

RI

2)( 2

0

+
ω

                

     tan θ  =  
ghc

R

27

2 0ω
          (19) 

then  (18) and (19) give the solution (fig. 1.3). 
 

 
 
We see that θ  does not depend on ω o if  ω 0  >  ω 0 min; where  ω 0 min is given as: 

    ω o min  =  
R

I

mR
ghck 








++

2

12)1(µ
   



    ω o min  =   
R

ghck

2

2)1(7 +µ
         (20)   

Calculation of the distance to the second point of impact  
 
Case  I 
The rising and falling time of the ball is: 

    t v  =  2
g

v y2
   =  

g

ghc 22
  =  2c

g

h2
        (21) 

The distance to be found, then, is; 
 

    dI  =  v2xtv   =  µ k (1+ c) 
g

h
cgh

2
22         

    d1 =  4µ k(1+ c ) ch          (22) 
which is independent of  ω 0. 
 
Case  II 
In this case, the rising and falling time of the ball will be the one given in (21). Thus the distance we are 
trying  to find may be calculated by multiplying tv by the velocity  v2x so that: 
 

   dII  =  v2xtv  =  
g

h
c

ImR

I 2
2

2
0

+
ω

     =
g

hRc 2

2

5
1

2 0

+

ω
 

    dII  =  0

2

7

4 ωR
g

h
c  

Thus, the distance to the second point of impact of the ball increases linearly with  ω 0. 
 
Marking Code 
The point value of each of the sections is: 
                1.a        2 points 
                1.b        1.5 points 
                1.c        2 points 
 
                2.a        2 points 
                2.b        1.5 points 
                3           1 point    
 
Solution Problem  2  
Question   a: 
Let’s call S the lab (observer) frame of reference associated with the observer that sees the loop moving 
with velocity v; S’ to the loop frame of reference (the x’ axis of this system will be taken in the same 
direction as  v

r
; y’ in the direction of side DA and  z’ axis, perpendicular to the plane of the loop). The 

axes of  S are parallel to those of  S’ and the origins of both systems coincide at t  =  0. 
 
1. Side  AB  
 
  ''

ABS   will be a reference frame where the moving balls of side AB are at rest. Its axes are parallel        

   to those of  S  and  'S . ''S has a velocity  u  with respect to  'S . 

  According to the Lorentz contraction, the distance  a, between adjacent balls of AB, measured in ''S , is: 



               ar  =  

2

2

1
c

u

a

−

          (1) 

 
(This result is valid for the distance between two adjacent balls that are in one of any sides, if a, is  
measured in the frame of reference in which they are at rest).  
 
    Due to the relativistic sum of velocities, an observer in  S  sees the balls moving in AB with velocity: 

2
1

c

uv
uv

uAB

+

+=           (2) 

So, because of Lorentz  contraction, this observer will see the following distance between balls: 

r
AB

AB a
c

u
a

2

2

1−=          (3) 

Substituting (1) and (2) in (3) 

a

c

uv
t

v

aAB

2

2

2

1

1

+

−
=          (4) 

2. Side CD 
For the observer in S, the speed of balls in CD is: 

2
1

c

uv
uv

uCD

−

−=           (5) 

From the Lorentz contraction: 

r
CD

CD a
c

u
a

2

2

1−=          (6) 

Substituting (1) and (5) in (6) we obtain: 

a

c

uv
c

v

aCD

2

2

2

1

1

−

−
=          (7) 

 
3. Side DA 

In system S’, at time 'ot , let a ball be at 0'
1

'
1

'
1 === zyx . At the same time the nearest neighbour to 

this ball will be in the position ayx == '
2

'
2 ,0 , .0'

2 =z  
The space-time coordinates of this balls, referred to system S, are given by the Lorentz transformation: 
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1
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2

2
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−
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y=y’ 
z=z’           (8) 
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Accordingly, we have for the first ball in S: 
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     (9) 
 
And for the second: 

'
o

2

2222
'
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2

22 t

c
v

1

1
t ;0z ;a y;vt

c
v

1

1
x
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===

−

=      (10) 

As t1= t2, the distance between two balls in S will be given by: 
aDA=(x2-x1)

2 + (y2 – y1)
2 + (z2-z1)

2        (11) 
So: 
aAD=a           (12) 
4. Side BC 
If we repeat the same procedure as above, we can obtain that: 
aBC=a 
           (13) 
Question b: 
The charge of the wire forming any of the sides, in the frame of reference associated with the loop can be 
calculated as: 

q
a
L

Qwire −=           (14) 

Because L/a is the number of balls in that side. Due to the fact that the charge in invariant, the same 
charge can be measured in each side of the wire in the lab (observer) frame of reference. 
1. Side AB 
The charge corresponding to balls in side AB is, in the lab frame of reference: 

q
a

c
v

1L
Q

AB

2

2

balls ,AB −
−

=         (15) 

This is obtained from the multiplication of the number of balls in that side multiplied by the (invariant) 
charge of one ball. The numerator of the first factor in the right side of equation (15) is the contracted 
distance measured by the observer and the denominator is the spacing between balls in that side. 
Replacing in (15) equation (4), we obtain: 

a
Lq

c
uv1

Q
2balls ,AB 







 +=         (16) 

Adding (14) and (16) we obtain for the total charge of this side: 

q
a
L

c
uv

Q
2AB =           (17) 

2. Side CD 
Following the same procedure we have that: 

a
Lq

c
uv

1q
a

c
v

1
Q

2
CD

2

2

balls ,CD 






 −=−
−

=       (18) 

And adding (14) and (18) we obtain: 

q
a
L

c
uv

Q
2CD −=          (19) 

The length of these sides measured by the observer in S is L and the distance between balls is a, so: 

a
Lq

QQ balls ,DAballs ,BC ==         (20) 

Adding (14) and (20) we obtain: 



QBC = 0           (21.1) 
QDA=0           (21.2) 
Question c: 
There is electric force acting into the side AB equal to: 

→→→








== Eq
a
L

c
uv

EQF
2ABAB         (22) 

 
and the electric force acting into the side CD is: 

→→→








−== Eq
a
L

c
uv

EQF
2CDCD         (23) 

FCD and F, form a force pair. So, from the expression for the torque for a force pair we have that (fig. 2.2): 

θ=
→

sinL FM AB          (24) 

And finally: 

θ=
→

sinEq
a
L

c
uv

M
2

2
         (25) 

 
          Fig 2.2 

Question d: 
Let’s call VAB and VCD the electrostatic in the points of sides AB and CD respectively. Then: 
W=VABQAB + VCDQCD         (26) 

Let’s fix cero potential (V=0) in a plane perpendicular to 
→
E  and in an arbitrary distance R from side AB 

(fig. 2.3). 

 
Figure 2.3 

Then: 
W=-ERQAB – E(R+Lcosθ)QCD        (27) 
But QCD=-QAB, so: 
W=-ELQABcosθ          (28) 



Substituting (17) in (28) we obtain: 

θ= cos
ac
qEuvL

W
2

2

         (29) 

Marking Code 
Grading for questions will be as follows: 
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results: 1,5 points. 
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If the necessary calculations are not present: 0,8 point for both (12) and (13) correct; 0,5 points for only 
one of them correct. 
Question b: 
1. Obtaining expressions (17) and (19) correctly: 1,0 point. 
    Only one of them correct: 1,0 point. 
2. Obtaining expressions (21.1) and (21.2) correctly: 0,5 point. 
    Only one them correct: 0,5 point. 
Question d: 
1. Obtaining expression (29) correctly: 2,0 points. 
When the modulus of a vector is not present where necessary, the student will loose 0,2 points. When the 
modulus of q is not present where necessary the student will loose 0,1 points. 
 
Solution Problem  3 
Question a: 
The velocity vo of the atoms whose kinetic energy is the mean of the atoms on issuing from the collimator 
is given is given by: 

m
kT3

vkT
2
3

mv
2
1

o
2
o =⇒=        (1) 

 

s/m  
1067,123

101038,13
v

27

323
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⋅⋅
⋅⋅⋅=  

vo ≈ 1,04⋅103 m/s because: 
m ≈ 23 mp          (2) 
Since this velocity is much smaller than c, vo<< c, we may disregard relativistic effects. 
Light is made up of photons with energy hν and momentum hν/c. 
In the reference system of the laboratory, the energy and momentum conservation laws 
applied to the absorption process imply that: 
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2
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hν/c<<mvo. Then v1 ≈ vo and this implies mvo∆v1 = hν = E, where we assume that  
v1 + vo ≈ 2vo 
Combining these expressions: 



c
v

1

h
E
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=ν           (3) 

and: 

c
v

1

1
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v
o

1

+
−=∆          (4) 

And  substituting the numerical values: 
ν ≈ 5,0⋅1014 Hz      ∆v1 ≈ -3,0⋅10-2 m/s 
If we had analyzed the problem in the reference system that moves with regard to the 
laboratory at a velocity vo, we would have that: 

ν=+− hE)vv(m
2
1 2

21  

Where 

c
v

1

'

o+

ν=ν  is the frequency of the photons in the laboratory 

system. Disregarding 2
1v∆  we get the same two equations above. 

The approximations are justifiable because: 

o

1

v

v∆
−  ∼ 10-4  

Then v1 + vo = 2vo - ∆v1 ≈ 2vo 
 
Question b: 
For a fixed ν: 








 −
ν

= 1
h
E

cv o          (5) 

if E has an uncertainty Γ, vo would have an uncertainty: 
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ν
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so the photons are absorbed by the atoms which velocities are in the interval 
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Question c: 
The energy and momentum conservation laws imply that: 

'h'mv
2
1

Emv
2
1 2

1
2
1 ν+=+  

(ν’ – is the frequency of emitted photon) 

θν+ϕ= cos
c

'h
cos'mvmv 11  

θν−ϕ=  sin
c

'h
sin'mv0 1  

The deviation ϕ of the atom will be greatest when 
2
π=θ , then: 
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tansin'mv
c
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since ν’ ≈ ν: 

cmv
E
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1

m ≈ϕ          (7) 

rad 105
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E
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Question d: 
As the velocity of the atoms decreases, the frequency needed for resonant absorption 
increases according to: 

c
v

1

h
E

o+
=ν  

When the velocity is vo = ∆v, absorption will still be possible in the lower part of the 
level if: 
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∆v = 3,12 m/s 
 
Question e: 

If each absorption-emission event varies the velocity as 
mc
E

v1 ≈∆ , decreasing velocity 

from vo to almost zero would require N events, where: 

4o
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v
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∆
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Question f: 
If  absorption is instantaneous, the elapsed time is determined by the spontaneous 

emission. The atom remains in the excited state for a certain time, 
Γ

=τ h
, then: 

s 1037,3t
E

mchvNh
Nt 9o −⋅≈∆⇒

Γ
=

Γ
=τ=∆  

The distance covered in that time is ∆S=vo∆t/2. Assuming that the motion is uniformly 
slowed down: 

m 75,1SEmchv
2
1

S 2
o ≈∆⇒Γ=∆  

 
Marking Code 
a)Finding   vo  1 pt  Total 3 pt 
        “    ν  1 pt 
        “    ∆v1  1 pt 
b)     “    ∆vo  1,5 pt  Total 1,5 pt 



c)     “    ϕm  1,5 pt  Total 1,5 pt 
d)     “    ∆v  1 pt  Total 1 pt 
e)     “    N  1 pt  Total 1 pt 
f)     “    ∆t  1 pt  Total 2 pt 
        “    ∆S  1 pt         ____________ 

     Overall total 10 pts 
We suggest in all cases: 0,75 for the formula; 0,25 for the numeral operations.  
 

E X P E R I M E N T A L      PR O B L E M 
 
Problem 
Inside a black box provided with three terminals labeled A, B and C, there are three electric components 
of different nature. The components could be any of the following types: batteries, resistors larger then 
100 ohm, capacitors larger than 1 microfarad and semiconductor diodes. 
a)Determine what types of components are inside the black box and  its relative position to terminal A, B 

and C. Draw the exploring circuits used in the determination, including those used to discard circuits 
with similar behaviour 

b)If a battery was present, determine its electromotive force. Draw the experimental circuit used. 
c)If a resistor was present, determine its value. Draw the experimental circuit used. 
d)If a capacitor was present, determine its value. Draw the experimental circuit used. 
e)If a diode was present, determine Vo and Vr, where Vo the forward bias threshold voltage and Vr is the 

reverse bias breakdown voltage. 
f)Estimate, for each measured value, the error limits. 
 
The following equipments and devices are available for your use: 

1 back box with three terminals labeled A, B and C; 
1 variable DC power supply; 
2 Polytest 1 W multimeters; 
10 connection cables; 
2 patching boards; 
1 100 kΩ, 5 % value resistor; 
1 10 kΩ, 5 % value resistor; 
1 1 kΩ, 5 % value resistor; 
1 100 µF, 20 % value capacitor; 
1 chronometer; 
2 paper sheets; 
1 square ruler; 
1 interruptor. 

Voltmeter internal resistance. 
Scale   Value in kΩ 
0-1 V   3,2 1 % 
0-3 V   10 1 % 
0-10 V   32 1 % 
0-20 V   64 1 % 
0-60 V   200 1 % 
 
Ammeter internal resistance. 
Scale   Value in Ω 
0-0,3 mA  1 000 1 % 
0-1 mA      263 1 % 
0-3 mA        94 1 % 
0-20 mA       30,4 1 % 
0-30 mA       9,84 1 % 
0-100 mA       3,09 1 % 
0-300 mA       0,99 1 % 
0-1 mA        0,31 1 % 
 



Notice: Do not use the Polystes 1 W as an ohmmeter. Protect your circuit against large currents, and do 
not use currents larger than 20 mA. 

  
 Give your results by means of tables or plots. 
 
 When drawing the circuits, use the following symbols: 

 
 

E X P E R I M E N T A L      PR O B L E M.    S O L U T I O N 
 
Solution Problem 
Since a battery could be present, the first test should be intended to detect it. To do that, the voltage drops 
Vab, Vac and Vbc should be measured using a voltmeter. This test will show that no batteries are present. 
 
Next, a testing circuit as shown in figure 4.1 should be used. 

 
By means of this circuit, the electric conduction between a pair of terminals should be tested, marking all 
permutations and reversing the polarity. Resistor R1 is included to prevent a large current across the 
diode. One conclusion is that between A and C there is a diode and a resistor in series, although its 
current position is still unknown. The other conclusion is that a capacitor is tighted to terminal B. To 
determine the actual circuit topology, further transient experiments have to be conducted. 
 
In this way, it is concluded that the actual circuit inside the black box is that shown in figure 4.2. 



 
The best procedure for the resistor value determination is to plot a set of voltage and current values 
measured between A and C. Figure 4.3 shows the resulting plot. Extrapolating both linear regions, the 
values of Vo and Vz are obtained and the resistor value equals the reciprocal of the slope. 
 
Similar, the best method to measure the capacitor value is to build a testing circuit as shown in figure 4.4. 
The current is adjusted to full scale and then, the switch is opened. 
 
The time needed by the current to drop to its half value is measured. Applying the formulae t = RCIn(2), 
the value of C is obtained. 

 
Marking Code 
1. Determination of circuit topology: 8 points. 
     1.1 For discarding the presence of a battery: 1 point. 
     1.2 For drawing the exploring circuit which determine the circuit topology in a unique way: 7 points. 
2. Resistor and diode parameters value measurement: 8 points. 
     2.1 For drawing the measuring circuit: 2 points. 
     2.2 Error limits calculation: 3 points. 
     2.3 Result: 3 points. 
     2.3.1 Coarse method: 2 points. 
     2.3.2 Graphic method: 3 points. 
3. Capacitor value measurement: 4 points. 
     3.1 For drawing the measuring circuit: 2 points. 
     3.2 Error limits calculations: 2 points. 
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THE EXAMINATION 
XXV INTERNATIONAL PHYSICS OLYMPIAD 

BEIJING, P ERPLE’S REPUBLIC CHINA 
THEORETICAL COMPETITION 

July 13, 1994 
Time available: 5 hours 
READ THIS FIRST! 

 
INSTRUCTIONS: 
1. Use only the ball pen provided. 
2. Your graphs should be drawn on the answer sheets attached to the problem. 
3. Your solutions should be written on the sheets of paper attached to the problems. 
4. Write at the top of the first page of each problem: 

● The total number of pages in your solution to the problem 
● Your name and code number 
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Theoretical Problem 1 

RELATIVISTIC PARTICLE 

In the theory of special relativity the relation between energy E and momentum P 
or a free particle with rest mass m0 is 

242
0

22 mccmcpE =+=  

When such a particle is subject to a conservative force, the total energy of the 

particle, which is the sum of 42
0

22 cmcp +  and the potential energy, is conserved. If 

the energy of the particle is very high, the rest energy of the particle can be ignored 
(such a particle is called an ultra relativistic particle). 

1) consider the one dimensional motion of a very high energy particle (in which 
rest energy can be neglected) subject to an attractive central force of constant 
magnitude f. Suppose the particle is located at the centre of force with initial 
momentum p0 at time t=0. Describe the motion of the particle by separately 
plotting, for at least one period of the motion: x against time t, and momentum 
p against space coordinate x. Specify the coordinates of the “turning points” in 
terms of given parameters p0 and f. Indicate, with arrows, the direction of the 
progress of the mothon in the (p, x) diagram. There may be short intervals of 
time during which the particle is not ultrarelativistic. However, these should be 
neglected. 
Use Answer Sheet 1. 

2) A meson is a particle made up of two quarks. The rest mass M of the meson is 
equal to the total energy of the two-quark system divided by c2. 

Consider a one--dimensional model for a meson at rest, in which the two 
quarks are assumed to move along the x-axis and attract each other with a force 
of constant magnitude f It is assumed they can pass through each other freely. 
For analysis of the high energy motion of the quarks the rest mass of the quarks 
can be neglected. At time t=0 the two quarks are both at x=0. Show separately 
the motion of the two quarks graphically by a (x, t) diagram and a (p, x) 
diagram, specify the coordinates of the “turning points” in terms of M and f, 
indicate the direction of the process in your (p, x)  diagram, and determine the 
maximum distance between the two quarks. 
Use Answer Sheet 2. 

3) The reference frame used in part 2 will be referred to as frame S, the Lab frame, 
referred to as S, moves in the negative x-direction with a constant velocity 
v=0.6c. the coordinates in the two reference frames are so chosen that the point 
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x=0 in S coincides with the point 0=′x  in S ′′  at time 0=′= tt . Plot the 
motion of the two quarks graphically in a ( x′ , t ′ ) diagram. Specify the 
coordinates of the turning points in terms of M, f and c, and determine the 
maximum distance between the two quarks observed in Lab frame S ′ . 

 Use Answer Sheet 3. 
 The coordinates of particle observed in reference frames S and S ′′  are related 

by the Lorentz transformation 







+=′

+=′

)(

)(

c
xtt

ctxx

βγ

βγ
 

 where cv /=β , 21/1 βγ −=  and v is the velocity of frame S moving 

relative to the frame S ′′ . 
4) For a meson with rest energy Mc2=140 MeV and velocity 0.60c relative to the 

Lab frame S ′′ , determine its energy E ′  in the Lab Frame S ′′ . 
 
ANSWER SHEET 1      ANSWER SHEET 2 
1)           2) 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

O 
O 

t 

O 
x 

p 

t 

x1, x2 

O 
x1 

p1 

O 
x2 

p2 

Quark1 Quark2 

The maximum distance between 
the two quarks is d= 
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ANSWER SHEET 3 
3)  
 
 
 

 

 

 

 
Theoretical Problem 1—Solution 
1) 1a. Taking the force center as the origin of the space coordinate x and the zero 
potential point, the potential energy of the particle is 

||)( xfxU =         (1) 

The total energy is 

||42
0

22 xfcmcpW ++= . 

1b. Neglecting the rest energy, we get 

|||| xfcpW += ,       (2) 

Since W is conserved throughout the motion, so we have 

cpxfcpW 0|||| =+= ,       (3) 

Let the x axis be in the direction of the initial momentum of the particle, 

    

cpfxpc
cpfxpc

cpfxpc
cpfxpc

0

0

0

0

=−−
=−
=+−

=+

     











<<
><
<>
>>

.0,0
;0,0
;0,0
;0,0

px
px
px
px

    (4) 

The maximum distance of the particle from the origin, let it be L, corresponds to p=0. 
It is 

fcpL /0= . 

 1c. From Eq. 3 and Newton’s law 





<
>−

==
;0,
;0,

xf
xf

F
dt
dp        (5) 

we can get the speed of the particle as 

c
dt
dp

f
c

dt
dx

== ,       (6) 

t 

x1′, x2′ 

O 

The maximum distance between the 
two quarks observed in S′frame is  
d′= 

when 
when 
when 
when 
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i.e. the particle with very high energy always moves with the speed of light except that 
it is in the region extremely close to the points Lx ±= . The time for the particle to 
move from origin to the point Lx = , let it be denoted by τ , is 

fpcL // 0==τ . 

So the particle moves to and for between Lx =  and Lx −=  with speed c and period 

fp /44 0=τ . The relation between x  and t  is 











≤≤−=
≤≤−=
≤≤−=
≤≤=

,43,4
,32,2

,2,2
0,

ττ
ττ
ττ

τ

tLctx
tctLx

tctLx
tctx

      (7) 

 The required answer is thus as given in Fig. 1 and Fig. 2. 
 
 
 
 
 
 
 

Fig. 1         Fig. 2 
 2) The total energy of the two-quark system can be expressed as 

|||||| 2121
2 xxfcpcpMc −++= ,     (8) 

where 1x , 2x  are the position coordinates and 1p , 2p  are the momenta of quark 1 

and quark 2 respectively. For the rest meson, the total momentum of the two quarks is 
zero and the two quarks move symmetrically in opposite directions, we have 

021 =+= ppp ,  21 pp −= , 21 xx −= .     (9) 

Let p0 denote the momentum of the quark 1 when it is at x=0, then we have 

cpMc 0
2 2=   or   2/0 Mcp =       (10) 

From Eq. 8, 9 and 10, the half of the total energy can be expressed in terms of 1p  and 

1x  of quark 1: 

|||| 110 xfcpcp += ,        (11) 

just as though it is a one particle problem as in part 1 (Eq. 3) with initial momentum 

L 
A 

B D t 

x 

O 
-L C 

τ τ 2 3 τ 4 τ 

τ= p0/f 
L= p0/f 

L 
x 

-L 

p0 

-p0 

O 

p 

L=p0c/f 
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2/0 Mcp = . From the answer in part 1 we get the (x, t) diagram and (p, x) diagram of 

the motion of quark 1 as shown in Figs. 3 and 4. For quark 2 the situation is similar 
except that the signs are reversed for both x and p; its (x, t) and (p, x) diagrams are 
shown in Figs. 3 and 4. 
 The maximum distance between the two quarks as seen from Fig. 3 is 

fMcfcpLd //22 2
0 === .       (12) 

 
 
 
 
 
 
 
 

Fig. 3 
 
 
 
 
 
 
 
 

Fig. 4a     Quark1 
Fig. 4b     Quark2 

 
 3) The reference frame S moves with a constant velocity V=0.6c relative to the Lab 
frame S ′′  in the x′  axis direction, and the origins of the two frames are coincident at 
the beginning ( 0=′= tt ). The Lorentz transformation between these two frames is 
given by: 

),/(
),(
cxtt

ctxx
βγ
βγ

+=′
+=′

        (13) 

where cV /=β , and 21/1 βγ −= . With cV 6.0= , we have 5/3=β , and 

4/5=γ . Since the Lorenta transformation is linear, a straight line in the (x, t) diagram 

L 
x1 

-L 

p0 

-p0 

O 

p1 

L=Mc2/2f 
P0=Mc/2 

L 
x2 

-L 

p0 

-p0 

O 

p2 

L 
A 

B F t 

x1、x2 

O 
-L D 

τ τ 2 3 τ 4 τ 

τ= Mc/2f 
L=Mc2/2f 

B 

E 

x1: solid line 
x2: dash line 
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transforms into a straight line the ( x′ , t ′ ) diagram, thus we need only to calculate the 
coordinates of the turning points in the frame S ′ . 
 For quark 1, the coordinates of the turning points in the frames S and S ′  are as 
follows: 

Frame  S        Frame S ′  

1x   1t    )( 111 ctxx βγ +=′    )/( 111 extt βγ +=′  

11 4
3

4
5 ctx +=       cxt /

4
3

4
5

11 +=  

0  0   0       0 

L  τ    LL 2)1( =+ βγ     ττβγ 2)1( =+  

0  τ2     LL
2
32 =γβ      τγτ

2
52 =  

L−   τ3    LL =− )13( βγ     ττβγ 3)3( =−  

0  τ4    LL 34 =γβ      τγτ 54 =  

where fMcfcpL 2// 2
0 == , fMcfp 2//0 ==τ . 

 For quark 2, we have 
Frame  S        Frame S ′  

2x   2t    )( 222 ctxx βγ +=′    )/( 222 cxtt βγ +=′  

22 4
3

4
5 ctx +=       cxt /

4
3

4
5

22 +=  

0  0   0       0 

L−   τ    LL
2
1)1( −=−− βγ    ττβγ

2
1)1( =−  

0  τ2     LL
2
32 =γβ      τγτ

2
52 =  

L  τ3    LL
2
7)13( =+βγ    ττβγ

2
9)3( =+  

0  τ4    LL 34 =γβ      τγτ 54 =  

With the above results, the ( x′ , t ′ ) diagrams of the two quarks are shown in Fig. 5. 
 The equations of the straight lines OA and OB are: 

tctx ′=′′ )(1 ;   ττβγ 2)1(0 =+≤′≤ t ;    (14a) 

tctx ′−=′′ )(2 ;  ττβγ
2
1)1(0 =−≤′≤ t     (14b) 
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The distance between the two quarks attains its maximum d ′  when τ
2
1

=′t , thus we 

have maximum distance 

f
McLcd
2

)1(2)1(2
2

=−=−=′ βγτβγ .      (15) 

 
Fig. 5 

4) It is given the meson moves with velocity V=0.6 crelative to the Lab frame, its 
energy measured in the Lab frame is 

175140
8.0

1
1 2

2

=×=
−

=′
β

McE MeV. 

 Grading Scheme 
Part 1 2 points, distributed as follows: 
 0.4 point for the shape of x(t) in Fig. 1; 

0.3 point for 4 equal intervals in Fig. 1; 
(0.3 for correct derivation of the formula only) 
0.1 each for the coordinates of the turning points A and C, 0.4 point in total; 
0.4 point for the shape of p(x) in fig. 2; (0.2 for correct derivation only) 

0.1 each for specification of 0p , fcpL /0= , 0p− , L−  and arrows, 0.5 point 

in total. 
(0.05 each for correct calculations of coordinate of turning points only). 

Part 2 4 points, distributed as follows: 

 0.6 each for the shape of )(1 tx  and )(2 tx , 1.2 points in total; 

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 3, 0.8 point 
in total; 
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 0.3 each for the shape of )( 11 xp  and )( 22 xp , 0.6 point in total;  

0.1 each for 2/0 Mcp = , fMcL 2/2= , 0p− , L−  and arrows in Fig. 4a and 

Fig. 4b, 1 point in total; 

0.4 point for fMcd /2=  

Part 3 3 point, distributed as follows: 

 0.8 each for the shape of )(1 tx ′′  and )(2 tx ′′ , 1.6 points in total; 

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 5, 0.8 point 
in total; (0.05 each for correct calculations of coordinate of turning points 
only). 

 0.6 point for fMcd 2/2=′ . 

Part 4 1 point (0.5 point for the calculation formula; 0.5 point for the numerical value 
and units) 
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Theoretical Problem 2 
SUPERCONDUCTING MAGNET 

 
 Super conducting magnets are widely used in laboratories. The most common 
form of super conducting magnets is a solenoid made of super conducting wire. The 
wonderful thing about a superconducting magnet is that it produces high magnetic 
fields without any energy dissipation due to Joule heating, since the electrical 
resistance of the superconducting wire becomes zero when the magnet is immersed in 
liquid helium at a temperature of 4.2 K. Usually, the magnet is provided with a 
specially designed superconducting switch, as shown in Fig. 1. The resistance r of the 

switch can be controlled: either r=0 in the superconducting state, or nrr =  in the 

normal state. When the persistent mode, with a current circulating through the magnet 
and superconducting switch indefinitely. The persistent mode allows a steady magnetic 
field to be maintained for long periods with the external source cut off. 
 The details of the superconducting switch are not given in Fig. 1. It is usually a 
small length of superconducting wire wrapped with a heater wire and suitably 
thermally insulated from the liquid helium bath. On being heated, the temperature of 
the superconducting wire increases and it reverts to the resistive normal state. The 

typical value of nr  is a few ohms. Here we assume it to be 5Ω . The inductance of a 

superconducting magnet depends on its size; assume it be 10 H for the magnet in Fig. 1. 
The total current I can be changed by adjusting the resistance R. 
 This problem will be graded by the plots only! 
 The arrows denote the positive direction of I, I1 and I2. 

 
Fig. 1 

1) If the total current I and the resistance r of the superconducting switch are controlled 
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to vary with time in the way shown in Figs, 2a and 2b respectively, and assuming 
the currents I1 and I2 flowing through the magnet and the switch respectively are 
equal at the beginning (Fig. 2c and Fig. 2d), how do they vary with time from t1 to 
t4? Plot your answer in Fig. 2c and Fig. 2d 

 
2) Suppose the power switch K is turned on at time t=0 when r=0, I1=0 and R=7.5Ω, 

and the total current I is 0.5A. With K kept closed, the resistance r of the 
superconducting switch is varied in he way shown in Fig. 3b. Plot the 
corresponding time dependences of I, I1 and I2 in Figs. 3a, 3c and 3d respectively. 

 

 

3) Only small currents, less than 0.5A, are allowed to flow through the 

Fig.2a 
 
 
 

2b 
 
 
 

2c 
 
 
 

2d 

Fig. 3a 
 
 
 

3b 
 
 
 

3c 
 
 
 

3d 



 12 

superconducting switch when it is in the normal state, with larger currents the 
switch will be burnt out. Suppose the superconducting magnet is operated in a 
persistent mode, i. e. I=0, and I1=i1(e. g. 20A), I2=-i1, as shown in Fig. 4, from t=0 
to t=3min. If the experiment is to be stopped by reducting the current through the 
magnet to zero, how would you do it? This has to be done in several operation steps. 
Plot the corresponding changes of I, r, I1 and I2 in Fig. 4 

 

 

4) Suppose the magnet is operated in a persistent mode with a persistent current of 20A 
(t=0 to t=3min. See Fig. 5). How would you change it to a persistent mode with a 
current of 30a? plot your answer in Fig. 5. 

 

Fig. 4a 
 
 
 
 

4b 
 
 
 

4c 
 
 
 
 

4d 

Fig. 5a 
 
 
 

5b 
 
 
 

5c 
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 Theoretical Problem 2—Solution 
 1) For t=t1 to t3 

 Since 0=r , the voltage across the magnet dtLdIVM /1= =0, therefore, 

0111 2
1)( ItII == ; 

012 2
1 IIIII −=−= . 

 For t=t3 to t4 

 Since I2=0 at t=t3, and I is kept at 02
1 I  after 

 3tt = , 02 == nM rIV , therefore, 1I  and 2I  will not change. 

01 2
1 II = ; 

02 =I  

 These results are shown in Fig. 6. 

 
 

5d 

Fig. 6a 
 
 
 

6b 
 
 
 
 

6c 
 
 
 

6d 
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 2) For 0=t  to 1=t min: 

 Since 0=r , 0/1 == dtLdIVM  

0)0(11 == II  

         5.012 =−= III A. 

 At 1=t min, r  suddenly jumps from O to nr , I will drop from RE /  to 

)/( nrRE +  instantaneously, because 1I  can not change abruptly due to the 

inductance of the magnet coil. For RE / =0.5A, Ω= 5.7R  and Ω= 5nR . I will drop 

to 0.3A. 
 For 1=t  min to 2 min: 

 I , 1I  and 2I  gradually approach their steady values: 

5.0==
R
EI A, 

5.01 == II A 

02 =I . 

The time constant 
 

n

n

Rr
rRL )( +

=τ . 

 When 10=L H, Ω= 5.7R  and Ω= 5nr , 3=τ sec. 

 For 2=t min to 3 min: 

 Since 0=r , 1I  and 2I  will not change, that is 

5.01 =I A and 02 =I  

 
 

Fig. 7a 
 
 

7b 
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 3) The operation steps are: 
 First step 

 Turn on power switch K, and increase the total current I to 20 A, i. e. equal to 1I . 

Since the superconducting switch is in the state 0=r , so that LVM =  0/1 =dtdI , 

that is, 1I  can not change and 2I  increases by 20A, in other words, 2I  changes 

from 20− A to zero. 
 Second step 

 Switch r  from 0 to nr . 

 Third step 

 Gradually reduce I to zero while keeping 5.02 <I A: since nM rVI /2 =  and 

dtdILVm /1= , when 10=L H, Ω= 5nr , the requirement 5.02 <I A corresponds to 

25.0/1 <dtdI A/sec, that is, a drop of <15A in 1 min. In Fig. 8 dtdI / ～0.1A/sec and 

dtdI /1  is around this value too, so the requirement has been fulfilled. 

 Final step 

 Switch r  to zero when 0=MV  and turn off the power switch K. These results 

are shown in Fig. 8. 

 

7c 
 
 
 
7d 

Fig. 8a 
 
 
 

8b 
 
 

8c 
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4) First step and second step are the same as that in part 3, resulting in 02 =I . 

 Third step Increase I by 10 A to 30 A with a rate subject to the requirement 

5.02 <I A. 

 Fourth step Switch r  to zero when 0=MV . 

 Fifth step Reduce I to zero, 301 =I  A will not change because MV  is zero. 

12 III −=  will change to 30−  A. The current flowing through the magnet is thus 

closed by the superconducting switch. 
 Final step Turn off the power switch K. The magnet is operating in the persistent 
mode. 
 These results are shown in Fig. 9. 

 
 Grading Scheme 
Part 1,   2 points: 

 0.5 point for each of 1I , 2I  from 1tt =  to 3t  and 1I , 2I  from 3tt =  to 4t . 

Part 2,   3 points: 

 0.3 point for each of 1I , 2I  from 0=t  to 1 min, I , 1I , 2I  at 1=t  min, 

8d 

Fig. 9a 
 
 
 

9b 
 
 
 

9c 
 
 
 

9d 
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and 0I , 1I , 2I  from 1=t  to 2 min; 

0.2 point for each of I , 1I , and 2I  from 2=t  to 3 min. 

Part 3,    2 points: 
0.25 point for each section in Fig. 8 from 3=t  to 9 min, 8 sections in total. 

Part 4,    3 points: 
 0.25 point for each section in Fig. 9 from 3=t  to 12 min, 12 sections in total. 
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 Theoretical Problem 3 
COLLISION OF DISCS WITH SURFACE FRICTION 

 
 A homogeneous disc A of mass m and radius RA moves translationally on a smooth 
horizontal x-y plane in the x direction with a velocity V (see the figure on the next 
page). The center of the disk is at a distance b from the x-axis. It collides with a 
stationary homogeneous disc B whose center is initially located at the origin of the 
coordinate system. The disc B has the same mass and the same thickness as A, but its 
radius is RB. It is assumed that the velocities of the discs at their point of contact, in the 
direction perpendicular to the line joining their centers, are equal after the collision. It 
is also assumed that the magnitudes of the relative velocities of the discs along the line 
joining their centers are the same before and after the collision. 
1) For such a collision determine the X and Y components of the velocities of the two 

discs after the collision, i. e. AXV ′ , AYV ′ , BXV ′  and BYV ′  in terms of m , AR , BR , 

V  and b . 

2) Determine the kinetic energies AE ′  for disc A and BE ′  for disc B after the collision 

in terms of m , AR , BR , V  and b . 

 

 
Theoretical Problem 3—Solution 

 1) When disc A collides with disc B, let n be the unit vector along the normal to 
the surfaces at the point of contact and t be the tangential unit vector as shown in the 

figure. Let ϕ  be the angle between n and the x axis. Then we have 

ϕsin)( BA RRb +=  

The momentum components of A and B along n and t before collision are: 

0,cos == BnAn mVmVmV ϕ , 
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0,sin == BtAt mVmVmV ϕ . 

 Denote the corresponding momentum components of A and B after collision by 

AnVm ′ , BnVm ′ , AtVm ′ , and BtVm ′ . Let Aω  and Bω  be the angular velocities of A and 

B about the axes through their centers after collision, and AI  and BI  be their 

corresponding moments of intertia. Then, 
2

2
1

AA mRI = ,     2

2
1

BB mRI =  

 The conservation of momentum gives 

BnAn VmVmmV ′+′=ϕcos ,       (1) 

tnAt VmVmmV ′+′=ϕsin ,        (2) 

 The conservation of angular momentum about the axis through O gives 

BBAABAAt IIRRVmmVb ωω +++′= )(       (3) 

 The impulse of the friction force exerted on B during collision will cause a 

momentum change of AtVm ′  along t and produces an angular momentum BBI ω  

simultaneously. They are related by. 

BBbBt IRVm ω=′          (4) 

 
 During the collision at the point of contact A and B acquires the same tangential 
velocities, so we have 

BBBtAAAt RVRV ωω −′=−′         (5) 

It is given that the magnitudes of the relative velocities along the normal direction 
of the two discs before and after collision are equal, i. e. 

AnBn VVV ′−′=ϕcos .         (6) 

From Eqs.   1 and 6 we get 
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0=′AnV , 

ϕcosVVBn =′ . 

 From Eqs. 2 to 5, we get 

      ϕsin
6
5VVAt =′ , 

      ϕsin
6
1VVBt =′ , 

      
A

A R
V

3
sinϕω = , 

      
B

B R
V

3
sinϕω = . 

 The x and y components of the velocities after collision are: 

 ,
)(6

5sincos 2

2

BA
AtAnAx RR

VbVVV
+

=′+′=′ ϕϕ       (7) 

2

22

)(6
)(5

cossin
BA

BA
AtAnAy RR

bRRVb
VVV

+

−+
=′+′−=′ ϕϕ ,   (8) 









+

−=′+′=′
2

2

)(6
51sincos

BA
BtBnBx RR

bVVV ϕϕ ,     (9) 

 

    2

22

)(6
)(5

cossin
BA

BA
BtBnBy RR

bRRVb
VVV

+
−+

−=′+′−=′ ϕϕ ,  (10) 

 2) After the collision, the kinetic energy of disc A is 

2

22
222

)(8
3

2
1)(

2
1

BA
AAAyAxA RR

bmVIVVmE
+

=+′+′=′ ω     (11) 

 while the kinetic energy of disc B is 

 







+

−=+′+′=′ 2

2
2222

)(12
111

2
1

2
1)(

2
1

BA
BBByBxB RR

bmVIVVmE ω   (12) 

Grading Scheme 
 1. After the collision, the velocity components of discs A and B are shown in Eq. 7, 
8, 9 and 10 of the solution respectively. The total points of this part is 8. 0. If the result 
in which all four velocity components are correct has not been obtained, the point is 
marked according to the following rules. 
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 0.8 point for each correct velocity component; 
 0.8 point for the correct description of that the magnitudes of the relative velocities 
of the discs along the line joining their centers are the same before and after the 
collision. 
 0.8 point for the correct description of the conservation for angular momentum; 
 0.8 point for the correct description of the equal tangential velocity at the touching 
point; 
 0.8 point for the correct description of the relation between the impulse and the 
moment of the impulse. 
 2. After the collision, the kinetic energies of disc A and disc B are shown in Eqs. 
11 and 12 of the solution respectively. 
 1.0 point for the correct kinetic energies of disc A; 
 1.0 point for the correct kinetic energies of disc B; 
 The total points of this part is 2.0 
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XXV INTERNATIONAL PHYSICS OLYMPIAD 
BEIJING, P EOPLE’S REPUBLIC OF CHINA 

PRACTICAL COMPETITION 
July 15, 1994 

Time available: 2.5 hours 
READ THIS FIRST! 

 
INSTRUCTIONS: 
1. Use only the ball pen provided. 
2. Your graphs should be drawn on the answer sheets attached to the problem. 
3. Write your solution on the marked side of the paper only. 
4. The draft papers are provided for doing numerical calculations and draft drawings. 
5. Write at the top of every page: 
   ● The number of the problem 
   ● The number of the page of your report in each problem 
   ● The total number of pages in your report to the problem 
   ● Your name and code number 
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EXPERIMENTAL PROBLEM 1 
Determination of light reflectivity of a transparent dielectric surface.  

 
Experimental Apparatus 

1. He-Ne Laser(～1.5mW).The light from this laser is not linearly polarized. 
2. Two polarizers (P1, P2) with degree scale disk (Fig. 1), one (P1) has been 

mounted in front of the laser output window as a polarizer, and another one can be 
fixed in a proper place of the drawing board by push-pins when it is necessary. 

3. Two light intensity detectors (D1, D2) which consisted of a photocell and a 
microammeter (Fig. 2). 

4. Glass beam splitter(B). 
5. Transparent dielectric plate, whose reflectivity and refractive index are to be 

determined. 
6. Sample table mounted on a semicircular degree scale plate with a coaxial swivel 

arm(Fig. 3). 
7. Several push-.pins for fixing the sample table on the drawing board and as its 

rotation axis. 
8. Slit aperture and viewing screen for adjusting the laser beam in the horizontal 

direction and for alignment of optical elements. 
9. Lute for adhere of optical elements in a fixed place. 
10. Wooden drawing board. 
11. Plotting papers 

 
Experiment Requirement 
1. Determine the reflectivity of the p-component as a function of the incident angle 

(the electric field component, parallel to the plane of incidence is called the 
p-component). 

(a) Specify the transmission axis of the polarizer (A) by the position of the marked 
line on the degree scale disk in the p-componet measurement(the transmission 
axis is the direction of vibration of the electric field vector of the transmitted 
light). 

(b) Choose any one of the light intensity detector and set its micro-ammeter at the 
range of "×5". Verify the linear relation ship between  the light  intensity and 
the micro-ammeter reading. Draw the optical schematic diagram. Show your 
measured data and  calculated  results(including  the calculation formula)in 
the farm of a table. Plot the linear relationship curve. 
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(c) Determine the reflectivity of the p-component as a function of the incident 
angle. Draw the optical schematic diagram. Show your measured data and 
calculated reflectivity(including the calculation formula)in the form of a table. 
Plot the reflectivity as a function of the incident angle. 

 
2. Determine the refractive index of the sample as accurate as possible. 
Explanation and Suggestion 

1. Laser radiation avoid direct eye exposure. 
2. Since the output power of the laser beam may fluctuate from time to time, the 

fluctuation of light output has to be monitored during the performance of the 
experiment and a correction of the experimental results has to be made. 

3. The laser should be lighting all the time, even when you finish your experiment 
and leave the examination hall, the laser should be keeping in work. 

4. The reflected light is totally plane polarized at an incident angle Bθ  while 

tg Bθ n=  (refractive index). 

 

Fig. 1 polarizers with degree scale disk 

 
Fig. 2  Light intensity detector 
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(1) Insert the plug of photocell into the “INPUT” socket of microammeter 
(2) Switching on the microammeter. 
(3) Blocd off the light entrance hole in front of the photocell and adjust the scale 

reading of micro ammeter to “0”. 
(4) Set the “Multiple” knob to a proper range. 

 

Fig.3 Sample table mounted on a semicircular degree scale plate 
 
Experimental Problem 1——Solution 

1. (a) Determine the transmission axis of the polarizer and the Brewster angle Bθ  of 

the sample by using the fact that the rerlectivity of the p-component 0=pR  at 

the Brewster angle. 

Change the orientation of the transmission axis of 1P , specified by the position of 

the marked line on the degree scale disk (ψ ) and the incident angle ( iθ ) successively 

until the related intensity 0=rI . 

 

Now the incident light consists of p-component only and the incident angle is Bθ , the 
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corresponding values 1ψ  and Bθ  are shown below: 

1ψ  140.0° 322.0° 141.0° 322.5° 

θ  56.4° 56.4° 56.2° 56.2° 

°±°= 5.05.1401ψ   or  322.3°±0.1° 

 The Brewster angle Bθ  is 56.3°±0.1° 

1. (b) Verification of the linear relationship between the light intensity and the 
microammenter reading. 

 

 The intensity the transmitted light passing through two polarized 1P  and 2P  

obeys Malus’ law 

θθ 2
0 cos)( II =  

where 0I  is the intensity of the light polarized by 1p  and incident, I  is the 

intensity of the transmitted light, and θ  is the angle between the transmission axes of 

1P  and 2p . Thus we can obtain light with various intensities for the verification by 

using two polarizers. 
 The experimental arrangement is shown in the figure. 

 The light intensity detector 1D  serves to monitor the intensity fluctuation of the 

incident beam (the ratio of 1I  to 2I  remain unchanged), and 2D  measures 2I . Let 

)(1 θi  and )(2 θi  be the readings of 1D  and 2D  respectively, and )(2 θψ  be the 

reading of the marked line position. 02 =i  when 90=θ °, the corresponding 2ψ  

is 2ψ (90°), and the value of θ  corresponding to 2ψ  is 

|90)90(| 22 °±°−= ψψθ  

Data and results; 
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°=° 4)90(2ψ  

2ψ  94.0° 64.0° 49.0° 34.0° 4.0° 

θ  0.0° 30.0° 45.0° 60.0° 90.0° 

Ai µθ )(1  6.3×1 5.7×1 5.7×1 5.7×1 5.7×1 

Ai µθ )(2  18.7×5 12.7×5 8.2×5 4.0×5 0.0×5 

 From the above data we can obtain the values of )(/)( 2 θθ II  from the formula 

)0(
)0(

)(
)()(

2

1

1

2

0 i
i

i
i

I
I

⋅=
θ
θθ  

and compare them with θ2cos  for examining the linear relationship. The results 

obtained are: 

θ  0.0° 30.0° 45.0° 60.0° 90.0° 

θ2cos  1.00 0.75 0.50 0.25 0.00 

0/)( II θ  1.00 0.75 0.49 0.24 0.00 

 
1. (c) Reflectivity measurement 

 The experimental arrangement shown below is used to determine the ratio of 0I  

to 1I  which is proportional to the ratio of the reading )( 20i  of 2D  to the 

corresponding reading )( 10i  of 1D . 
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 Then used the experimental arrangement shown below to measure the relativity 

pR  of the sample at various incident angle )(θ  while the incident light consists of 

p-component only. Let )(1 θi  and )(2 θi  be the readings of 1D  and 2D  

respectively. 

 
 Then the reflectivity is 

20

10

1

2

0 )(
)()()(

i
i

i
i

I
IRp ⋅==

θ
θθθ  

Data and results: 

Ai
Ai

µ
µ

ψ

3.13
58.19

5.140

10

20

1

=
×=
°=

 

θ (°) )(2 θi  )(1 Ai µ  )(θpR  

5 
10 
20 
30 
40 
50 
53 
55 

56.3（dark） 
58 
60 
64 
66 
68 

15.1×0.2 
14.9×0.2 
13.3×0.2 
11.4×0.2 
7.8×0.2 
2.3×0.2 
0.7×0.2 
0.3×0.2 
～0 

0.3×0.2 
1.1×0.2 
6.5×0.2 
7.8×0.2 
16.3×0.2 

11.1 
11.2 
11.1 
12.2 
14.7 
16.9 
11.3 
11.3 
11.5 
11.5 
13.5 
16.7 
11.8 
15.0 

0.037 
0.036 
0.032 
0.025 
0.014 
0.0037 
0.0017 
0.00059 
～0 

0.0007 
0.0024 
0.011 
0.018 
0.029 
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72 
76 
80 
84 

5.3×0.1 
13.1×1 
4.4×5 
9.1×5 

11.7 
14.0 
11.7 
14.5 

0.061 
0.13 
0.25 
0.42 

The curve of reflectivity of p-component as a function of incident in plexiglass 

 
2. The Brewster angle Bθ  can be found from the above date as 

°±°= 2.03.56Bθ  

The index of refraction can be calculated as 

01.050.1tan ±== Bn θ  

The sources of errors are: 
1. Detector sensitivity is low. 
2. The incident light does not consist of p-component only. 
3. The degree scales are not uniform. 

 
EXPERIMENTAL PROBLEM 1: Grading Scheme(10 points) 
Part 1. Reflectivity of the p-component. 7 points, distributed as follows. 

a. Determination of the transmission axis of the polarizer (A) in p-component 
measurement, 1 point. 

(Error less than ±2°,    1.0point; 
error less than ±3°,    0.7point; 
 error less than ±4°,   0.3point; 
 error less than ±5°，  0.1 point.) 

b. Verification of the linearity of the light intensity detector(2 points). Draws the 
optical schematic diagram correctly, 1.0 point; (Without the correction of the 
fluctuation of the light intensity, 0.4 point only); 
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Uses 0/ II ～ θ2cos  figure to show the “linearity”, 0.5 point; 

Tabulate the measured data(with 5 points at least)correctly, 0.5 point. 
c. Determination of the reflectivity of the p-component of the light as a function of 

incident angle, 4 points, distributed as follows. 
Draws the optical schematic diagram correctly and tabulate the measured data 
perfectly, 2.0 points; 
Plot the reflectivity as the function of incident angle with indication of errors, 2 
points. 

Part 2. Determination of the refractive index of sample, 3 point. 
Brewster angle of sample, 1 point; 

   (Error less than ±1°,     1.0point; 
 error less than ±2°,     0.5point; 
 error less than ±3°,     0.2point; 
 error larger than ±3°,      0 point.) 

The refractive index of sample, 0.5 point. 
Discussion and determination of errors, 1.5 points. 

EXPERIMENTAL PROBLEM 2 
Black Box 
Given a black box with two similar terminals. There are no more than three passive 
elements inside the black box. Find the values of elements in the equivalent circuit 
between the terminals. This box is not allowed to be opened. 
Experimental Apparatus 

1. Double channel oscilloscope with a panel illustration, showing the name and 
function of each knob 

2. Audio frequency signal generator with a panel illustration, showing the name 
and function of each knob 

3. Resistance box with a fixed value of l00 ohm(< ±0.5%) 
4. Several connecting wires 
5. For the coaxial cables,  the wire in black color at the terminal is grounded. 
6. Log-log paper, semi-log paper, and millimeter paper are provided for use if 

necessary 
Note: The knobs, which were not shown on the panel illustration of the “signal 

generator” and “oscilloscope”, have been set to the correct positions. It should 
not be touched by the student. 

Experimental Requirements 
1. Draw the circuit diagram in your experiment. 
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2. Show your measured data and the calculated results in the form of tables. Plot 
the experimental curves with the obtained results on the coordinate charts 
provided(indicate the title of the diagram and the titles and scale units of the 
coordinate axes) 

3. Given the equivalent circuit of the black box and the names of the elements with 
their values in the equivalent circuit(write down the calculation formulas). 

Instructions 
1. Do your experiment in the frequency range between 100 Hz and 50kHz. 
2. The output voltage of the signal generator should be less than 1.0V 

(peak-to-peak). Set the “Out Attenuation” switch to “20” db position and it 
should not be changed. 

3. On connecting the wires, be careful to manage the wiring so as to minimize the 
50Hz interference from the electric mains. 

Instruction for Using XD2 Type Frequency Generator 
1. Set the “Out Attenuation” to “20” db position and it should not be changed. 
2. Set the “Damping Switch” to “Fast” position. 
3. The indication of the voltmeter of the signal generator is the relative value, but 

not the true value of the output. 
4. Neglect the error of the frequency readings. 

Note: For XD22 Type Audio Frequency generator, there is no “Damping Switch”, and 
the “output” switch should be set to the sine “~” position. 
 
Instruction for Using SS-5702 Type Oscilloscope 

1. Keep the “V mode” switch in “Dual” position. 
2. The “Volts/div” (black) and the “variable control” (red) vary the gain of the 

vertical amplifier, and when the “variable control” (red) is ill the fully 
clockwise position, the black setting are calibrated. 

3. The “Times/div” (Black) varies the horizontal sweep rate from 0.5μs/div to 
0.2s/div, and they are calibrated when the “variable control” (red) is in the fully 
clockwise CAL position. 

4. The “Trigging Source” (Trigging sweep signal) is used to select the trigging 
signal channel and the" level" control is used to adjust the amplitude of the 
trigging signal. 

5. Measuring accuracy: ±4%. 
Instruction for Using “Resistance Box” 

The resistance of the “Resistance Box” has been set to a value of 100ohm, and it 
should not be changed.  
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Experimental problem 2......  Solution 
1. The circuit diagram is shown in Fig. 1 

 

Fig. 1 
We have the relation: 

R
VI R= ; 

R
V

V
I

VRZ
R

RZRZ ++ ==+  

2. Measure the values of RZV +  and RV  at various frequencies (f), the measured data 

and calculated value of Z+R are shown in table l. “The Z+R-f curve is plotted in Fig. 2 

 
Table l. The magnitude of impedance verus frequency 

310(×f Hz) )( ppRZ VU +  RU mVpp Ω×+ 310(RZ ) 

0.100 
0.200 
0.400 
0.700 
0.900 

0.600 
0.600 
0.600 
0.300 
0.300 

22.0 
45.0 
94.0 
92.0 
121 

2.73 
1.33 
0.638 
0.326 
0.248 
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1.00 
1.10 
1.16 
1.25 
1.50 
2.00 
4.00 
8.00 
15.0 
30.0 
50.0 

0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.600 
0.600 
0.600 
0.600 

136 
140 
141 
140 
120 
88.0 
78.0 
38.0 
20.0 
10.0 
6.0 

0.220 
0.214 
0.213 
0.214 
0.250 
0.341 
0.769 
1.58 
3.00 
6.00 
10.0 

From table 1 and Fig. 2, we got the conclusions: 

(1) Current resonance (minimum of Z)  occurs at 3
0 1016.1 ×≅f Hz. 

(2) 0ff 〈〈 , fZ ∝ , 2/πϕ −≈∆ . The impedance of the “black box” at low 

frequency is dominated by a inductance. 

(3) 0ff 〉〉 , fZ ∝ , 2/πϕ ≈∆ . The impedance of the “black box” at high 

frequency is dominated by a inductance. 
(4) Equivalent circuit of the “black box”; r, L and C connected in series shown in 

Fig. 3. 

 
Fig. 3 

3. Determination of the values of r , L  and C . 
 (a) r  

 At resonance frequency 0f  
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LC VV −=  

 Then 

RrR
V

V
I

VRZ
R

RZRZ +===+ ++  

 From table 1, Ω=+ 213Rr , it is given Ω= 100R , so the equivalent resistance 
r  in Fig. 3 is equal 113Ω . 
 (b) C  

 At low frequency, 0≈Lz  in Fig. 3. So the circuit could be considered as a series 

RC circuit. 
 From phasor diagram, Fig. 4, 

I
VV

I
V

Z
C

rRRZC
C

221 ++ −
===

ω
 

 Since 322 106/ −
++ ×≈RZrR VV  at 100=f Hz, 2

rRV +  can beneglected with respect to 

2
RZV + , so 

Ω×=+≈≈ + 31073.21 RZ
I

V
C

RZ

ω
 

f
RZ

C µ
ω

58.0
)(

1
=

+
≈ . 

fC µ58.0≅ .                         Fig. 4 

 (c) L 

 At high frequency, 0≈LZ  in Fig. 3. So the circuit could be considered as a series 

RL circuit. 
 From phasor diagram, Fig. 5,  

22|| RrRZL VVV ++ −= , 

 Since 422 105.4/ −
++ ×≈RZRr VV  at 50=f kHz, 2

RrV +  can be 

neglected with respect to 2
RZV + , so                              Fig. 5 

Ω=+≈=== + 410|| RZ
I

V
I

VZL RZL
Lω     (3) 



 35 

     8.31=
+

=
ω

RZL mH. 

 Error estimation: 
 It is given, precision of the resistance box reading %5.0/ ≈∆ RR  
    precision of the voltmeter reading %4/ ≈∆ VV  

 (1) Resistance r : at resonance frequency 0f  

R
V

VRr
R

RZ+=+  

%4)(
≈

∆
+

∆
+

∆
=

+
+∆

+

+

R
R

V
V

V
V

Rr
Rr

R

R

RZ

RZ +4%+0.5%=8.5% 

Ω=∆ 16r  
 (2) Capacitance C: (Neglect the error of the frequency reading) 

R
V

VZ
C R

RZ
C

+=≅
ω
1  

%8.8≈
∆

+
∆

+
∆

=
∆

+

+

R
R

V
V

V
V

C
C

R

R

RZ

RZ  

 The approximation RZC VV +≈  will introduce apercentageerror 0.3% 

 (3) Inductance L: Similar to the results of capacitance C, but the percentage error 

introduced by the approximation RZL VV +≈  is much small (0.003%) and thus 

negligible. 

%5.8≈
∆
L
L . 

 
Experimental Problem 2: Grading Scheme (10 points maximum) 
1. Measuring circuit is correct as shown in Fig.(a) 

……2.0point 

 

Fig. a 
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2. Correct data table and figure to show the characteristic of the black box 
……2.0 points 

3. The equivalent circuit of the black box, and the names of the elements with their 
values in the equivalent circuit are correct 

total 6.0 points 
(a)  R, L and C are connected in series 

……1.5 point 
(L and C are connected in series 

……1.0 point) 
(b)  Correct value (error less than 15% ) for each element 

……0.5 point (×3) 
(error between 15% and 30% 0.3) 
(error between 30% and 50% 0.1) 

(c)  Correct calculation formula for each element 
……0.5 point (×3) 

(d)  Error estimate is reasonable for each element 
……0.5 points (×3) 





Theoretical Question 1

This is essentially a question in special relativity. The core of the question is part (b) which involves a
simulated experiment. It requires students to combine the concepts of gravitational red shifts, resonance
absorption, Doppler shifts and the graphical interpretation of data.

Overall the question appears to have met its objective of allowing nearly all students to gain a few marks
from part (a). A suprisingly large number of students were able to obtain essentially the correct solution
to part (b) using the appropriate straight-line graph. Part (c) also produced many basically correct
solutions with some of the best students simplifying their soloution to the logical limit. One student
managed to obtain the correct answer making use of the 4-momentum. The very best answers to this
question were almost flawless and demonstrated a very high level of conceptual understanding and the
ability to synthesise ideas from a number of different areas.

Theoretical Question 2

This question is concerned with the propagation of waves in a medium with a varying refractive index
and the different modes of propagation which occur. The responses to this question mirrored the marks
distribution shown in Figure 1 for the overall theory results. A number of students gained near-perfect
marks while an equivalent number gained very few. The most interesting part of the marking arose in
connection with part (a), where the arc radius R specified in the question needs to be established. The
marking team encountered four distinguishable and valid approaches to establishing the result for R.

Part (c) proved to be a useful discriminator between those students who either did, or did not, realise that
a seris of paths, or modes, exists from the source to the receiver. The numerical estimates in part (d),
and intended to assist the markers, required some care in marking according to the way in which students
treated the issue of significant figures during the calculation. Part (e), which led to the conclusion that
the ray with the smallest calue of initial angle will arrive first, was a useful discriminator.

Theoretical Question 3

This question is essentially a problem in mechanics with elements of hydrostatics. It involves the concepts
of Archimedes’ Principle, small oscillations and rotational dynamics applied to an interesting geometry.

One common mistake of interpretation noted by the examiners was to set the length of the rod equal
to the radius rather than to the diameter of the cylinder. In line with the policy on marking, students
were only penalised once for this mistake provided that the rest of their analysis was consistent with this
assumption. The clever aspect of the problem was in part (d) where some students attempted to estimate
the solution to the transcendental equation α− sinα cos α = 1.61 sin α, rather than simply checking that
α ' 1.57(π/2) gave a reasonable result. Students from two teams used numerical methods to obtain a
more precise value for α. One student who correctly applied Newton’s method to solve the equation for
α received the special prize for mathematics.

Experimental Question 1

This question was concerned with the motion of small objects (cylinders) in a viscous medium, and was
designed to test as wide a range of experimental skills as possible. In particular the question aimed to
test:

• understanding of the concept of terminal velocity.

• experimental technique; the experiment required careful hand-eye coordination to reduce systematic
effects (for example by dropping the cylinders each time with the same orientation and using multiple
timings to reduce the scatter in the results).

• the ability to graph and interpret data including the use of logarithmic and linear plots and the
interpretation of slopes and intercepts.

• estimation of uncertainties in the results.

1



The experiment generally worked as expected. Experimental techniques were uniformly good, and
the students demonstrated excellent manipulative skills. Their main weakness was in the handling of the
determination of the density of the glycerine from the graph of fall time as a function of the density of
the cylinders. Students in general did not measure the intercept on the density axis but calculated the
density from the intercept on the fall time axis and the slope of the graph.

Experimental Question 2

This question made use of a laser pointer to carry out several experiments in optics. The first task
concerned the use of a metal ruler as a diffraction grating. In this experiment the diffraction pattern was
formed by reflection with the incident laser beam at nearly normal incidence to the ruler. (This geometry
is rather different from the more common demonstration where the incident beam is at close to grazing
incidence.) A number of students had difficulty with this geometry and failed to obtain a convincing
pattern.

The second experiment investigated the reflection and transmission of light through transparent media.
The main difficulty with the measurements was that changes in intensity had to be estimated by eye
using a set of calibrated transmission discs. This was much more demanding than using, for example,
a photodiode and multimeter as it required the exercise of considerable experimental judgement. It
therefore provided an excellent test of a student’s experimental technique.

The final experiment was concerned with the scattering of light from a translucent material formed by
adding a few drops of milk to water. The amount of scattering and the reduction in the transmitted
intensity were measured as a function of the concentration of milk. Students had considerable difficulty
with this experiment with some not recognising the phenomena they were meant to be observing. However
the best students were still able to obtain convincing results. The exercise therefore provided good
discrimination between the most able students.

2



Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a) (3 marks)
A photon of frequency f possesses an effective inertial mass m determined by its energy. Assume
that it has a gravitational mass equal to this inertial mass. Accordingly, a photon emitted at the
surface of a star will lose energy when it escapes from the star’s gravitational field. Show that the
frequency shift ∆f of the photon when it escapes from the surface of the star to infinity is given by

∆f

f
' −

GM

Rc2

for ∆f ¿ f where:

• G = gravitational constant

• R = radius of the star

• c = velocity of light

• M = mass of the star.

Thus, the red-shift of a known spectral line measured a long way from the star can be used to
measure the ratio M/R. Knowledge of R will allow the mass of the star to be determined.

(b) (12 marks)
An unmanned spacecraft is launched in an experiment to measure both the mass M and radius
R of a star in our galaxy. Photons are emitted from He+ ions on the surface of the star. These
photons can be monitored through resonant absorption by He+ ions contained in a test chamber
in the spacecraft. Resonant absorption accors only if the He+ ions are given a velocity towards the
star to allow exactly for the red shifts.

As the spacecraft approaches the star radially, the velocity relative to the star (v = βc) of the He+

ions in the test chamber at absorption resonance is measured as a function of the distance d from
the (nearest) surface of the star. The experimental data are displayed in the accompanying table.

Fully utilize the data to determine graphically the mass M and radius R of the star. There is no
need to estimate the uncertainties in your answer.

Data for Resonance Condition

Velocity parameter β = v/c (×10−5) 3.352 3.279 3.195 3.077 2.955
Distance from surface of star d (×108m) 38.90 19.98 13.32 8.99 6.67

(c) (5 marks)
In order to determine R and M in such an experiment, it is usual to consider the frequency
correction due to the recoil of the emitting atom. [Thermal motion causes emission lines to be
broadened without displacing emission maxima, and we may therefore assume that all thermal
effects have been taken into account.]

(i) (4 marks)
Assume that the atom decays at rest, producing a photon and a recoiling atom. Obtain the
relativistic expression for the energy hf of a photon emitted in terms of ∆E (the difference in
rest energy between the two atomic levels) and the initial rest mass m0 of the atom.

(ii) (1 mark)

Hence make a numerical estimate of the relativistic frequency shift

(

∆f

f

)

recoil

for the case of

He+ ions.

Your answer should turn out to be much smaller than the gravitational red shift obtained in
part (b).

Data:



Velocity of light c = 3.0 × 108ms−1

Rest energy of He m0c
2 = 4 × 938(MeV)

Bohr energy En = −

13.6Z2

n2
(eV)

Gravitational constant G = 6.7 × 10−11Nm2kg−2



Theoretical Question 2

Sound Propagation

Introduction

The speed of propagation of sound in the ocean varies with depth, temperature and salinity. Figure
1(a) below shows the variation of sound speed c with depth z for a case where a minimum speed value
c0 occurs midway betweeen the ocean surface and the sea bed. Note that for convenience z = 0 at the
depth of this sound speed minimum, z = zS at the surface and z = −zb at the sea bed. Above z = 0, c
is given by

c = c0 + bz .

Below z = 0, c is given by
c = c0 − bz .

In each case b =

∣

∣

∣

∣

dc

dz

∣

∣

∣

∣

, that is, b is the magnitude of the sound speed gradient with depth; b is assumed

constant.

c0

z

z S

b

0

−z

c

0

0

+c=c     bz

− c=c     bz

Figure 1 (a)

θ0

z

x
S H

θ

X

z S

b

0

−z

Figure 1 (b)

Figure 1(b) shows a section of the z–x plane through the ocean, where x is a horizontal direction.
The variation of c with respect to z is shown in figure 1(a). At the position z = 0, x = 0, a sound source
S is located. A ‘sound ray’ is emitted from S at an angle θ0 as shown. Because of the variation of c with
z, the ray will be refracted.

(a) (6 marks)
Show that the trajectory of the ray, leaving the source S and constrained to the z–x plane forms
an arc of a circle with radius R where

R =
c0

b sin θ0

for 0 ≤ θ0 <
π

2
.

(b) (3 marks)
Derive an expression involving zS , c0 and b to give the smallest value of the angle θ0 for upwardly
directed rays which can be transmitted without the sound wave reflecting from the sea surface.

(c) (4 marks)
Figure 1(b) shows the position of a sound receiver H which is located at the position z = 0, x = X.
Derive an expression involving b, X and c0 to give the series of angles θ0 required for the sound ray
emerging from S to reach the receiver H. Assume that zS and zb are sufficiently large to remove
the possibility of reflection from sea surface or sea bed.



(d) (2 marks)
Calculate the smallest four values of θ0 for refracted rays from S to reach H when

• X = 10000 m

• c0 = 1500 ms−1

• b = 0.02000 s−1

(e) (5 marks)
Derive an expression to give the time taken for sound to travel from S to H following the ray path
associated with the smallest value of angle θ0, as determined in part (c). Calculate the value of
this transit time for the conditions given in part (d). The following result may be of assistance:

∫

dx

sinx
= ln tan

(x

2

)

Calculate the time taken for the direct ray to travel from S to H along z = 0. Which of the two rys
will arrive first, the ray for which θ0 = π/2, or the ray with the smallest value of θ0 as calculated
for part (d)?



Theoretical Question 3

Cylindrical Buoy

(a) (3 marks)
A buoy consists of a solid cylinder, radius a, length l, made of lightweight material of uniform
density d with a uniform rigid rod protruding directly outwards from the bottom halfway along the
length. The mass of the rod is equal to that of the cylinder, its length is the same as the diameter
of the cylinder and the density of the rod is greater than that of seawater. This buoy is floating in
sea-water of density ρ.

In equilibrium derive an expression relating the floating angle α, as drawn, to d/ρ. Neglect the
volume of the rod.

α α
a a

(b) (4 marks)
If the buoy, due to some perturbation, is depressed vertically by a small amount z, it will experience
a nett force, which will cause it to begin oscillating vertically about the equilibtium floating position.
Determine the frequencty of this vertical mode of vibration in terms of α, g and a, where g is the
acceleration due to gravity. Assume the influence of water motion on the dynamics of the buoy is
such as to increase the effective mass of the buoy by a factor of one third. You may assume that α
is not small.

z

(c) (8 marks)
In the approximation that the cylinder swings about its horizontal central axis, determine the
frequency of swing again in terms of g and a. Neglect the dynamics and viscosity of the water in
this case. The angle of swing is assumed to be small.

θ



(d) (5 marks)
The buoy contains sensitive acelerometers which can measure the vertical and swinging motions
and can relay this information by radio to shore. In relatively calm waters it is recorded that the
vertical oscillation period is about 1 second and the swinging oscillation period is about 1.5 seconds.
From this information, show that the floating angle α is about 90◦ and thereby estimate the radius
of the buoy and its total mass, given that the cylinder length l equals a.

[You may take it that ρ ' 1000 kgm−3 and g ' 9.8 ms−2.]



Original Theoretical Question 3

The following question was not used in the XXVI IPhO examination.

Laser and Mirror

(a)

Light of frequency fi and speed c is directed at an angle of incidence θi to the normal of a mirror,
which is receding at speed u in the direction of the normal. Assuming the photons in the light beam
undergo an elastic collision in the rest frame of the mirror, determine in terms of θi and u/c the
angle of reflection θr of the light and the reflected frequency fr, with respect to the original frame.

u

f f

θθi r

i r

[You may assume the following Lorentz transformation rules apply to a particle with energy E and
momentum p:

p⊥ = p⊥ , p‖ =
p‖ − vE/c2

√

1 − v2/c2
, E =

E − vp‖
√

1 − v2/c2
,

where v is the relative velocity between the two inertial frames; p stands for the component of
momentum perpendicular to v and p represents the component of momentum parallel to v.]

(b)
A thin rectangular light mirror, perfectly reflecting on each side, of width 2a and mass m, is mounted
in a vacuum (to eliminate air resistance), on essentially frictionless needle bearings, so that it can
rotate about a vertical axis. A narrow laser beam operating continuously with power P is incident
on the mirror, at a distance b from the axis, as drawn.

b

b

a

a

elevation plan

Suppose the mirror is originally at rest. The impact of the light causes the mirror to acquire a
very small but not constant angular acceleration. To analyse the siuation approximately, assume
that at any given stage in the acceleration process the angular velocity ω of the mirror is constant
throughout any one complete revolution, but takes on a slightly larger value in the next revolution
due to the angular momentum imparted to the mirror by the light during the preceding revolution.
Ignoring second order terms in the ratio (mirror velocity / c), calculate this increment of angular
momentum per revolution at any given value of ω. [HINT: You may find it useful to know that
∫

sec2θ dθ = tan θ.]

(c)
Using the fact that the velocity of recoil of the mirror remains small compared with c, derive an
approximate expression for ω as a function of time.



(d)
As the mirror rotates, there will be instants when the light is reflected from its edge, giving the
reflected ray an angle of somewhat more than 90◦ with respect to the incident beam.. A screen 10
km away, with its normal perpendicular to the incident beam, intercepts the beam reflected from
near the mirror’s edge. Find the deviation ξ of that extreme spot from its initial position (as shown
by the dashed line, when the mirror was almost at rest), after the laser has operated for 24 hours.
You may suppose the laser power is P = 100 W, that the mirror has mass m = 1 gram and that
the geometry of the apparatus corresponds to a = b

√

2. Neglect diffraction effects at the edge.

ξ
mirror

laser

screen



Experimental Question 1

Terminal velocity in a viscous liquid

An object falling in a liquid will eventually reach a constant velocity, called the terminal velocity. The
aim of this experiment is to measure the terminal velocities of objects falling through glycerine.

For a sphere of radius r falling at velocity v through a viscous liquid, the viscous force F is given by
F = 6πηrv. Here η is a property of the liquid called the viscosity. In this experiment you will measure
the terminal velocity of metal cylinders (because cylinders are easier to make than spheres). The diameter
of each cylinder is equal to its length, and we will assume the viscous force on such a cylinder is similar
to the viscous force on a sphere of the same diameter, 2r:

Fcyl = 6πκηrmv (1)

where κ = 1, m = 1 for a sphere.

Preliminary

Calculation of terminal velocity (2 marks)

If ρ is the density of the culinder and ρ′ is the density of the liquid, show that the terminal velocity vT

of the cylinder is given by
vT = Cr3−m(ρ − ρ′) (2)

where C is a constant and derive a expression for C.

Experiment

Use the equipment available to determine the numerical value of the exponent m (10 marks) and the
density of glycerine (8 marks).

Notes

• For consistency, try to ensure that the cylinders fall in the same orientation, with the axis of the
cylinder horizontal.

• The tolerances on the diameter and the length of the cylinders are 0.05 mm (you need not measure
them yourself).

• There is a brass sieve inside the container that you should use to retrieve the metal cylinders.
Important: make sure the sieve is in place before dropping objects into the glycerine, otherwise you
will not be able to retrieve them for repeat measurements.

• When glycerine absorbs water from the atmosphere, it becomes less viscous. Ensure that the
cylinder of glycerine is covered with the plastic film provided when not in use.

• Do not mix cylinders of different size and different material after the experiment.

Material Density (kgm−3)

Aluminium 2.70 × 103

Titanium 4.54 × 103

Stainless steel 7.87 × 103

Copper 8.96 × 103

1



Experimental Question 2

Diffraction and Scattering of Laser Light

The aim of this experiment is to demonstrate and quantify to some extent the reflection, diffraction, and
scattering of light, using visible radiation from a Laser Diode source. A metal ruler is employed as a
diffraction grating, and a perspex tank, containing water and diluted milk, is used to determine reflection
and scattering phenomena.

Section 1 (6 marks)

Place the 150 mm length metal ruler provided so that it is nearly normal to the incident laser beam, and
so that the laserr beam illuminates several rulings on it. Observe a number of “spots” of light on the
white paper screen provided, caused by the phenomenon of diffraction.

Draw the overall geometry you have employed and measure the position and separation of these spots
with the screen at a distance of approximately 1.5 metres from the ruler.

Using the relation
Nλ = h sin β

where N is the order of diffraction
λ is the radiation wavelength
h is the grating period
β is the angle of diffraction

and the information obtained from your measurements, determine the wavelength of the laser radiation.

Section 2 (4 marks)

Now insert the empty perspex tank provided into the space between the laser and the white paper screen.
Set the tank at approximately normal incidence to the laser beam.

(i) Observe a reduction in the emergent beam intensity, and estimate the percentage value of this re-
duction. Some calibrated transmission discs are provided to assist with this estimation. Remember
that the human eye has a logarithmic response.

This intensity reduction is caused primarily by reflection losses at the aid/perspex boundaries, of
which there are four in this case. THe reflection coefficient for normal incidence at each boundary, R,
which is the ratio of the reflectied to incident intensities, is given by

R = {(n1 − n2)/(n1 + n2)}
2

where n1 and n2 are the refractive indices before and after the boundary. The corresponding transmission
coefficient, assuming zero absorption in the perspex, is fiven by

T = 1 − R .

(ii) Assuming a refractive index of 1.59 for the perspex and neglecting the effect of multiple reflections
and cogerence, calculate the intensity transmission coefficient of the empty perspex tank. Compare
this result with the estimate you made in Part (i) of this Section.

Section 3 (1 mark)

Without moving the perspex tank, repeat the observations and calculations in Section 2 with the 50 mL
of water provided in a beaker now added to the tank. Assume the refractive index of water to be 1.33.

Section 4 (10 marks)

1



(i) Add 0.5 mL (12 drops) of milk (the scattering material) to the 50 mL of water in the perspex tank,
and stir well. Measure as accurately as possible the total angle through which the laser light is
scattered, and the diameter of the emerging light patch at the exit face of the tank, noting that these
quantities are related. Also estimate the reduction in transmitted intensity, as in earlier sections.

(ii) Add a further 0.5 mL of milk to the tank, and repeat the measurements requested in part (i).

(iii) Repeat the process in part (ii) until very little or no transmitted laser light can be observed.

(iv) Determine the relationship between scattering angle and milk concentration in the tank.

(v) Use your results, and the relationship

I = I0e
−µz = Tmilk × I0

where I0 is the input intensity
I is the emerging intensity
z is the distance in the tank
µ is the attenuation coefficient and equals a constant times the concentration of the scatterer

Tmilk is the transmission coefficient for the milk

to obtain an estimate for the value of µ for a scatterer concentration of 10%.

2



Solutions to Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a)

If a photon has an effective inertial mass m determined by its energy then mc2 = hf or m =
hf

c2
.

Now, assume that gravitational mass = inertial mass, and consider a photon of energy hf (mass

m =
hf

c2
) emitted upwards at a distance r from the centre of the star. It will lose energy on escape

from the gravitational field of the star.

Apply the principle of conservation of energy:

Change in photon energy (hfi − hff ) = change in gravitational energy, where subscript i →

initial state and subscript f → final state.

hfi − hff = −

GMmf

∞

−

[

−

GMmi

r

]

hff = hfi −

GMmi

r

hff = hfi −

GM hfi

c2

r

hff = hfi

[

1 −

GM

rc2

]

ff

fi

=

[

1 −

GM

rc2

]

∆f

f
=

ff − fi

fi

= −

GM

rc2

The negative sign shows red-shift, i.e. a decrease in f , and an increase in wavelength.
Thus, for a photon emitted from the surface of a star of radius R, we have

∆f

f
=

GM

Rc2

Since the change in photon energy is small, (δf ¿ f),

mf ' mi =
hfi

c2
.

(b)
The change in photon energy in ascending from ri to rf is given by

hfi − hff = −

GMmf

rf

+
GMmi

ri

'

GMhfi

c2

[

1

ri

−

1

rf

]

∴

ff

fi

= 1 −

GM

c2

[

1

ri

−

1

rf

]

In the experiment, R is the radius of the star, d is the distance from the surface of the star to the
spacecraft and the above equation becomes:

ff

fi

= 1 −

GM

c2

[

1

R
−

1

R + d

]

(1)

The frequency of the photon must be doppler shifted back from ff to fi in order to cause resonance
excitation of the He+ ions in the spacecraft.
Thus apply the relativistic Doppler principle to obtain:

f ′

ff

=

√

1 + β

1 − β



where f ′ is the frequency as received by He+ ions in the spacecraft, and β = v/c.
That is, the gravitationally reduced frequency ff has been increased to f ′ because of the velocity
of the ions on the spacecraft towards the star. Since β ¿ 1,

ff

f ′
= (1 − β)

1

2 (1 + β)−
1

2 ' 1 − β

Alternatively, since β ¿ 1, use the classical Doppler effect directly.
Thus

f ′ =
ff

1 − β

or
ff

f ′
= 1 − β

Since f ′ must be equal to fi for resonance absorption, we have

ff

fi

= 1 − β (2)

Substitution of 2 into 1 gives

β =
GM

c2

(

1

R
−

1

R + d

)

(3)

Given the experimental data, we look for an effective graphical solution. That is, we require a linear
equation linking the experimental data in β and d.
Rewrite equation 3:

β =
GM

c2

[

R\ + d − R\

(R + d)R

]

Inverting the equation gives:
1

β
=

(

Rc2

GM

)[

R

d
+ 1

]

or

1

β
=

(

R2c2

GM

)

1

d
+

Rc2

GM

Graph of
1

β
vs.

1

d

1

1

intercept =          =αRc
GM

GM
R cslope =         = R α

2 2

2

β

d

The slope is

(

Rc2

GM

)

R = αR (A)

The
1

β
-intercept is

(

Rc2

GM

)

= α (B)

and the
1

d
-intercept is −

1

R
(C)



R and M can be conveniently determined from (A) and (B). Equation (C) is redundant. However,
it may be used as an (inaccurate) check if needed.
From the given data:

R = 1.11 × 108 m

M = 5.2 × 1030 kg

From the graph, the slope αR = 3.2 × 1012 m (A)

The
1

β
-intercept α =

Rc2

GM
= 0.29 × 105 (B)

Dividing (A) by (B)

R =
3.2 × 1012 m

0.29 × 105
' 1.104 × 108 m

Substituting this value of R back into (B) gives:

M =
Rc2

gα
=

(1.104 × 108) × (3.0 × 108)2

(6.7 × 10−11) × (0.29 ×
1 05)

or M = 5.11 × 1030 kg

(c)

(i)

Atom before the decay Atom and photon after the decay

+ hf

m m0 0
’

For the photon, photon momentum is p =
hf

c
and photon energy is E = hf .

Use the mass-energy equivalence, E = mc2, to relate the internal energy change of the atom
to the rest-mass change. Thus:

∆E = (m0 = m′
0) c2 (1)

In the laboratory frame of reference the energy before emission is

E = m0c
2 (2)

Recalling the relativistic relation
E2 = p2c2 + m2

0c
4

The energy after emission of a photon is

E =
√

p2c2 + m′
0
2c4 + hf (3)

where also p = hf/c by conservation of momentum.
Conservation of energy requires that (2) = (3), so that:

(

m0c
2
− hf

)2
= (hf)2 + m2

0c
4

(

m0c
2
)2

− 2hfm0c
2 = m2

0c
4

Carrying out the algebra and using equation (1):

hf(2m0c
2) = (m2

0 − m′
0
2)c4

= (m0 − m′
0)c

2(m0 + m′
0)c

2

= ∆E[2m0 − (m0 − m′
0)]c

2

= ∆E[2m0c
2
− ∆E]



hf = ∆E

[

1 −

∆E

2m0c2

]

(ii)
For the emitted photon,

hf = ∆E

[

1 −

∆E

2m0c2

]

.

If relativistic effects are ignored, then

hf0 = ∆E .

Hence the relativistic frequency shift
∆f

f0

is given by

∆f

f0

=
∆E

2m0c2

For He+ transition (n = 2 → 1), applying Bohr theory to the hydrogen-like helium ion gives:

∆E = 13.6 × 22
×

[

1

12
−

1

22

]

= 40.8 ev

Also, m0c
2 = 3.752 × 106 eV. Therefore the frequency shift due to the recoil gives

∆f

f0

' 5.44 × 10−12

This is very small compared to the gravitational red-shift of
∆f

f
∼ 10−5, and may be ignored

in the gravitational red-shift experiment.



Solutions to Theoretical Question 2

(a)
Snell’s Law may be expressed as

sin θ

sin θ0

=
c

c0

, (1)

where c is the speed of sound.
Consider some element of ray path ds and treat this as, locally, an arc of a circle of radius R.
Note that R may take up any value between 0 and ∞. Consider a ray component which is initially
directed upward from S.

dz

dθR

Rds

θ

In the diagram, ds = Rdθ, or
ds

dθ
= R.

From equation (1), for a small change in speed dc,

cos θdθ =
sin θ0

c0

dc

For the upwardly directed ray c = c0 + bz so dc = bdz and

sin θ0

c0

b dz = cos θdθ , hence dz =
c0

sin θ0

1

b
cos θ dθ .

We may also write (here treating ds as straight) dz = ds cos θ. So

ds =
c0

sin θ0

1

b
dθ

Hence
ds

dθ
= R =

c0

sin θ0

1

b
.

This result strictly applies to the small arc segments ds. Note that from equation (1), however, it
also applies for all θ, i.e. for all points along the trajectory, which therefore forms an arc of a circle
with radius R until the ray enters the region z < 0.

(b)

0θ
0θ

z= 0

z    z=

0θ

R sinR

S



Here

zs = R − R sin θ0

= R(1 − sin θ0)

=
c0

b sin θ0

(1 − sin θ0) ,

from which

θ0 = sin−1

[

c0

bzs + c0

]

.

(c)

0θ

x= 0

x=
R

S

R

H
X

The simplest pathway between S and H is a single arc of a circle passing through S and H. For
this pathway:

X = 2R cos θ0 =
2c0 cos θ0

b sin θ0

=
2c0

b
cot θ0 .

Hence

cot θ0 =
bX

2c0

.

The next possibility consists of two circular arcs linked as shown.

x= 0 x= X
S H

For this pathway:
X

2
= 2R cos θ0 =

2c0

b
cot θ0 .

i.e.

cot θ0 =
bX

4c0

.

In general, for values of θ0 < π

2
, rays emerging from S will reach H in n arcs for launch angles given

by

θ0 = cot−1

[

bX

2nc0

]

= tan−1

[

2nc0

bX

]

where n = 1, 2, 3, 4, . . .
Note that when n = ∞, θ0 = π

2
as expected for the axial ray.

(d)
With the values cited, the four smallest values of launch angle are

n θ0 (degrees)

1 86.19
2 88.09
3 88.73
4 89.04



(e)
The ray path associated with the smallest launch angle consists of a single arc as shown:

1
2

3

S H

We seek
∫ 3

1

dt =

∫ 3

1

ds

c

Try first:

t12 =

∫ 2

1

ds

c
=

∫ π/2

θ0

Rdθ

c

Using

R =
c

b sin θ

gives

t12 =
1

b

∫ π/2

θ0

dθ

sin θ

so that

t12 =
1

b

[

ln tan
θ

2

]π/2

θ0

= −

1

b
ln tan

θ0

2

Noting that t13 = 2t12 gives

t13 = −

2

b
ln tan

θ0

2
.

For the specified b, this gives a transit time for the smallest value of launch angle cited in the answer
to part (d), of

t13 = 6.6546 s

The axial ray will have travel time given by

t =
X

c0

For the conditions given,
t13 = 6.6666 s

thus this axial ray travels slower than the example cited for n = 1, thus the n = 1 ray will arrive
first.



Solutions to Theoretical Question 3

(a)
The mass of the rod is given equal to the mass of the cylinder M which itself is πa2ld. Thus the
total mass equals 2M = 2πa2ld. The mass of the displaced water is surely less than πa2lρ (when
the buoy is on the verge of sinking). Using Archimedes’ principle, we may at the very least expect
that

2πa2ld < πa2lρ or d < ρ/2

In fact, with the floating angle α (< π) as drawn, the volume of displaced water is obtained by
geometry:

α α
a a

2a

V = la2α − la2 sin α cos α .

By Archimedes’ principle, the mass of the buoy equals the mass of displaced water. Therefore,
2πa2ld = la2ρ(α − sin α cos α), i.e. α is determined by the relation

α − sin α cosα = 2dπ/ρ .

(b)
If the cylinder is depressed a small distance z vertically from equilibrium, the nett upward restoring
force is the weight of the extra water displaced or gρ.2a sin α.lz, directed oppositely to z. This is
characteristic of simple harmonic motion and hence the Newtonian equation of motion of the buoy
is (upon taking account of the extra factor 1/3)

z

a 2   sin α

8Mz̈/3 = −2ρglza sin α or z̈ +
3ρg sin α

4πda
z = 0 ,

and this is the standard sinusoidal oscillator equation (like a simple pendulum). The solution is of
the type z = sin(ωzt), with the angular frequency

ωz =

√

3ρg sin α

4πda
=

√

3g sin α

2a(α − cosα sin α)
,

where we have used the relation worked out at the end of the first part.



(c)

Without regard to the torque and only paying heed to vertical forces, if the buoy is swung by some
angle so that its weight is supported by the nett pressure of the water outside, the volume of water
displaced is the same as in equilibrium. Thus the centre of buoyancy remains at the same distance
from the centre of the cylinder. Consequently we deduce that the buoyancy arc is an arc of a circle
centred at the middle of the cylinder. In other words, the metacentre M of the swinging motion is

just the centre of the cylinder. In fact the question assumes this.

We should also notice that the centre of mass G of the buoy is at the point where the rod touches the
cylinder, since the masses of rod and cylinder each equal M . Of course the cylinder will experience
a nett torque when the rod is inclined to the vertical. To find the period of swing, we first need to
determine the moment of inertia of the solid cylinder about the central axis; this is just like a disc
about the centre. Thus if M is the cylinder mass

2Mg

2Mg
θ

G

M

I0 = Ma2/2

(

=

∫ a

0

r2 dm =

∫ a

0

r2.2Mr dr/a

)

The next step is to find the moment of inertia of the rod about its middle,

Irod =

∫ a

−a

(Mdx/2a).x2 = [Mx3/6a]a−a = Ma2/3 .

Finally, use the parallel axis theorem to find the moment of inertia of the buoy (cylinder + rod)
about the metacentre M ,

IM = Ma2/2 + [Ma2/3 + M(2a)2] = 29Ma2/6 .

(In this part we are neglecting the small horizontal motion of the bentre of mass; the water is the
only agent which can supply this force!) When the buoy swings by an angle θ about equilibrium the
restoring torque is 2Mga sin θ ' 2Mgaθ for small angles, which represents simple harmonic motion
(like simple pendulum). Therefore the Newtonian rotational equation of motion is

IM θ̈ ' −2Mgaθ , or θ̈ +
12g

29a
= 0 .

The solution is a sinusoidal function, θ ∝ sin(ωθt), with angular frequency

ωθ =
√

12g/29a .

(d)

The accelerometer measurements give

Tθ/Tz ' 1.5 or (ωz/ωθ)
2
' 9/4 ' 2.25 . Hence



2.25 =
3g sin α

2a(α − sinα cos α)

29a

12g
,

producing the (transcendental) equation

α − sin α cos α ' 1.61 sin α .

Since 1.61 is not far from 1.57 we have discovered that a physically acceptable solution is α ' π/2,
which was to be shown. (In fact a more accurate solution to the above transcendental equation
can be found numerically to be α = 1.591.) Setting alpha = π/2 hereafter, to simplify the algebra,
ω2

z = 3g/πa and 4d/ρ = 1 to a good approximation. Since the vertical period is 1.0 sec,

1.0 = (2π/ωz)
2 = 4π3a/3g ,

giving the radius a = 3 × 9.8/4π3 = .237 m.

We can now work out the mass of the buoy (in SI units),

2M = 2πa2ld = 2πa2.a.ρ/4 = πa3ρ/2 = π × 500 × (.237)3 ' 20.9 kg .



Solutions to Original Theoretical Question 3

(a)
Choose a frame where z is along the normal to the mirror and the light rays define the x–z plane.
For convenience, recording the energy-momentum in the four-vector form, (px, py, pz, E/c), the
initial photon has

Pi = (p sin θi, 0, p cos θi, p)

where p = Ei/c = hfi/c.

u

f f

θθi r

i r

By the given Lorentz transformation rules, in the moving mirror frame the energy-momentum of
the incident photon reads

Pmirror =

(

p sin θi, 0,
p cos θi − up/c
√

1 − u2/c2
,
p − up cos θi/c
√

1 − u2/c2

)

.

Assuming the collision is elastic in that frame, the reflected photon has energy-momentum,

P ′
mirror =

(

p sin θi, 0,
−p cos θi + up/c
√

1 − u2/c2
,
p − up cos θi/c
√

1 − u2/c2

)

.

Tansforming back to the original frame, we find that the reflected photon has

pxr = p sin θi , pyr = 0

pzr =
(−p cos θi + up/c) + u(p − up cos θi/c)/c

1 − u2/c2

Er/c =
(p − up cos θi/c) + u(−p cos θi + up/c)/c

1 − u2/c2

Simplifying these expressions, the energy-momentum of the reflected photon in the original frame
is

Pr =

(

p sin θi, 0,
p(− cos θi + 2u/c − u2 cos θi/c

2)

1 − u2/c2
,
p(1 − 2u cos θi/c + u2/c2)

1 − u2/c2

)

.

Hence the angle of reflection θr is given by

tan θr = −

pxr

pzr
=

sin θi(1 − u2/c2)

cos θi − 2u/c + u2 cos θi/c2
=

tan θi(1 − u2/c2)

1 + u2/c2
− 2u sec θi/c2

,

while the ratio of reflected frequency fr to incident frequency fi is simply the energy ratio,

fr

fi

=
Er

Ei

=
1 − 2u cos θi/c + u2/c2

1 − u2/c2
.

[For future use we may record the changes to first order in u/c:

tan θr ' tan θi(1 + 2u sec θi/c) so

tan(θr − θi) =
tan θr − tan θi

1 + tan θr tan θi

'

2u tan θi sec θi/c

1 + tan2 θi

'

2u sin θi

c

Thus, θr ' θi + 2u sin θi/c and fr = fi(1 − 2u cos θi/c).]



(b)

a

b

b secθ

θ
θ

Hereafter define θi = θ. Provided that b/ cos θ < a the laser light will reflect off the mirror, so
cos θ > b/a is needed for photon energy-momentum to be imparted to the mirror. Let us then
define a critical angle α via cos α = b/a.

The change in the normal component ∆p‖ of the momentum of a single photon is

∆L =
∆p‖b

cos θ
=

b

cos θ

[

p cos θ −

p(− cos θ + 2u/c − u2 cos θ/c2)

1 + u2/c2

]

,

∆L =
bp(2 cos θ − 2u/c)

cos θ(1 + u2/c2)
=

2bp(1 − u sec θ/c)

(1 + u2/c2)
' 2bp(1 − u sec θ/c) .

Since u cos θ = ωb, ∆L ' 2bp(1 − ωb sec2 θ/c) per photon. Suppose N photons strike every second
(and |θ| is less than the critical angle α). Then in time dt we have Ndt photons. But dt = dθ/ω,
so in this time we have,

dL = N
dθ

ω
× 2bp

(

ωb

c
sec2 θ

)

Thus the change in ∆L per revolution is

dL

dn
= 2 ×

2bpN

ω

∫ a

−a

(1 − ωb sec2 θ/c) dθ

where n refers to the number of revolutions. So

dL

dn
'

8bpN

ω

(

α −

ωb

c
tan α

)

=
8bP

ωc

(

α −

ωb

c
tan α

)

,

since each photon has energy pc and laser power equals P = Npc.
Clearly ωb ¿ c always, so dL/dn ' 8bPα/ωc; thus

dL

dt
=

dL

dn

dn

dt
=

ω

2π

dL

dn
=

4bPα

πc
.

(c)

Therefore if I is the moment of inertia of the mirror about its axis of rotation,

I
dω

dt
'

4bPα

πc
, or ω(t) '

4bPαt

πcI
.

[Some students may derive the rate of change of angular velocity using energy conservation, rather
than considering the increase of angular momentum of the mirror: To first order in v/c, Er =
E(1 − 2u cos θ/c), therefore the energy imparted to the mirror is

∆E = E − Er '

2uE cos θ

c
=

2ωbE

c



In one revolution, the number of photons intersected is

4α

2π
× n

2π

ω
=

4αn

ω
.

Therefore the rate of increase of rotational energy (Erot = Iω2/2) is

dErot

dt
=

4αN

ω

2ωbE

c

dn

dt
=

8αbP

c

ω

2π
=

4αbPω

πc

Thus Iω.dω/dt = 4αbP/πc, leading to ω(t) ' 4αbPt/πcI, again.]

(d)

To estimate the deflection of the beam, one first needs to work out the moment of inertia of a
rectangle of mass m and side 2a about the central axis. This is just like a rod. From basic
principles,

I =

∫ a

−a

mdx

2a
x2 =

[

mx3

6a

]a

−a

=
ma2

3
=

mb2 sec2 α

3
.

With the stated geometry, a = b
√

2, or α = 45◦, so

ω '

12αPt cos2 α

πmcb
→

3Pt

mca
√

2
.

At the edge, u = ωa = 3Pt/mc
√

2, and the angle of deviation is

δ =
2u sin α

c
=

3Pt

mc2

[Interestingly, it is determined by the ratio of the energy produced by the laser to the rest-mass
energy of the mirror.]

Using the given numbers, and in SI units, the deviation is

ξ ' 104δ =
104

× 3 × 100 × 24 × 3600

10−3
× (3 × 108)2

' 2.9 mm .

ξ
mirror

laser

screen δ
4

π/4
10  m



Solution to Experimental Question 1

Preliminary: Calculation of Terminal Velocity

When the cylinder is moving at its terminal velocity, the resultant of the three forces acting on the
cylinder, gravity, viscous drag and buoyant force, is zero.

V ρg − 6πκηrmvT − V ρ′g = 0

where V = 2πr3 is the volume of a cylinder (whose height is 2r).
This gives

vr = Cr3−m(ρ − ρ′)

where
C =

g

3κη

Experiment

Determination of the exponent m

Aluminium cylinders of different diameters are dropped into the glycerine. Fall times between specified
marks on the measuring cylinder containing the glycerine are recorded for each cylinder. A preliminary
experiment should establish that the cylinders have reached their terminal velocity before detailed results
are obtained. The measurements are repeated several times for each cylinder and an average fall time
is calculated. Table 1 shows a typical set of data. To find the value of m a graph of log(fall time) as a
function of log(diameter) is plotted as in figure 1. The slope of the resulting straight line graph is 3−m
from which a value of m can be determined. A reasonable value for m is 1.33 with an uncertainty of order
±0.1. The uncertainty is estimated by the deviation from the line of best fit through the data points
obtained by drawing other possible lines.

Determination of the density of glycerine

Cylinders with the same geometry but different densities are dropped into the glycerine and timed as in
the first part of the experiment. Table 2 shows a typical set of results. From equation (2) a linear plot of
1/t as a function of density should yield a straight line with an intercept on the density axis corresponding
to the density of glycerine. Figure 2 shows a typical plot. Alternatively the terminal velocities could be
calculated and plotted against density which would again lead to the same intercept on the density axis.
The uncertainty in the measurement can be estimated by drawing other possible straight lines through
the data points and noting the change in the value of the intercept.

Diameter (mm) Individual readings (s) Mean (s)
10 1.44 1.56 1.44 1.37 1.44 1.41 1.44
4 6.22 6.06 6.16 6.13 6.13 6.22 6.15
8 1.80 1.82 1.78 1.84 1.82 1.81 1.82
5 4.06 4.34 4.09 4.12 4.25 4.13 4.13

Table 1: Sample data set
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Figure 1: Sample plot

Slope = −

58.2

66.2
÷

48.5

93
= −1.67 ∴ m = 3 − 1.67 = 1.33

Material Individual readings (s) Mean (s)
Ti 3.00 2.91 2.97 2.91 2.84 2.75 2.91
Cu 1.25 1.25 1.28 1.25 1.22 1.22 1.25

S.Steel 1.31 1.32 1.38 1.44 1.31 1.34 1.33
Al 6.03 6.09 6.09 6.16 6.06 6.06 6.08

Table 2: Sample data set
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Figure 2: Sample plot

ρ′ = (1.1 ± 0.2) × 103 kg.m−3



Detailed mark allocation

Section I

Reasonable range of data points with a scatter of ∼ 0.1 s [2]
Check that the cylinders have reached their terminal velocity

Visual check, or check referred to [1]
Specific data presented [1]

Labelled log-log graph [2]
Data points for all samples, with a reasonable scatter about a
straight line on the log-log graph [1]
Calculation of (3 − m) from graph [1]

including estimate of error in determining m [1]
Reasonable value of m, ∼ 1.33 [1]
Subtotal [10]
Section 2

Reasonable range of data points [1]
Check that the cylinders have reached their terminal velocity [1]
Labelled graph of (falltime)−1 vs. density of cylinder [1]
Data points for all samples, with a reasonable scatter about a
straight line on the (falltime)−1 vs. density of cylinder graph [1]
Calculation of the density of glycerine (ρ′) from this graph [1]
Estimate of uncertainty in ρ′ [1]
Reasonable value of ρ′. “Correct” value is 1.260 kg.m−3 [1]
Subtotal [8]
TOTAL 20



Solution to Experimental Question 2

Section 1

i. A typical geometric layout is as shown below.

(a) Maximum distance from ruler to screen is advised to increase the spread of the diffraction
pattern.

(b) Note that the grating (ruler) lines are horizontal, so that diffraction is in the vertical direction.

SCREEN

LASER70 mm

βRULER

FRINGES

1400 mm

ii. Vis a vis the diffraction phenomenon, β =
(

y

1400 mm

)

The angle β is measured using either a protractor (not recommended) or by measuring the value
of the fringe separation on the screen, y, for a given order N .

If the separation between 20 orders is measured, then N = ±10 (N = 0 is central zero order).

The values of y should be tabulated for N = 10. If students choose other orders, this is also
acceptable.

N ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10
2y mm 39.0 38.5 39.5 41.0 37.5 38.0 39.0 38.0 37.0 37.5
y mm 19.5 19.25 19.75 20.5 18.75 19.0 19.5 19.0 18.5 18.75

Mean Value = (19.25 ± 1.25) mm

i.e. Mean “spot” distance = 19.25 mm for order N = 10.

From observation of the ruler itself, the grating period, h = (0.50 ± 0.02) mm.

Thus in the relation

Nλ = ±h sin β

N = 10

h = 0.5 mm

sinβ ' β =
y

1400 mm
= 0.01375

10λ = 0.006875 mm

λ = 0.0006875 mm

Since β is small,
δλ

λ
'

δh

h
+

δy

y
' 10%

i.e. measured λ = (690 ± 70) nm

The accepted value is 680 nm so that the departure from accepted value equals 1.5%.



Section 2

This section tests the student’s ability to make semi-quantitative measurements and the use of judgement
in making observations.

i. Using the T = 50% transmission disc, students should note that the transmission through the tank
is greater than this value. Using a linear approximation, 75% could well be estimated. Using the
hint about the eye’s logarithmic response, the transmission through the tank could be estimated to
be as high as 85%.

Any figure for transmission between 75% and 85% is acceptable.

ii. Calculation of the transmission through the tank, using

T = 1 − R = 1 −

(

n1 − n2

n1 + n2

)2

for each of the four surfaces of the tank, and assuming n = 1.59 for the perspex, results in a total
transmission

Ttotal = 80.80%

Section 3

With water in the tank, surfaces 2 and 3 become perspex/water interfaces instead of perspex/air interfacs,
as in (ii).

The resultant value is
Ttotal = 88.5%

Section 4

TRANSMISSION
FILTER
IN/OUT

LASER

TANK SCREEN

xy

~30 mm

~550 mm

Possible configuration for section 4 (and sections 2 and 3)

With pure water in the tank only, we see from Section 3 that the transmission T is

TWater ' 88%

The aim here is to determine the beam divergence (scatter) and transmission as a function of milk
concentration. Looking down on the tank, one sees

BEAM DIAMETER
2x = 2.00 mm

LASER

~30 mm 25 mm

35 mm

2x’
2  ’θ



i. The entrance beam diameter is 2.00 mm. The following is an example of the calculations expected:

With 0.5 mL milk added to the 50 mL water, we find

Scatterer concentration =
0.5

50
= 1% = 0.01

Scattering angle

2x′ = 2.2 mm ; 2θ′ =
2x′

30
= 0.073

Transmission estimated with the assistance of the neutral density filters

Ttotal = 0.7 .

Hence

Tmilk =
0.7

0.88
= 0.79

Note that

Tmilk =
Ttotal

Twater

and Twater = 0.88 (1)

If students miss the relationship (1), deduct one mark.

ii. & iii. One thus obtains the following table of results. 2θ′ can be determined as shown above, OR by
looking down onto the tank and using the protractor to measure the value of 2θ′. It is important
to note that even in the presence of scattering, there is still a direct beam being transmitted. It is
much stronger than the scattered radiation intensity, and some skill will be required in measuring
the scattering angle 2θ′ using either method. Making the correct observations requires observational
judgement on the part of the student.

Typical results are as follows:

Milk volume (mL) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
% Concentration 0 1 2 3 4 5 6 7 8
2x′ 2.00 2.2 6.2 9.4 12 Protractor
2θ′ (Degrees) ∼ 0 4 12 18 23 28 36 41 48
Tmilk 1.0 0.79 0.45 0.22 0.15 0.12 0.08 0.06 0.05

iii. From the graphed results in Figure 1, one obtains an approximately linear relationship between
milk concentration, C, and scattering angle, 2θ′ (= φ) of the form

φ = 6C .

iv. Assuming the given relation
I = I0e

−µz = TmilkI0

where z is the distance into the tank containing milk/water.

We have
Tmilk = e−µz

Thus
lnTmilk = −µz , and µ = constant × C

Hence ln Tmilk = −αzC.

Since z is a constant in this experiment, a plot of ln Tmilk as a function of C should yield a straight
line. Typical data for such a plot are as follows:

% Concentration 0 1 2 3 4 5 6 7 8
Tmilk 1.0 0.79 0.45 0.22 0.15 0.12 0.08 0.06 0.05
ln Tmilk 0 -0.24 -0.8 -1.51 -1.90 -2.12 -2.53 -2.81 -3.00

An approximately linear relationship is obtained, as shown in Figure 2, between ln Tmilk and C, the
concentration viz.

ln Tmilk ' −0.4C = −µz

Thus we can write
Tmilk = e−0.4C = e−µz

For the tank used, z = 25 mm and thus

0.4C = 25µ or µ = 0.016C whence α = 0.016 mm−1%−1

By extrapolation of the graph of ln Tmilk versus concentration C, one finds that for a scatterer
concentration of 10%

µ = 0.160 mm−1 .
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Detailed Mark Allocation

Section 1

A clear diagram illustrating geometry used with appropriate allocations [1]
Optimal geometry used - as per model solution (laser close to ruler) [1]
Multiple measurements made to ascertain errors involved [1]
Correctly tabulated results [1]
Sources of error including suggestion of ruler variation
(suggested by non-ideal diffraction pattern) [1]
Calculation of uncertainty [1]
Final result [2]

Allocated as per:
±10% (612, 748 nm) [2]
±20% (544, 816 nm) [1]
± anything worse [0]

Section 2

For evidence of practical determination of transmission rather than
simply “back calculating”. Practical range 70 − 90% [1]
For correct calculation of transmission
(no more than 3 significant figures stated) [1]
Section 3

Correct calculation with no more than 3 significant figures stated
and an indication that the measurement was performed [1]
Section 4

Illustrative diagram including viewing geometry used, i.e. horizontal/vertical [1]
For recognizing the difference between scattered light and the straight-through beam [1]
For taking the Twater into account when calculating Tmilk [1]
Correctly calculated and tabulated results of Tmilk with results within 20% of model solution [1]
Using a graphical technique for determining the relationship between
scatter angle and milk concentration [1]
Using a graphical technique to extrapolate Tmilk to 10% concentration [1]
Final result for µ [2]

Allocated as ±40% [2], ±60% [1], anything worse [0]
A reasonable attempt to consider uncertainties [1]
TOTAL 20
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

THEORETICAL COMPETITION
JULY 2 1996

Time available: 5 hours

READ  THIS  FIRST :
1.  Use only the pen provided
2.  Use only the marked side of the paper
3.  Each problem should be answered on separate sheets
4.  In your answers please use primarily equations and numbers,
     and as little text as possible
5. Write at the top of every sheet in your report:

• Your candidate number (IPhO identification number)
• The problem number and section identification, e.g. 2/a
• Number each sheet consecutively

6. Write on the front page the total number of sheets in your report

This set of problems consists of 7 pages.
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PROBLEM 1

(The five parts of this problem are unrelated)

a)  Five 1Ω resistances are connected as shown in the figure. The resistance in
the conducting wires (fully drawn lines) is negligible.

Determine the resulting resistance R between A and B. (1 point)
___________________________________________________________________________

b)

A skier starts from rest at point A and slides down the hill, without turning or
braking. The friction coefficient is  µ. When he stops at point B, his horizontal
displacement is s. What is the height difference h between points A and B?
(The velocity of the skier is small so that the additional pressure on the snow
due to the curvature can be neglected. Neglect also the friction of air and the
dependence of µ on the velocity of the skier.) (1.5 points)

___________________________________________________________________________

c)  A thermally insulated piece of metal is heated under atmospheric pressure
by an electric current so that it receives electric energy at a constant power P.
This leads to an increase of the absolute temperature T of the metal with time t
as follows:

[ ]T t T a t t( ) ( ) .= + −0 0
1 41

Here a, t0 and T0 are constants. Determine the heat capacity C Tp ( ) of the metal
(temperature dependent in the temperature range of the experiment).  (2 points)
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d)  A black plane surface at a constant high temperature Th  is parallel to an-
other black plane surface at a constant lower temperature Tl . Between the
plates is vacuum.

In order to reduce the heat flow due to radiation, a heat shield consisting of two
thin black plates, thermally isolated from each other, is placed between the
warm and the cold surfaces and parallel to these. After some time stationary
conditions are obtained.

By what factor ξ is the stationary heat flow reduced due to the presence of the
heat shield?   Neglect end effects due to the finite size of the surfaces.  (1.5
points)
___________________________________________________________________________

e)  Two straight and very long nonmagnetic conductors C +  and C − , insulated
from each other, carry a current I in the positive and the negative z direction,
respectively. The cross sections of the conductors (hatched in the figure) are
limited by circles of diameter D in the x-y plane, with a distance D/2 between
the centres. Thereby the resulting cross sections each have an area
( )1

12
1
8π + 3 D2.The current in each conductor is uniformly distributed over

the cross section.

Determine the magnetic field B(x,y) in the space between the conductors.
(4 points)
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PROBLEM 2

The space between a pair of coaxial cylindrical conductors is evacuated. The
radius of the inner cylinder is a, and the inner radius of the outer cylinder is b,
as shown in the figure below. The outer cylinder, called the anode, may be
given  a positive potential V relative to the inner cylinder. A static homogene-
ous magnetic field 

r
B  parallel to the cylinder axis, directed out of the plane of

the figure, is also  present. Induced charges in the conductors are neglected.

We study the dynamics of electrons with rest mass m and charge _ e. The elec-
trons  are released at the surface of the inner cylinder.

a)  First the potential V is turned on, but 
r
B  = 0.  An electron is set free with

negligible velocity at the surface of the inner cylinder. Determine its speed v
when it hits the anode. Give the answer both when a non-relativistic treatment
is sufficient, and when it is not. (1 point)

For the remaining parts of this problem a non-relativistic treatment suffices.

b)  Now V = 0, but the homogeneous magnetic field 
r
B  is present. An electron

starts out with an initial velocity 
r
v 0  in the radial direction.  For magnetic fields

larger than a critical value Bc , the electron will not reach the anode. Make a
sketch of the trajectory of the electron when B is slightly more than Bc . Deter-
mine Bc . (2 points)

From now on both the potential V and the homogeneous magnetic field 
r
B  are

present.
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c) The magnetic field will give the electron a non-zero angular momentum  L
with respect to the cylinder axis. Write down an equation for the rate of change
dL/dt of the angular momentum. Show that this equation implies that

L keBr− 2

is constant during the motion, where k is a definite pure number. Here r is the
distance from the cylinder axis. Determine the value of k. (3 points)

d)  Consider an electron, released from the inner cylinder with negligible ve-
locity,  that does not reach the anode, but has a maximal distance from the cyl-
inder axis equal to rm . Determine the speed v  at the point where the radial dis-
tance is maximal, in terms of rm .  (1 point)

e)  We are interested in using the magnetic field to regulate the electron current
to the anode. For B larger than a critical magnetic field Bc , an electron, re-
leased with negligible velocity, will not reach the anode. Determine Bc .
(1 point)

f)  If the electrons are set free by heating the inner cylinder an electron will in
general have an initial nonzero velocity at the surface of the inner cylinder. The
component of the initial velocity parallel to 

r
B  is v B , the components

orthogonal to 
r
B  are vr  (in the radial direction) and vϕ (in the azimuthal direc-

tion, i.e. orthogonal to the radial direction).

Determine for this situation the critical magnetic field Bc  for reaching the an-
ode. (2 points)
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PROBLEM 3

In this problem we consider some gross features of the magnitude of mid-ocean
tides on earth. We simplify the problem by making the  following assumptions:

   (i) The earth and the moon are considered to be an isolated system,
   (ii) the distance between the moon and the earth is assumed to be constant,
   (iii) the earth is assumed to be completely covered by an ocean,
   (iv) the dynamic effects of the rotation of the earth around its axis are

neglected, and
   (v) the gravitational attraction of the earth can be determined as if all mass

were concentrated at the centre of the earth.

The following data are given:
Mass of the earth: M = 5.98 . 1024 kg
Mass of the moon: Mm  = 7.3 . 1022 kg
Radius of the earth: R = 6.37 . 106 m
Distance between centre of the earth and centre of the moon:
L = 3.84 . 108 m
The gravitational constant:  G = 6.67 . 10 -11 m3 kg-1 s-2.

a) The moon and the earth rotate with angular velocity ω about their common
centre of mass, C. How far is C from the centre of the earth? (Denote this dis-
tance by l.)

Determine the numerical value of ω.  (2 points)

We now use a frame of reference that is co-rotating with the moon and the
center of the earth around C. In this frame of reference the shape of the liquid
surface of the earth is static.
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In the plane P through C and orthogonal to the axis of rotation the position of a
point mass on the liquid surface of the earth can be described by polar coordi-
nates r, ϕ as shown in the figure. Here r is the distance from the centre of the
earth.

We will study the shape
r (ϕ) = R + h (ϕ)

of the liquid surface of the earth in the plane P.

b)  Consider a mass point (mass m) on the liquid surface of the earth (in the
plane P). In our frame of reference it is acted upon by a centrifugal force and
by gravitational forces from the moon and the earth. Write down an expression
for the potential energy corresponding to these three forces.

Note: Any force F(r),  radially directed with respect to some origin, is the nega-
tive derivative of a spherically symmetric potential energy V(r):
F r V r( ) ( ).= − ′  (3 points)

c)  Find, in terms of the given quantities M, Mm  , etc, the approximate form h(ϕ) of
the tidal bulge. What is the difference in meters between high tide and low tide in this
model?

You may use the approximate expression

valid for a much less than unity.

In this analysis make simplifying approximations whenever they are reasonable. (5
points)

1
1 2

1 3 1
2

1
2

2 2

+ −
≈ + + −

a a
a a

cos
cos ( cos ),
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Solution Problem 1

a)  The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c
and point A is 0.5Ω, and the same between point d and point B. The resistance
between points A and B thus consists of two connections in parallel: the direct
1Ω connection and a connection consisting of two 0.5Ω  resistances in series,
in other words two parallel 1Ω  connections. This yields

R = 0.5 Ω .
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b)  For a sufficiently short horizontal displacement ∆s the path can be con-
sidered straight. If the corresponding length of the path element is ∆L, the
friction force is given by

and the work done by the friction force equals  force times displacement:

Adding up, we find that along the whole path the total work done by friction
forces i   µ   mg s . By energy conservation this must equal the decrease mg h in
potential energy of the skier. Hence

h =  µs.

___________________________________________________________________________

c)  Let the temperature increase in a small time interval dt be dT.  During this time
interval the metal receives an energy  P dt.

The heat capacity is the ratio between the energy supplied and the temperature increase:

The experimental results correspond to

Hence

(Comment: At low, but not extremely low, temperatures heat capacities of met-
als follow such a T 3 law.)

dT
dt

T a a t t T a T
T

= + − = 





−0
0

3 4
0

0
3

4
1

4
[ ( )] ./

C Pdt
dT

P .p = =
dT dt

C P 4P
aT

T .p 4
3= =

dT dt 0

µ mg s
L

∆
∆

µ µmg s
L

L mg s∆
∆

∆ ∆⋅ = .
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d)

Under stationary conditions the net heat flow is the same everywhere:

Adding these three equations we get

where J0  is the heat flow in the absence of the heat shield. Thus  ξ = J/J0 takes the
value

ξ = 1/3.

___________________________________________________________________________

e)  The magnetic field can be determined as the superposition of the fields of
two cylindrical conductors, since the effects of the currents in the area of inter-
section cancel.  Each of the cylindrical conductors must carry a larger current
I′, determined so that the fraction I of it is carried by the actual cross section
(the moon-shaped area). The ratio between the currents I and I′ equals the ratio
between the cross section areas:

Inside one cylindrical conductor carrying a current I′ Ampère’s law yields at a
distance r from the axis an azimuthal field

J T Th= −σ ( )4
1
4

J T T= −σ ( )1
4

2
4

J T Tl= −σ ( )2
4 4

3 4 4
0J T T Jh l= − =σ ( ) ,

I
I

D
D′

=
+

=
+( ) .

π

π

π12
3

8
2

4
2

2 3 3
6π

B
r

I r
D

I r
Dφ π

µ
π

µ
π

=
′π   

=
′0

2

4
2

0
22

2 .



109

The cartesian components of this are

For the superposed fields, the currents are      I′ and the corresponding cylinder
axes are located  at x = m D/4.

The two x-components add up to zero, while the y-components yield

i.e., a constant field. The direction is along the positive y-axis.

Solution Problem 2

a)  The potential energy gain eV is converted into kinetic energy. Thus

                                                       (non-relativistically)

                                                (relativistically).

Hence

                                                                                                                         (1)

 b)  When V = 0 the electron moves in a homogeneous static magnetic field. The
magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a
circle.  The initial velocity is tangential to the circle.

The radius R of the orbit (the “cyclotron radius”) is determined by equating the
centripetal force and the Lorentz force:

B B y
r

I y
Dx = − = −

′
φ

µ
π

2 0
2 ; B B x

r
I x

Dy = =
′

φ
µ2 0

2 .
π

B
D

I x D I x D I
D

I
Dy = ′ + − ′ − =

′
=

+
2 4 4 6

2 3 3
0
2

0 0µ
π
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2 m eVv 2 =
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1
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2

2

−
− =

v 2 2c
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−
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c 1 mc
mc eV

          
2

2
2

(non - relativistically)

( ) (relativistically).

 m



110

i.e.

                                                                                                                          (2)

From the figure we see that in the critical case the radius R of the circle satisfies

By squaring we obtain
                                    ,

i.e.
                                                                              .

Insertion of this value for the radius into the expression (2) gives the critical field

c)  The change in angular momentum with time is produced by a torque. Here
the azimuthal component Fφ  of the Lorentz force                            provides a
torque  Fφ r. It is only the radial component vr = dr/dt of the velocity that pro-
vides an azimuthal Lorentz force. Hence

which can be rewritten as

dL
dt

eBr dr
dt

= ,

d
dt

L eBr( ) .− =
2

2
0

R b a / 2b2 2= −( )

B m
eR

2bm
b a ec

0 0
2 2= =

−
v v

( )
.

a R b 2bR R2 2 2 2+ = − +

m
R

0
2v

eBv  =0 ,

m
eR

0v
B = .

a R2 2+ = b - R

F e B
→ →

= − ×( ) r
v
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Hence
                                                                                                                          (3)

is constant during the motion. The dimensionless number k in the problem text is
thus k = 1/2.

d)  We evaluate the constant C, equation (3), at the surface of the inner cylinder
and at the maximal distance  rm :

which gives

                                                                          (4)

Alternative solution: One may first determine the electric potential V(r) as
function of the radial distance. In cylindrical geometry the field falls off inversely
proportional to r, which requires a logarithmic potential, V(s) = c1 ln r + c2.
When the two constants are determined to yield V(a) = 0 and V(b) = V we have

The gain in potential energy,  sV(rm), is converted into kinetic energy:

Thus

                                                                                                                         (5)

(4) and (5) seem to be different answers. This is only apparent since rm is not an in-
dependent parameter, but determined by B and V so that the two answers are
identical.

e)  For the critical magnetic field the maximal distance  rm  equals b, the radius of the
outer cylinder, and the speed at the turning point is then

C L eBr= − 1
2

2

0 1
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2 1
2
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Since the Lorentz force does no work, the corresponding kinetic energy
equals eV (question a):

.

The last two equations are consistent when

The critical magnetic field for current cut-off is therefore

f)  The Lorentz force has no component parallel to the magnetic field, and conse-
quently the velocity component  vB  is constant under the motion. The corresponding
displacement parallel to the cylinder axis has no relevance for the question of reach-
ing the anode.

Let v  denote the final azimuthal speed of an electron that barely reaches the anode.
Conservation of energy implies that

giving
                                                                                                                        (6)

Evaluating the constant C  in (3) at both cylinder surfaces for the critical situation we
have

Insertion of the value (6) for the velocity  v   yields the critical field

v v v eV mr= + +2 2 2 / .φ

1
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2 2 1
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2

B
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Solution Problem 3

a)  With the centre of the earth as origin, let the centre of mass C be located
at     . The distance l is determined by

M l = Mm (L - l),
which gives

                                                                                                                        (1)

less than R, and thus inside the earth.

The centrifugal force must balance the gravitational attraction between the moon
and the earth:

which gives

                                                                                                                        (2)

 (This corresponds to a period  2π/ω = 27.2 days.) We have used (1) to elimi-
nate l.

b)  The potential energy of the mass point m consists of three contributions:

(1) Potential energy because of rotation (in the rotating frame of reference, see
the problem text),

where      is the distance from C. This corresponds to the centrifugal force
mω 2r1, directed outwards from C.

 (2) Gravitational attraction to the earth,

(3) Gravitational attraction to the moon,

l
→

rr1

−G mM
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where       is the distance from the moon.

Describing the position of m by polar coordinates r, φ  in the plane orthogonal to the
axis of rotation (see figure), we have

Adding the three potential energy contributions, we obtain

                                                                                                                          (3)

Here l is given by (1) and

c)  Since the ratio r/L = a is very small, we may use the expansion

Insertion into the expression (3) for the potential energy gives

                                                                                                                          (4)

apart from a constant. We have used that

when the value of  ω2 , equation (2), is inserted.
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The form of the liquid surface is such that a mass point has the same energy V every-
where on the surface. (This is equivalent to requiring no net force tangential to the
surface.) Putting

r = R + h,

where the tide h is much smaller than R, we have approximately

as well as

Inserting this, and the value (2) of ω into (4), we have

                                                                                                                         (5)

again apart from a constant.

The magnitude of the first term on the right-hand side of (5) is a factor

smaller than the second term, thus negligible. If the remaining two terms in equation
(5) compensate each other, i.e.,

then the mass point m has the same energy everywhere on the surface. Here   r2  can
safely be approximated by  R2 , giving the tidal bulge

The largest value                                 occurs for φ = 0 or π, in the direction of
the moon or in the opposite direction, while the smallest value

1 1 1 1
1

1 1 1
2r R h R h R R

h
R R

h
R

=
+

= ⋅
+

≅ − = −
( )

( ) ,

r R Rh h R Rh2 2 2 22 2= + + ≅ + .

V r m G M M R
L

h GM
R

h GM r
L

m m( , ) ( ) ( cos ),φ φ= −
+

+ − −3 2

2

3
2

2
3 1

( )M M
M

R
L

m+ 





≅ −
3

510

h M r R
ML

m= −
2 2

3
2

2
3 1( cos ),φ

h M R
ML
m= −

4

3
2

2
3 1( cos ).φ

h M R MLmmax = 4 3



116

corresponds to  φ = π/2 or 3π/2.

The difference between high tide and low tide is therefore

(The values for high and low tide are determined up to an additive constant, but the
difference is of course independent of this.)

Here we see the Exam Officer, Michael Peachey (in the middle), with his helper
Rod Jory (at the left), both from Australia, as well as the Chief examiner, Per

Chr. Hemmer. The picture was taken in a silent moment during the theory
examination. Michael and Rod had a lot of experience from the 1995 IPhO in

Canberra, so their help was very effective and highly appreciated!
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

EXPERIMENTAL COMPETITION
JULY 4 1996

Time available: 5 hours

READ  THIS  FIRST :
1. Use only the pen provided.
2. Use only the marked side of the paper.
3.  No points will be given for error estimates except in 2c. However, it is ex-

pected that the correct number of significant figures are given.
4. When answering problems, use as little text as possible. You get full credit

for an answer in the form of a numerical value, a drawing, or a graph with
the proper definition of axes, etc.

5. Write on top of every sheet in your report:
• Your candidate number (IPhO ID number)
• The section number
• The number of the sheet

6. Write on the front page the total number of sheets in your report, including
graphs, drawings etc.

7. Ensure to include in your report the last page in this set used for answering
section 2a and 3b, as well as all graphs requested.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!

This set of problems consists of 10 pages.
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SUMMARY

The set of problems will cover a number of topics in physics. First, some me-
chanical properties of a physical pendulum will be explored, and you should be
able to determine the acceleration of gravity. Then, magnetic forces are added
to the pendulum. In this part the magnetic field from a permanent magnet is
measured using an electronic sensor. The magnetic moment of a small perma-
nent magnet will be determined. In addition, a question in optics in relation to
the experimental setup will be asked.

INSTRUMENTATION

The following equipment is available (see Figure 1):

A Large aluminium stand
B Threaded brass rod with a tiny magnet in one end (painted

white) (iron in the other).
C 2 Nuts with a reflecting surface on one side
D Oscillation period timer (clock) with digital display
E Magnetic field (Hall) probe, attached to the large stand
F 9 V  battery
G Multimeter, Fluke model 75
H 2 Leads
I Battery connector
J Cylindrical stand made of PVC (grey plastic material)
K Threaded rod with a piece of PVC and a magnet on the top
L Small PVC cylinder of length 25.0 mm (to be used as a spacer)
M Ruler

If you find that the large stand wiggles, try to move it to a different posistion on
your table, or use a piece of paper to compensate for the non-flat surface.

The pendulum should be mounted as illustrated in Figure 1. The long threaded
rod serves as a physical pendulum, hanging in the large stand by one of the
nuts. The groove in the nut should rest on the two vertical blades on the large
stand, thus forming a horizontal axis of rotation. The reflecting side of the nut
is used in the oscillation period measurement, and should always face toward
the timer.

The timer displays the period of the pendulum in seconds with an uncertainty
of ±1 ms. The timer has a small infrared light source on the right-hand side of
the display (when viewed from the front), and an infrared detector mounted
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close to the emitter. Infrared light from the emitter is reflected by the mirror
side of the nut. The decimal point lights up when the reflected light hits the de-
tector. For proper detection the timer can be adjusted vertically by a screw (see
N in Figure 1). Depending on the adjustment, the decimal point will blink ei-
ther once or twice each oscillation period. When it blinks twice, the display
shows the period of oscillation, T. When it blinks once, the displayed number is
2T. Another red dot appearing after the last digit indicates low battery. If bat-
tery needs to be replaced, ask for assistance.

The multimeter should be used as follows:
Use the “VΩ” and the “COM” inlets. Turn the switch to the DC voltage setting.
The display then shows the DC voltage in volts. The uncertainty in the instru-
ment for this setting is ±(0.4%+1 digit).

Figure 1. The instrumentation used.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!
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THE  PHYSICAL  PENDULUM

A physical pendulum is an extended physical object of arbitrary shape that can
rotate about a fixed axis. For a physical pendulum of mass M oscillating about
a horizontal axis a distance, l, from the centre of mass, the period, T, for small
angle oscillations is

 T
g

I
M l

l= +2π
(1)

Here g is the acceleration of gravity, and I is the moment of inertia of the pen-
dulum about an axis parallel to the rotation axis but through the centre of mass.

Figure 2 shows a schematic drawing of the physical pendulum you will be us-
ing. The pendulum consists of a cylindrical metal rod, actually a long screw,
having length L, average radius R, and at least one nut. The values of various
dimensions and masses are summarised in Table 1. By turning the nut you can
place it at any position along the rod. Figure 2 defines two distances, x and l,
that describe the position of the rotation axis relative to the end of the rod and
the centre of mass, respectively.

Figure 2: Schematic drawing of the pendulum
with definition of important quantities.
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Rod
Length L (400.0 ± 0.4) mm
Average radius R (4.4 ± 0.1) mm
Mass MROD (210.2 ± 0.2) 10-3 kg
Distance between screw threads (1.5000 ± 0.0008) mm

Nut
Height h (9.50 ± 0.05) mm
Depth of groove d (0.55 ± 0.05) mm
Mass MNUT (4.89 ± 0.03) 10-3  kg

Table 1: Dimensions and weights of the pendulum

A reminder from the front page: No points will be given for error estimates ex-
cept in 2c. However, it is expected that the  correct number of significant fig-
ures are given.

Section 1 : Period of oscillation versus rotation axis position
(4 marks)

a)  Measure the oscillation period, T, as a function of the position x, and present
the results in a table.

b)  Plot T as a function of x in a graph. Let 1 mm in the graph correspond to
1 mm in x and 1 ms in T. How many positions give an oscillation period equal
to T = 950 ms, T = 1000 ms and T  = 1100 ms, respectively?

c)  Determine the x and l value that correspond to the minimum value in T.

Section 2 : Determination of g (5 marks)

For a physical pendulum with a fixed moment of inertia, I, a given period, T,
may in some cases be obtained for two different positions of the rotation axis.
Let the corresponding distances between the rotation axis and the centre of
mass be l1  and l2 . Then the following equation is valid:

                          l l I
M1 2 = (2)
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a)  Figure 6 on the last page in this set illustrates a physical pendulum with an
axis of rotation displaced a distance l1  from the centre of mass. Use the infor-
mation given in the figure caption to indicate all positions where a rotation axis
parallel to the drawn axis can be placed without changing the oscillation period.

b)  Obtain the local Oslo value for the acceleration of gravity g as accurately as
possible. Hint: There are more than one way of doing this. New measurements
might be necessary. Indicate clearly by equations, drawings, calculations etc.
the method you used.

c)  Estimate the uncertainty in your measurements and give the value of g with
error margins.

Section 3 : Geometry of the optical timer (3 marks)

a) Use direct observation and reasoning to characterise, qualitatively as well as
quantitatively, the shape of the reflecting surface of the nut (the mirror). (You
may use the light from the light bulb in front of you).

Options (several may apply):
1. Plane mirror
2. Spherical mirror
3. Cylindrical mirror
4. Cocave mirror
5. Convex mirror

In case of 2-5: Determine the radius of curvature.

b) Consider the light source to be a point source, and the detector a simple pho-
toelectric device. Make an illustration of how the light from the emitter is re-
flected by the mirror on the nut in the experimantal setup (side view and top
view). Figure 7 on the last page in this set shows a vertical plane through the
timer display (front view). Indicate in this figure the whole region where the
reflected light hits this plane when the pendulum is vertical.

Section 4 : Measurement of magnetic field (4 marks)

You will now use an electronic sensor (Hall-effect sensor) to measure magnetic
field. The device gives a voltage which depends linearly on the vertical field
through the sensor. The field-voltage coefficient is ∆V / ∆B  = 22.6 V/T (Volt/
Tesla). As a consequence of its design the sensor gives a non-zero voltage
(zero-offset voltage) in zero magnetic field. Neglect the earth’s magnetic field.
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Figure 3: Schematics of the magnetic field detector system

a)  Connect the sensor to the battery and voltmeter as shown above. Measure
the zero-offset voltage, V0 .

A  permanent magnet shaped as a circular disk is mounted on a separate stand.
The permanent magnet can be displaced vertically by rotating the mount screw,
which is threaded identically to the pendulum rod. The dimensions of the per-
manent magnet are; thickness t = 2.7 mm, radius r = 12.5 mm.

b)  Use the Hall sensor to measure the vertical magnetic field, B, from the per-
manent magnet along the cylinder axis, see Figure 4. Let the measurements
cover the distance from y = 26 mm (use the spacer) to y = 3.5 mm, where
y = 1 mm corresponds to the sensor and permanent magnet being in direct
contact. Make a graph of your data for B versus y.

Figure 4: Definition of the distance y between top of magnet and the active part
of the sensor.
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c)  It can be shown that the field along the axis of a cylindrical magnet is given
by the formula

B y B y t
y t r

y
y r

( )
( )

= +
+ +

−
+













0 2 2 2 2 (3)

where t is the cylinder thickness and r is the radius. The parameter B0  charac-
terizes the strength of the magnet.  Find the value of B0 for your permanent
magnet.§  Base your determination on two measured B-values obtained at dif-
ferent  y.

Section 5 : Determination of magnetic dipole moment (4 marks)

A tiny magnet is attached to the white end of the pendulum rod. Mount the pen-
dulum on the stand with its magnetic end down and with x = 100 mm. Place
the permanent magnet mount under the pendulum so that both the permanent
magnet and the pendulum have common cylinder axis. The alignment should
be done with the permanent magnet in its lowest position in the mount. (Al-
ways avoid close contact between the permanent magnet and the magnetic end
of the pendulum.)

a) Let z denote the air gap spacing between the permanent magnet and the
lower end of the pendulum. Measure the oscillation period, T, as function of the
distance, z. The measurement series should cover the interval from z = 25 mm
to z = 5.5 mm while you use as small oscillation amplitude as possible. Be
aware of the possibility that the period timer might display 2T (see remark re-
garding the timer under Instrumentation above). Plot the observed  T versus z.

b) With the additional magnetic interaction the pendulum has a period of oscil-
lation, T, which varies with z according to the relation

1 12
0

T
B

Mgl
f z∝ +

µ
( ) (4)

Here ∝  stand for “proportional to”, and µ is the magnetic dipole moment of
the tiny magnet attached to the pendulum, and  is the parameter determined
in section 4c. The function f(z) includes the variation in magnetic field with
distance. In Figure 5 on the next page you find the particular f(z) for our experi-
ment, presented as a graph.
Select an appropirate point on the graph to determine the unknown magnetic
moment µ.

§ 2 0B  is a material property called remanent magnetic induction, Br .
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Figure 5. Graph of the dimension-less function f(z) used in section 5b.
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Figure 6. For use in section 2a. Mark all positions where a rotation axis
(orthogonal to the plane of the paper) can be placed without changing the
oscillation period. Assume for this pendulum (drawn on scale, 1:1) that
I/M = 2100 mm2. (Note: In this booklet the size of this figure is about 75% of
the size in the original examination paper.)

Figure 7. For use in section 3b. Indicate the whole area where the reflected
light hits when the pendulum is vertical.

Include this page in your report!
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The men behind the equipment

The equipment for the practical competition was constructed and manufactured
at the Mechanics Workshop at the Department of Physics, University of Oslo
(see picture below, from left to right: Tor Enger (head of the Mechanics Workshop),
Pål Sundbye, Helge Michaelsen, Steinar Skaug Nilsen, and Arvid Andreassen).

The electronic timer was designed and manufactured by Efim Brondz,
Department of Physics, University of Oslo (see picture below). About 40.000
soldering points were completed manually, enabling the time-recording during
the exam to be smooth and accurate.
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

Model Answer
for the

EXPERIMENTAL COMPETITION
JULY 4  1996

These model answers indicate what is required from the candidates to get the maximum score
of 20 marks. Some times we have used slightly more text than required; paragraphs written in
italic give additional comments. This practical exam will reward students with creativity,
intuition and a thorough understanding of the physics involved.

Alternative solutions regarded as less elegant or more time consuming are printed in
frames like this with white background.

Anticipated INCORRECT answers are printed on grey background and are included to
point out places where the students may make mistakes or approximations without being
aware of them.

Section 1:
1a)  Threads are 1.50 mm/turn. Counted turns to measure position x.

Turn no. 0 10 20 30 40 50 60 70 80 90 100

x [mm] 10.0 25.0 40.0 55.0 70.0 85.0 100.0 115.0 130.0 145.0 160.0
T [ms] 1023 1005 989 976 967 964 969 987 1024 1094 1227

Turn no. 110 120 46 48 52 54

x [mm] 175.0 190.0 79.0 82.0 88.0 91.0
T [ms] 1490 2303 964 964 964 965

  Candidate: IPhO ID Question:   1 Page 1 of 11
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1b)  Graph: T(x), shown above.

T =  950 ms: NO positions
T =1000 ms: 2   positions
T =1100 ms: 1   position

If the answer is given as corresponding x-values, and these reflect the number of
positions asked for, this answer will also be accepted.

  Candidate: IPhO ID Question:   1 Page 2 of 11
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1c)  Minimum on graph: x = 84 mm,  (estimated uncertainty 1 mm)

By balancing the pendulum horizontally: l = 112.3 mm + 0.55 mm = 113 mm

ALTERNATIVE 1c-1:

   x
M L M h

M
M

M
xCM

ROD NUT NUT=
−

+
2

 = 197.3 mm for x = 84 mm

gives l = 197.3 mm - 84 mm = 113 mm
M = MROD + MNUT,  h = 8.40 mm = height of nut minus two grooves.

INCORRECT 1c-1: Assuming that the centre of mass for the pendulum coincides with the
midpoint, L/2, of the rod gives  l = L/2 - x = 116 mm.

(The exact position of the minimum on the graph is x = 84.4 mm. with l = 112.8 mm)

Section 2:

2a)  l
I

Ml2
1

22100
60

35= = =
mm

mm
mm

        See also Figure 6 on the next page

  Candidate: IPhO ID Question:   1 + 2 Page 3 of 11
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Figure 6. For use in section 2a. Mark all positions where a rotation axis (orthogonal to the
plane of the paper) can be placed without changing the oscillation period. Assume for this
pendulum (drawn on scale, 1:1) that  I/M = 2100 mm2. (Note: In this booklet the size of this
figure is about 75% of the size in the original examination paper.)

Figure 7. For use in section 3b. Indicate the whole area where the reflected light hits when
the pendulum is vertical.

Include this page in your report!

  Candidate: IPhO ID Question:   2 Page 4 of 11
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2b)  Simple method with small uncertainty: Inverted pendulum.

Equation (1) + (2) ⇒ = = + ⇔ = +T T
g

l l g
T

l l1 2 1 2

2

1
2 1 2

2 4π π
( )

NOTE: Independent of I/M !
Used both nuts with one nut at the end to maximise l1 + l2.  Alternately adjusted nut

positions until equal periods T1 = T2 :

T1 = T2 = 1024 ms.
Adding the depth of the two grooves to the measured distance between nuts:
l1 + l2  = (259.6 + 2 . 0.55) mm = 0.2607 m

      g
T

l l= + =
⋅ ⋅

=
4 4 31416 0 2607

9 815
2

1
2 1 2

2π
( )

. .
.

m
(1.024s)

m / s2
2

 ALTERNATIVE 2b-1: Finding I(x). Correct but time consuming.
It is possible to derive an expression for I as a function of x. By making sensible
approximations, this gives:

I x
M

L M
M

L h
x

M
M

NUT ROD( )
= +

+
−

















2 2

12 2

which is accurate to within 0.03 %. Using the correct expression for l as a function of x:

l x x x
M L M h

M
M

M
xCM

ROD NUT ROD( ) = − =
−

−
2

 = 195.3 mm - 0.9773x,

equation (1) can be used on any point (x, T) to find g.  Choosing the point
(85 mm, 964 ms) gives:

g
T

I x
M l x

l x=
⋅

+








 =

⋅ ⋅
=

4 4 31416 0 2311
9 818

2

2

2π ( )
( )

( )
. .

.
m

(0.964s)
m / s2

2
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Using the minimum point on the graph in the way shown below is wrong, since the

curve in 1b) , T x
g

I x
M l x

l x( ) ( )
( )

( )=
⋅

+
2π

 with I(x)/M and l(x) given above, describes a

continuum of different pendulums with changing I(x) and moving  centre of mass.

Equation (1): T
g

I
Ml

l= +2π
 describes one pendulum with fixed I, and does not apply

to the curve in 1b).

INCORRECT 2b-1: At the minimum point we have from Equation (2) and 1c):

l l l I
M1 2 113 1= = = = ±( ) mm  Equation (1) becomes

T
g

l
l

l
g

lmin = + =
2 2

2
2π π

  and

g
l

T
= =

⋅ ⋅
=

8 8 31416 0113
9 60

2

2

2π

min

. .
.

m
(0.964s)

m / s2
2

Another source of error which may accidentally give a reasonable value is using the
wrong value l = (116 ± 1)mm from  «INCORRECT 1c-1»:

INCORRECT 2b-2:  g l
T

= =
⋅ ⋅

=8 8 31416 0116
0 964

9 86
2

2

2

2
π

min

. .
( . )

.
m

s
m / s2

Totally neglecting the mass of the nut but remembering the expression for the moment of
inertia for a thin rod about a perpendicular axis through the centre of mass,  I = ML2/12,
gives from equation (2) for the minimum point: l2 = I/M = L2/12 = 0.01333 m2.  This
value is accidentally only 0.15% smaller than the correct value for I(x)/M  at the mini-
mum point on the curve in 1b):

I x
M

L M
M

L h x
M

M
NUT ROD( . )

.
=

= + + −

















=
84 43

12 2
0 01335

2 2mm
m 2

.

  Candidate: IPhO ID Question:   2 Page 6 of 11
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Neglecting the term 
M

M
L hNUT +

−



2

84 43
2

. mm  = 0.00033 m2  is nearly compensated by

omitting the factor 
M

M
ROD =0.977.  However, each of these approximations are of the

order of 2.5 %, well above the accuracy that can be achieved.

INCORRECT 2b-3: At the minimum point equation (2) gives l
I
M

L2
2

12
= = . Then

T
g

l
g

L
g

L
min = = =

2 2 2 2
12

2
3

π π π
   and

( )
g

L
T

= =
⋅ ⋅

⋅
=

4
3

4 31416 0 4000

17321 0964
981

2

2

2

2
π

min

. .

. .
.

m

s
m / s2

2c) Estimating uncertainty in the logarithmic expression for g:

Let S l l g S
T

≡ + ⇒ =1 2

2

2
4π

∆ ∆S T= =0 3 1. mm ms

∆ ∆ ∆g
g

S
S

T
T

= 





+ −





=








 + ⋅











2 2 2 2

2
0 3

260 7
2

1
1024

.
.
mm

mm
ms

ms

     = + = =( . ) ( . ) . .0 0012 0 0020 0 0023 0 23%2 2

∆g = ⋅ =0 0023 9 815 0 022. . .m / s m / s2 2

g = ±( . . )982 0 02 m / s2

The incorrect methods INCORRECT 2b-1, 2b-2 and 2b-3 have a similar expressions for g
as above. With ∆l = 1 mm in INCORRECT 2b-1 and 2b-2 we get ∆g = 0.09 m/s2.

INCORRECT 2b-3 should have ∆l = 0.3 mm and ∆g = 0.02 m/s2.

  Candidate: IPhO ID Question:   2 Page 7 of 11
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ALTERNATIVE 3 has a very complicated x dependence in g. Instead of differentiating
g(x) it is easier to insert the two values x+∆x and x-∆x in the expression in brackets [ ],
thus finding an estimate for ∆[ ] and then using the same formula as above.

(The official local value for g, measured in the basement of the adjacent building to where the
practical exam was held  is g = 9.8190178 m/s2 with uncertainty in the last digit.)

Section 3.
3a) 3. Cylindrical mirror

4. Concave mirror

Radius of curvature of cylinder, r = 145 mm.  (Uncertainty  approx.  ± 5 mm, not asked for.)

(In this set-up the emitter and detector are placed at the cylinder axis. The radius of curvature
is then the distance between the emitter/detector and the mirror. )

3b) Three drawings, see Figure 7 on page 4 in this Model Answers.

(The key to understanding this set-up is that for a concave cylindrical mirror with a point
source at the cylinder axis, the reflected light will be focused back onto the cylinder axis as a
line segment of length twice the width of the mirror.)

Section 4.
4a)  Vo = 2.464 V    (This value may be different for each set-up.)

4b)  Threads are 1.50 mm /turn. Measured V(y) for each turn. Calculated

[ ] [ ]B y V y V
B
V

V y V
V
B

( ) ( ) ( ) /= − = −0 0
∆
∆

∆
∆

.        (Table not requested)

         See graph on next page.

  Candidate: IPhO ID Question:   2 + 3 + 4 Page 8 of 11
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4c)

B B y y t

y t r

y

y r
0 2 2 2 2

1

= +

+ +
−

+















−

( )
( )

The point (11 mm, 48.5 mT) gives B0 = 0.621 T and (20 mm, 16,8 mT) gives B0 = 0.601 T.
Mean value: B0 = 0.61 T (This value may vary for different magnets.)

Section 5:

5a) Used the spacer and measured T(z) from z = 25 mm to 5.5 mm. (Table is not requested.)

See plot on next page.

  Candidate: IPhO ID Question:   4 + 5 Page 9 of 11
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5b)  l(x = 100 mm) = 97.6 mm (by balancing the pendulum or by calculation as in 1c).

M = MROD + MNUT

Proportionality means: 
1 12

0

T
a

B
Mgl

f z= +










µ
( ) where a is a proportionality constant. Setting

B0 = 0 corresponds to having an infinitely weak magnet or no magnet at all. Removing the

large magnet gives:  T0 = 968 ms and 
1

1 0
0

2T
a

Mgl
f z= + ⋅











µ
( )  or  a

T
=

1

0
2  .

Selecting the point where f(z), see Fig. 5, changes the least with z, i.e., at the maximum, one
has  fmax = 56.3. This point must correspond to the minimum oscillation period, which is
measured to be Tmin = 576 ms.

We will often need the factor

Mgl
B0

0 215 9 82 0 0976
0 61

0 338=
⋅ ⋅

=
. . .

.
. .

kg m / s m
T

Am
2

2

 .

  Candidate: IPhO ID Question:  5 Page 10 of 11

Graph: T(z):



164

The magnetic moment then becomes

µ = 





−












= 





−












= ⋅ −Mgl
B f

T
Tmax0

0
2 2

21 1
0338

56 3
968
576

1 11 10
.

.
.

Am
Am

2
2

ALTERNATIVE 5b-1: Not what is asked for: Using two points to eliminate the

proportionality constant a:  Equation (4) or 
1 12

0

T
a

B
Mgl

f z= +










µ
( )  gives:

aT
B

Mgl
f z aT

B
Mgl

f z1
2 0

1 2
2 0

21 1+








 = +











µ µ
( ) ( )

T T
B

Mgl
f z T T

B
Mgl

f z1
2

1
2 0

1 2
2

2
2 0

2+ = +
µ µ

( ) ( )

[ ]µB
Mgl

T f z T f z T T0
1

2
1 2

2
2 2

2
1

2( ) ( )− = −

µ = ⋅
−
−

Mgl
B

T T
T f z T f z0

2
2

1
2

1
2

1 2
2

2( ) ( )

Choosing two points (z1 = 7 mm, T1 = 580.5 ms) and (z2 = 22 mm, T2 = 841ms). Reading
from the graph f(z1) = 56.0 and f(z2)  = 12.0 we get

µ = ⋅
−

⋅ − ⋅
= ⋅ −0 338

841 580
580 56 0 841 12 0

12 10
2 2

2 2
2.

. .
.Am Am2 2
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  Candidate: Total score:     +     +     +     +     =
  Country: Marker’s name:
  Language: Comment:

Marking Form
for the Experimental Competition at the
27th International Physics Olympiad

Oslo, Norway
July 4, 1996

To the marker: Carefully read through the candidate’s exam papers and compare with
the model answer. You may use the transparencies (handed out) when checking the
graph in 1b) and the drawing in 2a). When encountering words or sentences that
require translation, postpone marking of this part until you have consulted the inter-
preter.

Use the table below and mark a circle around the point values to be subtracted. Add
vertically the points for each subsection and calculate the score.
NB: Give score 0 if the value comes out negative for any subsection.
Add the scores for each subsection and write the sum in the ‘Total score’- box at the
upper right. Keep decimals all the way.

If you have questions, consult the marking leader. Good luck, and remember that you
will have to defend your marking in front of the team leaders.

(Note: The terms “INCORRECT 2b-1” found in the table for subsection 2c) and similar terms
elsewhere, refer to the Model Answer, in which anticipated incorrect answers were included
and numbered for easy reference.)
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Subsection 1a) Deficiency
No answer

x lacks unit
Other than 0 or 1 decimal in x

x does not cover the interval 10 mm - 160 mm
T lacks unit

T given with other than 1 or 0.5 millisecond accuracy
Fewer than 11 measuring points (15 mm sep.). Subtr. up to

Systematic error in x (e.g. if measured from the top of the nut so that the
first x = 0 mm)

If not aware of doubling of the timer period
 Other (specify):

                                                     Score for subsection 1a:   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.1
0.2

0.2
0.2

=

Subsection 1b) Deficiency
No answer

 Lacks “x [(m)m]” on horizontal axis
1 mm on paper does not correspond to 1 mm in x

 Fewer than 3 numbers on horizontal axis
Lacks “T [(m)s]” on vertical axis

1 mm on paper does not correspond to 1 ms in T
Fewer than 3 numbers on vertical axis

Measuring points not clearly shown (as circles or crosses)
More than 5 ms deviation in more than 2 measuring points on the graph

Wrong answer to the questions (x-values give full score if correct number
of values: 0, 2, 1)

 Other (specify):
Score for subsection 1b):   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2

0.2

=

Subsection 1c) Deficiency
No answer

x outside the interval 81 - 87 mm. Subtract up to
x lacks unit

x given more (or less) accurately than in whole millimeters
l lacks unit

l given more (or less) accurately than the nearest mm
Wrong formula (e.g. l = 200.0 mm - x ) or something other than l = xCM - x

If it is not possible to see which method was used to find the center of mass
 Other (specify):

Score for subsection 1c):   2.0 -

Subtract
2.0
0.4
0.1
0.3
0.1
0.3
0.6
0.2

=
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Subsection 2a) Deficiency
No answer

If drawn straight (vertical) lines
If points are drawn

Other than 4 regions are drawn
Inaccurate drawing (> ±  2 mm )

Lacks the values l1 = 60 mm, l2 = 35 mm on figure or text
 Other (specify):

Score for subsection 2a):   1.5 -

Subtract
1.5
0.4
0.5
0.5
0.3
0.3

=

Subsection 2b) Deficiency
No answer

Lacks (derivation of) formula for g
For INVERTED PENDULUM: Lacks figure

Values from possible new measurements not given
Incomplete calculations

If hard to see which method was used
Used the formula for INVERTED PENDULUM but read l1 and l2 from

graph in 1b) by a horizontal line for a certain T
Used one of the other incorrect methods

Other than 3 (or 4) significant figures in the answer
g lacks unit m/s2

 Other (specify):
Score for subsection 2b):   2.5 -

Subtract
2.5
0.3
0.2
0.3
0.3
0.4

1.5
2.0
0.3
0.1

=

Subsection 2c) Deficiency
No answer

Wrong expression for ∆g/g or ∆g. Subtract up to
For INVERTED PENDULUM: If 0.3 mm >∆(l1+l2)  > 0.5 mm

For ALTERNATIVE 2c-1: If ∆[]  > 0.1 mm
For INCORRECT 2c-1 and 2c-2: If 1 mm > ∆l  > 2 mm

For INCORRECT 2c-3: If 0.3 mm > ∆L  > 0.4 mm
For all methods: If ∆T ≠  1 (or 0.5) ms

Error in the calculation of ∆g
Lacks answer including g ± ∆g with 2 decimals

g ± ∆g  lacks unit
 Other (specify):

Score for subsection 2c):   2.5 -

Subtract
2.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1

=
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Subsection 3a) Deficiency
No answer

Lacks point 3. cylindrical mirror
Lacks point 4. concave mirror

Includes other points (1, 2 or 5), subtract per wrong point:
Lacks value for radius of curvature

If r < 130 mm or r > 160 mm, subtract up to
If r is given more accurately than hole millimeters

 Other (specify):
Score for subsection 3a):   1.0 -

Subtract
1.0
0.3
0.3
0.3
0.4
0.2
0.2

=

Subsection 3b) Deficiency
No answer

Lacks side view figure
Errors or deficiencies in the side view figure. Subtract up to

Lacks top view figure
Errors or deficiencies in the top view figure. Subtract up to

Drawing shows light focused to a point
Drawing shows light spread out over an ill defined or wrongly shaped

surface
Line/surface is not horizontal

Line/point/surface not centered symmetrically on detector
Line/point/surface has length different from twice the width of the nut

(i.e. outside the interval 10 - 30 mm)
 Other (specify):

Score for subsection 3b):   2.0 -

Subtract
2.0
0.6
0.4
0.6
0.4
0.3

0.3
0.2
0.2

0.1

=
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Subsection 4a) Deficiency
No answer

Vo lacks unit V
Less than 3 decimals in Vo

Incorrect couplings (would give Vo < 2.3 V or Vo > 2.9 V)
 Other (specify):

Score for subsection 4a):   1.0 -

Subtract
1.0
0.1
0.1
0.8

=

Subsection 4b) Deficiency
No answer

Forgotten Vo or other errors in formula for B
Lacks “y [(m)m]” on horizontal axis

Fewer than 3 numbers on horizontal axis
Lacks “B [(m)T]” on vertical axis

Fewer than 3 numbers on vertical axis
Fewer than 9 measuring points. Subtract up to

Measuring points do not cover the interval 3.5 mm - 26 mm
Measuring points not clearly shown (as circles or crosses)

Error in data or unreasonably large spread in measuring points. Subtract
up to

 Other (specify):
Score for subsection 4b):   1.5 -

Subtract
1.5
0.2
0.1
0.1
0.1
0.1
0.2
0.2
0.1

0.5

=

Subsection 4c) Deficiency
No answer

Incorrect formula for Bo
If used only one measuring point

If used untypical points on the graph
Errors in calculation of mean value for Bo

Bo  lacks unit T
Other than two significant figures in (the mean value of) Bo

Bo < 0.4 T or Bo > 0.7 T. Subtract up to
 Other (specify):

Score for subsection 4c):   1.5 -

Subtract
1.5
0.3
0.4
0.3
0.2
0.1
0.2
0.2

=
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Subsection 5a) Deficiency
No answer

Lacks “z [(m)m]” on horizontal axis
Fewer than 3 numbers on horizontal axis

Lacks “T [(m)s]” on vertical axis
Fewer than 3 numbers on vertical axis

Fewer than 8 measuring points. Subtract up to
Measuring points not clearly shown (as circles or crosses)

Measuring points do not cover the interval 5.5 mm - 25 mm
Error in data (e.g. plotted 2T instead of T) or unreasonably large spread

in measuring points. Subtr. up to
 Other (specify):

Score for subsection 5a):   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.2
0.1
0.2

0.5

=

Subsection 5b) Deficiency
No answer

Forgotten center of mass displacement in l (used l = 100 mm)
Used ALTERNATIVE 5b-1

Lacks method for finding the proportionality factor a
Not found correct proportionality factor a

Used another point than the maximum of f(z)
Incorrect reading of f(z)

Used MROD or another incorrect value for M
Incorrect calculation of µ
µ  lacks unit (Am2 or J/T)

More than 2 significant figures in µ
 Other (specify):

Score for subsection 5b):   3.0 -

Subtract
3.0
0.3
1.0
2.5
0.3
0.1
0.1
0.2
0.3
0.2
0.3

=

Total points:

Total for section 1 (max. 4 points):
Total for section 2 (max. 5 points):
Total for section 3 (max. 3 points):
Total for section 4 (max. 4 points):
Total for section 5 (max. 4 points):
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The last preparations

The problem for the experimental competition was discussed by the leaders and
the organizers the evening before the exam. At this meeting the equipment was
demonstrated for the first time (picture).

After the meeting had agreed on the final text (in English), the problems had to
be translated into the remaining 36 languages. One PC was available for each
nation for the translation process (see picture below). The last nation finished
their translation at about 4:30 a.m. in the morning, and the competition started
at 0830. Busy time for the organizers! Examples of the different translations
are given on the following pages.

Photo: Børge Holme

Photo: Børge Holme



28th International Physics Olympiad 
Sudbury, Canada 

 
 

THEORETICAL COMPETITION 
 
 

Thursday, July 17th, 1997 
 
 

Time Available: 5 hours 
 
 

Read This First: 
 
1.  Use only the pen provided. 
2.  Use only the front side of the answer sheets and paper. 
3.  In your answers please use as little text as possible; express yourself primarily in 

equations, numbers and figures. Summarize your results on the answer sheet. 
4.  Please indicate on the first page the total number of pages you used. 
5.  At the end of the exam please put your answer sheets, pages and graphs in order. 
 
 
 

This set of problems consists of 11 pages. 
 
 
 
Examination prepared at:  University of British Columbia 

         Department of Physics and Astronomy 
    Committee Chair: Chris Waltham 
 
Hosted by:    Laurentian University 
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Theory Question No.1 
 
Scaling 
 
(a) A small mass hangs on the end of a massless ideal spring and oscillates up and down 
at its natural frequency f. If the spring is cut in half and the mass reattached at the end, 
what is the new frequency ?  (1.5 marks) ′f
 
(b) The radius of a hydrogen atom in its ground state is a0 = 0.0529 nm (the “Bohr 
radius”). What is the radius of a “muonic-hydrogen” atom in which the electron is 
replaced by an identically charged muon, with mass 207 times that of the electron? 

′a

Assume the proton mass is much larger than that of the muon and electron.    (2 marks) 
 
(c) The mean temperature of the earth is T = 287 K. What would the new mean 
temperature ′T be if the mean distance between the earth and the sun was reduced by 
1%? 
(2 marks) 
 
(d) On a given day, the air is dry and has a density ρ = 1.2500 kg/m3. The next day the              
humidity has increased and the air is 2% by mass water vapour. The pressure and 
temperature are the same as the day before. What is the air density ′ρ now?    (2 
marks) 
 
Mean molecular weight of dry air: 28.8 (g/mol)  
Molecular weight of water: 18 (g/mol)  
 
Assume ideal-gas behaviour. 
 
(e)  A type of helicopter can hover if the mechanical power output of its engine is P. If 
another helicopter is made which is an exact ½-scale replica (in all linear dimensions) of 
the first, what mechanical power ′P is required for it to hover? (2.5  marks) 
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Theory Question 1: Answer Sheet  STUDENT CODE: 
 
 
(a)  Frequency : ′f
 
 
 
 
 
 
(b)  Radius  : ′a
 
 
 
 
 
 
 
(c) Temperature  ′T : 
 
 
 
 
 
 
(d) Density ′ρ : 
 
 
 
 
 
 
(e)  Power : ′P
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 Theory Question No.2     
 
Nuclear Masses and Stability 
 
All energies in this question are expressed in MeV - millions of electron volts.  
One MeV = 1.6 × 10-13 J, but it is not necessary to know this to solve the problem. 
 
The mass M of an atomic nucleus with Z protons and N neutrons (i.e. the mass number  
A = N + Z) is the sum of masses of the free constituent nucleons (protons and neutrons) 
minus the binding energy B/c2. 
 

M c Zm c Nm c Bp n
2 2 2= + −  

 
The graph shown below plots the maximum value of B/A for a given value of A, vs. A.  
The greater the value of B/A, in general, the more stable is the nucleus. 
 

Binding Energy per Nucleon 
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(a) Above a certain mass number Aα , nuclei have binding energies which are always 
small enough to allow the emission of alpha-particles (A=4). Use a linear approximation 
to this curve above A = 100 to estimate Aα .  (3 marks) 
 
 
For this model, assume the following: 
 
• Both initial and final nuclei are represented on this curve. 
• The total binding energy of the alpha-particle is given by B4 = 25.0 MeV (this cannot 

be read off the graph!). 
 
 
 
(b) The binding energy of an atomic nucleus with Z protons and N neutrons (A=N+Z) is 
given by a semi-empirical formula: 
 

B a A a A a Z A a
N Z

Av s c a= − − −
−

−−2
3 2 1

3
2( )

δ  

 
The value of δ is given by: 
 

+ apA-3/4 for odd-N/odd-Z nuclei 

 
0 for even-N/odd-Z or odd-N/even-Z nuclei 

 
- apA-3/4 for even-N/even-Z nuclei 

 
The values of the coefficients are:  
 
av = 15.8 MeV; as = 16.8 MeV; ac = 0.72 MeV; aa = 23.5 MeV; ap = 33.5 MeV. 
 
 
(i) Derive an expression for the proton number Zmax of the nucleus with the largest 
binding energy for a given mass number A . Ignore the δ-term for this part only. (2 
marks) 
 
(ii) What is the value of Z for the A = 200 nucleus with the largest B/A? Include the effect 
of the δ-term.       (2 marks) 
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(iii) Consider the three nuclei with A = 128 listed in the table on the answer sheet. 
Determine which ones are energetically stable and which ones have sufficient energy to 
decay by the processes listed below. Determine Zmax as defined in part (i) and fill out the 
table on your answer sheet. 
 
In filling out the table, please:      
 
• Mark processes which are energetically allowed thus: √ 
• Mark processes which are NOT energetically allowed thus: 0 
• Consider only transitions between these three nuclei.  
 
Decay processes: 
 
(1) β -- decay; emission from the nucleus of an electron  
(2) β +- decay; emission from the nucleus of a positron 
(3) β -β - - decay; emission from the nucleus of two electrons simultaneously 
(4) Electron capture; capture of an atomic electron by the nucleus. 
 
The rest mass energy of an electron (and positron) is mec2 = 0.51 MeV; that of a proton is 
mpc2 = 938.27 MeV; that of a neutron is mnc2 = 939.57 MeV. 
 
(3 marks) 
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Question 2: Answer Sheet   STUDENT CODE: 
 
 
(a)  Numerical value for : Aα

 
 
 
(b)  (i) Expression for Zmax :  
 
 
 
 
(b)  (ii) Numerical value of Z :  
 
  
 
(b) (iii) 
 
Nucleus/Process β − - decay β + - decay Electron-capture β β− − - decay 

53
128 I     

54
128 Xe     

55
128 Cs     

 
Notation :   Z

A X
 
 X = Chemical Symbol 
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Theory Question No.3     
 
Solar-Powered Aircraft 
 
We wish to design an aircraft which will stay aloft using solar power alone. The most 
efficient type of layout is one with a wing whose top surface is completely covered in 
solar cells. The cells supply electrical power with which the motor drives the propeller. 
 
Consider a wing of rectangular plan-form with span l, chord (width) c; the wing area is     
S = cl, and the wing aspect ratio A = l / c. We can get an approximate idea of the wing’s 
performance by considering a slice of air of height  x and length l  being deflected 
downward at a small angle ε  with only a very small change in speed. Control surfaces 
can be used to select an optimal value of ε  for flight. This simple model corresponds 
closely to reality if x = π l /4, and we can assume this to be the case. The total mass of the 
aircraft is M and it flies horizontally with velocity rv  relative to the surrounding air. In 
the following calculations consider only the air flow around the wing. 
 
Top view of aircraft (in its own frame of reference): 
 
             incident air 

 c

l
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Side view of wing (in a frame of reference moving with the aircraft): 

 x
 ε

c
rv

 L

 D=D1+D2

  
 incident air     wing section      air leaving wing  vertical(up) 
 

Ignore the modification of the airflow due to the propeller. 
 
(a) Consider the change in momentum of the air moving past the wing, with no change in 
speed while it does so. Derive expressions for the vertical lift force L and the horizontal 
drag force D1 on the wing in terms of wing dimensions, v, ε, and the air density ρ. 
Assume the direction of air flow is always parallel to the plane of the side-view diagram.   
 (3 marks) 
 
(b)  There is an additional horizontal drag force D2 caused by the friction of air flowing 

over the surface of the wing. The air slows slightly, with a change of speed 
      ∆v (<< 1% of v) given by: 
  

∆v
v

f
A

=  

 
The value of f is independent of ε.  
 
Find an expression (in terms of M, f , A, S, ρ and g- the acceleration due to gravity) for 
the flight speed v0 corresponding to a minimum power being needed to maintain this 
aircraft in flight at constant altitude and velocity.  Neglect terms of order (ε 2 f ) or higher. 
  (3 marks) 
 
You may find the following small angle approximation useful: 
 

1
2

2

− ≈cos
sin

ε
ε

 

 
(c) On the answer sheet, sketch a graph of power P versus flight speed v . Show the 
separate contributions to the power needed from the two sources of drag.  Find an 
expression (in terms of M, f, A, S, ρ and g) for the minimum power, Pmin .       (2 marks) 
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(d) If the solar cells can supply sufficient energy so that the electric motors and propellers 
generate mechanical power of I = 10 watts per square metre of wing area, calculate the 
maximum wing loading Mg/S  (N/m2) for this power and flight speed v0 (m/s). Assume     
ρ = 1.25 kg/m3, f = 0.004, A = 10.        (2 marks) 
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Question 3: Answer Sheet   STUDENT CODE: 
 
(a)  Expression for L : 
 
 
 
 
 
 
(a)  Expression for D1 : 
 
 
 
 
 
 
(b) Expression for D2 : 
 
 
 
 
 
 
 
(b) Expression for v0 : 
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(c)
P

v

Pmin

v0
 

(c)  Expression for Pmin : 
 
 
 
 
 
 
(d)  Maximum value of Mg/S : 
  
  
  
  
  
  
(d) Numerical value of v0 : 
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Read this first:  
  
  
 
Use only the pen provided.  

1. Use only the front side of the answer sheets and paper.  
2. Use as little text as possible in your answers; express yourself primarily with equations, numbers 

and figures. Summarize your results on the answer sheets.  
3. Please indicate on all sheets the name of your team, your student number, the page number and the 

total number of pages.  
4. At the end of the exam please put your answer sheets, pages and graphs in numerical order and 

leave them on your table.  
5. Use of a calculator is allowed. 

 
 
 
 
This set of problems consists of 6 pages.  
 
 
 
 
Examination prepared at: University of Iceland, Department of Physics.  
 



Instrumentation provided: 
A  Platform with 6 banana jacks 

B  Pickup coil embedded into the 
platform 

C  Ferrite U-core with two coils 
marked ``A'' and ``B'' 

D  Ferrite U-core without coils 

E  Aluminium foils of thicknesses: 
50 µm, 100 µm and 200 µm 

F  Function generator with output 
leads 

G  Two multimeters 

H  Six leads with banana plugs 

I  Two rubber bands and two 
plastic spacers  

 
 
 
Multimeters 
The multimeters are two-terminal devices that in this experiment are used for measuring AC voltages, AC 
currents, frequency and resistance. In all cases one of the terminals is the one marked COM. For the 
voltage, frequency and resistance measurements the other terminal is the red one marked V-Ω. For current 
measurements the other terminal is the yellow one marked mA. With the central dial you select the meter 
function (V~ for AC voltage, A~ for AC current, Hz for frequency and Ω for resistance) and the 
measurement range. For the AC modes the measurement uncertainty is ± (4% of reading + 10 units of the 
last digit). To get accurate current measurements a change of range is recommended if the reading is 
less than 10% of full scale.  
Function generator 
To turn on the generator you press in the red button marked PWR. Select the 10 kHz range by pressing the 
button marked 10k, and select the sine waveform by pressing the second button from the right marked with 
a wave symbol. No other buttons should be selected. You can safely turn the amplitude knob fully 
clockwise. The frequency is selected with the large dial on the left. The dial reading multiplied by the range 
selection gives the output frequency. The frequency can be verified at any time with one of the multimeters. 
Use the output marked MAIN, which has 50 Ω internal resistance.  
Ferrite cores 
Handle the ferrite cores gently, they are brittle!! Ferrite is a ceramic magnetic material, with low electrical 
conductivity. Eddy current losses in the cores are therefore low.  
Banana jacks 
To connect a coil lead to a banana jack, you loosen the colored plastic nut, place the tinned end between the 
metal nut and plastic nut, and tighten it again.  



 
Figure 1: Experimental arrangement for part I. 

 
Part I. Magnetic shielding with eddy currents 
Time-dependent magnetic fields induce eddy currents in conductors. The eddy currents in turn produce a 
counteracting magnetic field. In superconductors the induced eddy currents will expel the magnetic field 
completely from the interior of the conductor. Due to the finite conductivity of normal metals they are not 
as effective in shielding magnetic fields.  
To describe the shielding effect of aluminium foils we will apply a phenomenological model  
 
  B B e d= −

0
α  (1)  

where B0 is the magnetic field in the absence of foils. B is the magnetic field beneath the foils, α an 
attenuation constant, and d the foil thickness.  
 
Experiment  
Put the ferrite core with the coils, with legs down, on the raised block such that coil A is directly above the 
pickup coil embedded in the platform, as shown in Figure 1. Secure the core on the block by stretching the 
rubber bands over the core and under the block recess.  

1. Connect the leads for coils A and B to the jacks. Measure the resistance of all coils to make sure 
you have good connections. You should expect values of less than 10 Ω. Write your values in field 
1 on the answer sheet.  

2. Collect data to validate the model above and evaluate the attenuation constant α  for the 
aluminum foils (50 - 300 µm), for frequencies in the range of 5 - 20 kHz. Place the foils inside the 
square, above the pickup coil, and apply a sinusoidal voltage to coil A. Write your results in field 
2 on the answer sheet.  

3. Plot α versus frequency, and write in field 3 on the answer sheet, an expression describing the 
function α (f) .  

 
 
Part II. Magnetic flux linkage 
The response of two coils on a closed ferrite core to an external alternating voltage (Vg) from a sinusoidal 
signal generator is studied.  
 
 
 



Theory 
In the following basic theoretical discussion, and in the treatment of the data, it is assumed that the ohmic 
resistance in the two coils and hysteresis losses in the core have insignificant influence on the measured 
currents and voltages. Because of these simplifications in the treatment below, some deviations will occur 
between measured and calculated values. 
 
Single coil 
Let us first look at a core with a single coil, carrying a current I. The magnetic flux Φ , that the current 
creates in the ferrite core inside the coil, is proportional to the current I and to the number of windings N. 
The flux depends furthermore on a geometrical factor g, which is determined by the size and shape of the 
core, and the magnetic permeability µ =µrµ0  , which describes the magnetic properties of the core material. 
The relative permeability is denoted µr   and µ0   is the permeability of free space.  
The magnetic flux Φ is thus given by  
 
  Φ = =µgNI cNI  (2)  
 
where c=µg. The induced voltage is given by Faraday's law of induction,  
 

  ε( )
( ) ( )

t N
d t

dt
cN

dI t
dt

= − = −
Φ 2  (3)  

 
The conventional way to describe the relationship between current and voltage for a coil is through the self 
inductance of the coil L, defined by,  
 

  ε( )
( )

t L
dI t

dt
= −  (4)  

 
A sinusoidal signal generator connected to the coil will drive a current through it given by  
 
  I t I t( ) sin= 0 ω  (5)  
 
where ω is the angular frequency and I0 is the amplitude of the current. As follows from equation (3) this 
alternating current will induce a voltage across the coil given by  
 
  ε ω ω( ) cost cN I t= − 2

0  (6)  
The current will be such that the induced voltage is equal to the signal generator voltage Vg. There is a 90 
degree phase difference between the current and the voltage. If we only look at the magnitudes of the 
alternating voltage and current, allowing for this phase difference, we have  
 
  ε ω= cN I2  (7)  
 
 
 
 
 
 
 
Two coils 
Let us now assume that we have two coils on one core. Ferrite cores can be used to link magnetic flux 
between coils. In an ideal core the flux will be the same for all cross sections of the core. Due to flux 
leakage in real cores a second coil on the core will in general experience a reduced flux compared to the 



flux-generating coil. The flux ΦB in the secondary coil B is therefore related to the flux ΦA  in the primary 
coil A through  
 
  Φ ΦB Ak=  (8)  
 
Similarly a flux component ΦB  created by a current in coil B will create a flux ΦA =kΦB   in coil A. The 
factor k, which is called the coupling factor, has a value less than one.  
The ferrite core under study has two coils A and B in a transformer arrangement. Let us assume that coil A 
is the primary coil (connected to the signal generator). If no current flows in coil B (IB=0), the induced 
voltage εA due to IA is equal and opposite to  Vg. The flux created by IA  inside the secondary coil is 
determined by equation (8) and the induced voltage in coil B is  
 
  ε ωB A B AkcN N I=  (9)  
 
If a current IB  flows in coil B, it will induce a voltage in coil A which is described by a similar expression. 
The total voltage across the coil A will then be given by  
 
  V cN I kcN N Ig A A A A B B= = −ε ω ω2  (10)  
 
The current in the secondary coil thus induces an opposing voltage in the primary coil, leading to an 
increase in  IA. A similar equation can be written for εB. As can be verified by measurements, k is 
independent of which coil is taken as the primary coil.  
 
Experiment 
Place the two U-cores together as shown in Figure 2, and fasten them with the rubber bands. Set the 
function generator to produce a 10 kHz, sine wave. Remember to set the multimeters to the most sensitive 
range suitable for each measurement. The numbers of the windings of the two coils, A and B, are:  NA = 
150 turns and  NB = 100 turns (±1 turn on each coil).  
 

 
Figure 2: A transformer with a closed magnetic circuit. 

 
1. Derive algebraic expressions for the self inductances LA  and LB  , and the coupling factor k, in 

terms of measured and given quantities and write your results in field 1.a on the answer sheet. 
Draw circuit diagrams in field 1.b on the answer sheet, showing how these quantities are 
determined. Calculate the numerical values of LA  , LB  and k and write their values in field 1.c 
on the answer sheet.  

2. When the secondary coil is short-circuited, the current IP  in the primary coil will increase. Use 
the equations above to derive an expression giving IP  explicitly and write your result in field 2.a 
on the answer sheet. Measure IP  and write your value in field 2.b on the answer sheet.  

3. Coils A and B can be connected in series in two different ways such that the two flux 
contributions are either added to or subtracted from each other. 
3.1. Find the self inductance of the serially connected coils, LA+B  , from measured quantities in 
the case where the flux contributions produced by the current I in the two coils add to (strengthen) 
each other and write your answer in field 3.1 on the answer sheet. 



3.2. Measure the voltages VA  and VB  when the flux contributions of the two coils oppose each 
other. Write your values in field 3.2.a on the answer sheet and the ratio of the voltages in field 
3.2.b. Derive an expression for the ratio of the voltages across the two coils and write it in field 
3.2.c on the answer sheet.  

4. Use the results obtained to verify that the self inductance of a coil is proportional to the square of 
the number of its windings and write your result in field 4 on the answer sheet.  

5. Verify that it was justified to neglect the resistances of the coils and write your arguments as 
mathematical expressions in field 5 on the answer sheet.  

6. Thin plastic spacers inserted between the two half cores (as shown in Figure 3) reduce the coil 
inductances drastically. Use this reduction to determine the relative permeability µr of the ferrite 
material, given Ampere's law and continuity of the magnetic field B across the ferrite - plastic 
interface.  

 
 
Assume µ =µ0 =4π×10-7 Ns2/C2 for the plastic spacers and a spacer thickness of 1.6 mm. The geometrical 
factor can be determined from Ampere's law  
 

 
1
µ

Bdl I total=∫  (11) 

 
where Itotal  is the total current flowing through a surface bounded by the integration path. Write your 
algebraic expression for µr  in field 6.a on the answer sheet and your numerical value in field 6.b.  
 

 
Figure 3: The ferrite cores with the two spacers in place. 

 



Final 

30th International Physics Olympiad 
 

Padua, Italy 
 

Theoretical competition 
 

Thursday, July 22nd, 1999 
 
 
 
Please read this first: 
 
1. The time available is 5 hours for 3 problems. 
2. Use only the pen provided. 
3. Use only the front side of the provided sheets. 
4. In addition to the problem texts, that contain the specific data for each problem, a sheet is 

provided containing a number of general physical constants that may be useful for the problem 
solutions. 

5. Each problem should be answered on separate sheets. 
6. In addition to "blank" sheets where you may write freely, for each problem there is an Answer 

sheet where you must summarize the results you have obtained. Numerical results must be 
written with as many digits as appropriate to the given data; don’t forget the units. 
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Problem 1  
 

Absorption of radiation by a gas 
 
 
A cylindrical vessel, with its axis vertical, contains a molecular gas at thermodynamic equilibrium. 
The upper base of the cylinder can be displaced freely and is made out of a glass plate; let's assume 
that there is no gas leakage and that the friction between glass plate and cylinder walls is just 
sufficient to damp oscillations but doesn't involve any significant loss of energy with respect to the 
other energies involved. Initially the gas temperature is equal to that of the surrounding 
environment. The gas can be considered as perfect within a good approximation. Let's assume that 
the cylinder walls (including the bases) have a very low thermal conductivity and capacity, and 
therefore the heat transfer between gas and environment is very slow, and can be neglected in the 
solution of this problem. 
 Through the glass plate we send into the cylinder the light emitted by a constant power laser; 
this radiation is easily transmitted by air and glass but is completely absorbed by the gas inside the 
vessel. By absorbing this radiation the molecules reach excited states, where they quickly emit 
infrared radiation returning in steps to the molecular ground state; this infrared radiation, however, 
is further absorbed by other molecules and is reflected by the vessel walls, including the glass plate. 
The energy absorbed from the laser is therefore transferred in a very short time into thermal 
movement (molecular chaos) and thereafter stays in the gas for a sufficiently long time. 
 We observe that the glass plate moves upwards; after a certain irradiation time we switch 
the laser off and we measure this displacement. 
 
1. Using the data below and - if necessary - those on the sheet with physical constants, 

compute the temperature and the pressure of the gas after the irradiation.      [2 points] 
2. Compute the mechanical work carried out by the gas as a consequence of the radiation 

absorption.       [1 point] 
3. Compute the radiant energy absorbed during the irradiation.      [2 points] 
4. Compute the power emitted by the laser that is absorbed by the gas, and the corresponding 

number of photons (and thus of elementary absorption processes) per unit time.    [1.5 
points] 

5. Compute the efficiency of the conversion process of optical energy into a change of 
mechanical potential energy of the glass plate.     [1 point] 

 
Thereafter the cylinder axis is slowly rotated by 90°, bringing it into a horizontal direction. The heat 
exchanges between gas and vessel can still be neglected. 
 
6. State whether the pressure and/or the temperature of the gas change as a consequence of 

such a rotation, and - if that is the case – what is its/their new value.      [2.5 points] 
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Data 
 
Room pressure: p0 = 101.3 kPa 
Room temperature: T0 = 20.0°C 
Inner diameter of the cylinder: 2r = 100 mm 
Mass of the glass plate: m = 800 g 
Quantity of gas within the vessel: n = 0.100 mol 
Molar specific heat at constant volume of the gas: cV = 20.8 J/(mol⋅K) 
Emission wavelength of the laser: λ = 514 nm 
Irradiation time: ∆t = 10.0 s 
Displacement of the movable plate after irradiation: ∆s = 30.0 mm 
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Answer sheet 
 

 
In this problem you are requested to give your results both as analytical expressions and with numerical 
data and units: write expressions first and then data (e.g. A=bc=1.23 m2). 

 

1. Gas temperature after the irradiation ………………………………………………………... 

 Gas pressure after the irradiation ……………………………………………………………. 

 

2. Mechanical work carried out ………………………………………………………………... 

 

3. Overall optical energy absorbed by the gas ………………………………………………… 

 

4. Optical laser power absorbed by the gas …………………………………………………… 

 Absorption rate of photons (number of absorbed photons per unit time) …………………... 

  

5. Efficiency in the conversion of optical energy into change of mechanical potential energy 

of the glass plate ………………………………………………………………. 

 
6. Owing to the cylinder rotation, is there a pressure change?  YES     NO  

   If yes, what is its new value? ……………………………………………………… 

 Owing to the cylinder rotation, is there a temperature change?  YES    NO   

   If yes, what is its new value? ………………………………………………………
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Physical constants and general data 
 
 
In addition to the numerical data given within the text of the individual problems, the knowledge of 
some general data and physical constants may be useful, and you may find them among the 
following ones. These are nearly the most accurate data currently available, and they have thus a 
large number of digits; you are expected, however, to write your results with a number of digits 
that must be appropriate for each problem. 
 
Speed of light in vacuum: c = 299792458 m⋅s-1 
Magnetic permeability of vacuum: µ0 = 4π⋅10-7 H⋅m-1 
Dielectric constant of vacuum: ε0 = 8.8541878 pF⋅m-1 
Gravitational constant: G = 6.67259⋅10-11 m3/(kg⋅s²) 
Gas constant: R = 8.314510 J/(mol⋅K) 
Boltzmann's constant: k = 1.380658⋅10-23  J⋅K-1 
Stefan's constant: σ = 56.703 nW/(m²⋅K4) 
Proton charge: e = 1.60217733⋅10-19  C 
Electron mass: me = 9.1093897⋅10-31 kg 
Planck's constant: h = 6.6260755⋅10-34 J⋅s 
Base of centigrade scale: TK = 273.15 K 
Sun mass: MS = 1.991⋅1030 kg 
Earth mass: ME = 5.979⋅1024  kg 
Mean radius of Earth: rE = 6.373 Mm 
Major semiaxis of Earth orbit: RE = 1.4957⋅1011  m 
Sidereal day: dS = 86.16406 ks 
Year: y = 31.558150 Ms 
Standard value of the gravitational field at the Earth surface: g = 9.80665 m⋅s-2 
Standard value of the atmospheric pressure at sea level: p0 = 101325 Pa 
Refractive index of air for visibile light, at standard pressure and 15 °C: nair = 1.000277 
Solar constant: S  = 1355 W⋅m-2 
Jupiter mass: M = 1.901⋅1027 kg 
Equatorial Jupiter radius: RB = 69.8 Mm 
Average radius of Jupiter’s orbit: R  = 7.783⋅1011 m 
Jovian day: dJ = 35.6 ks  
Jovian year: yJ = 374.32 Ms 
π: 3.14159265 
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Problem 2 
 
 Magnetic field with a V-shaped wire 
 
 
Among the first successes of the interpretation by Ampère of magnetic phenomena, we have the 
computation of the magnetic field B generated by wires carrying an electric current, as compared 
to early assumptions originally made by Biot and Savart.  
 
A particularly interesting case is that of a very long thin wire, carrying a constant current i, made 
out of two rectilinear sections and bent in the form of a "V", with angular half-span1









2
tan α

 α (see figure). 
According to Ampère's computations, the magnitude B of the magnetic field in a given point P 
lying on the axis of the "V", outside of it and at a distance d from its vertex, is proportional to 

. Ampère's work was later embodied in Maxwell's electromagnetic theory, and is 

universally accepted. 
 
 
 
 
 
 
 
 
 
 
 
Using our contemporary knowledge of electromagnetism, 
 
1. Find the direction of the field B in P.       [1 point] 

2.  Knowing that the field is proportional to 







2
tan α , find the proportionality factor k in 







=

2
tan)P( αkB .        [1.5 points] 

3. Compute the field B in a point P* symmetric to P with respect to the vertex, i.e. along the 
axis and at the same distance d, but inside the "V" (see figure).       [2 points] 

                                                 
1 Throughout this problem α is expressed in radians 

α
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4. In order to measure the magnetic field, we place in P a small magnetic needle with moment 

of inertia I and magnetic dipole moment µ; it oscillates around a fixed point in a plane 
containing the direction of B. Compute the period of small oscillations of this needle as a 
function of B.       [2.5 points] 

 
 In the same conditions Biot and Savart had instead assumed that the magnetic field in P 

might have been (we use here the modern notation) 
d

iB 2
0)P(

π
αµ

= , where µ0 is the magnetic 

permeability of vacuum. In fact they attempted to decide with an experiment between the two 
interpretations (Ampère's and Biot and Savart's) by measuring the oscillation period of the magnetic 
needle as a function of the "V" span. For some α values, however, the differences are too small to 
be easily measurable. 
 
5. If, in order to distinguish experimentally between the two predictions for the magnetic 

needle oscillation period T in  P, we need a difference by at least 10%, namely T1  > 1.10 T2  
(T1 being the Ampere prediction and T2 the Biot-Savart prediction) state in  which range, 
approximately, we must choose the "V" half-span α for being able to decide between the 
two interpretations.      [3 points] 

 
 
Hint 
 
Depending on which path you follow in your solution, the following trigonometric equation might 

be useful: 
α

αα
cos1

sin
2

tan
+

=
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Answer sheet 
 
In this problem write the requested results as analytic expressions, not as numerical values and 
units, unless explicitly indicated. 

 
1. Using the following sketch draw the direction of the B field (the length of the vector is not 

important). The sketch is a spatial perspective view. 

 
 
 
2. Proportionality factor k ………………………. 
 
3. Absolute value of the magnetic field intensity at the point P*, as described in the 

text………………………..……………… 

Draw the direction of the B field in the above sketch 
 

4. Period of the small angle oscillations of the magnet …………………………… 
 
5. Write for which range of α values (indicating here the numerical values of the range limits) 

the ratio between the oscillation periods, as predicted by Ampère and by Biot and Savart, is 
larger than 1.10:  

 
   ……………………. ………………………. 
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Problem 3 
 

A space probe to Jupiter 
 
 
We consider in this problem a method frequently used to accelerate space probes in the desired 
direction. The space probe flies by a planet, and can significantly increase its speed and modify 
considerably its flight direction, by taking away a very small amount of energy from the planet's 
orbital motion. We analyze here this effect for a space probe passing near Jupiter. 
 
The planet Jupiter orbits around the Sun along an elliptical trajectory, that can be approximated 
by a circumference of average radius R; in order to proceed with the analysis of the physical 
situation we must first: 
 
1. Find the speed V  of the planet along its orbit around the Sun.      [ 1.5 points] 
2. When the probe is between the Sun and Jupiter (on the segment Sun-Jupiter), find the 

distance from Jupiter  where the Sun's gravitational attraction balances that by Jupiter.       
[1 point] 

 
A space probe of mass m = 825 kg flies by Jupiter. For simplicity assume that the trajectory of 
the space probe is entirely in the plane of Jupiter's orbit; in this way we neglect the important 
case in which the space probe is expelled from Jupiter’s orbital plane. 
 We only consider what happens in the region where Jupiter's attraction overwhelms all 
other gravitational forces.  
 In the reference frame of the Sun's center of mass the initial speed of the space probe is v0 

=1.00·104 m/s (along  the positive y direction) while Jupiter's speed is along the negative x 
direction (see figure 1); by "initial speed" we mean the space probe speed when it's in the 
interplanetary space, still far from Jupiter but already in the region where the Sun's attraction is 
negligible with respect to Jupiter's. We assume that the encounter occurs in a sufficiently short 
time to allow neglecting the change of direction of Jupiter along its orbit around the Sun. We 
also assume that the probe passes behind Jupiter, i.e. the x coordinate is greater for the probe than 
for Jupiter when the y coordinate is the same. 
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Figure 1: View in the Sun center of mass system. O denotes Jupiter’s orbit, s is the space probe. 

  
3. Find the space probe's direction of motion (as the angle ϕ between its direction and the x 

axis) and its speed v’ in Jupiter's reference frame, when it's still far away from Jupiter.     
[2 points] 

4. Find the value of the space probe's total mechanical energy E in Jupiter's reference frame, 
putting – as usual – equal to zero the value of its potential energy at a very large distance, 
in this case when it is far enough to move with almost constant velocity owing to the 
smallness of all gravitational interactions.      [1 point] 

 
The space probe's trajectory in the reference frame of Jupiter is a hyperbola and its equation in 
polar coordinates in this reference frame is 
 

   













++= θcos'211

'
1

22

22

22 mMG
bEv

bv
GM

r
  (1) 

 
where b is the distance between one of the asymptotes and Jupiter (the so called impact 
parameter), E is the probe’s total mechanical energy in Jupiter’s reference frame, G is the 
gravitational constant, M is the mass of Jupiter, r and θ  are the polar coordinates (the radial 
distance and the polar angle). 
 Figure 2 shows the two branches of a hyperbola as described by equation (1); the 
asymptotes and the polar co-ordinates are also shown. Note that equation (1) has its origin in the 
"attractive focus" of the hyperbola. The space probe's trajectory is the attractive trajectory (the 
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emphasized branch). 
 

 
Figure 2 

 
5. Using equation (1) describing the space probe's trajectory, find the total angular deviation 

∆θ in Jupiter’s reference frame (as shown in figure 2) and express it as a function of 
initial speed v’ and impact parameter b.       [2 points] 

6. Assume that the probe cannot pass Jupiter at a distance less than three Jupiter radii from 
the center of the planet; find the minimum possible impact parameter and the maximum 
possible angular deviation.        [1 point] 

7. Find an equation for the final speed v” of the probe in the Sun's reference frame as a 
function only of Jupiter’s speed V, the probe’s initial speed v0 and the deviation angle ∆θ.          
[1 point] 

8. Use the previous result to find the numerical value of the final speed v” in the Sun's reference 
frame when the angular deviation has its maximum possible value.          [0.5 points] 
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Hint 
 
Depending on which path you follow in your solution, the following trigonometric formulas 
might be useful: 

βαβαβα

βαβαβα

sinsincoscos)cos(

sincoscossin)sin(

−=+

+=+
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Answer sheet 

 
Unless explixitly requested to do otherwise, in this problem  you are supposed to write your 
results both as analytic equations (first) and then as numerical results and units (e.g. A=bc=1.23 
m2). 
 

1. Speed V of Jupiter along its orbit …………………………… 

 

2. Distance from Jupiter where the two gravitational attractions balance each 

other ……………………………………. 

 

3. Initial speed  v’ of the space probe in Jupiter’s reference frame ………………………………... 

and the angle ϕ its direction forms with the x axis, as defined in figure 

1,  ……………………..……… 

 

4. Total energy E of the space probe in Jupiter’s reference frame …………………………………... 

 

5. Write a formula linking the probe’s deviation ∆θ in Jupiter’s reference frame to the impact 

parameter b, the initial speed v’ and other known or computed 

quantities …………………………………………………………………………………………

………….. 

 

6. If the distance from Jupiter’s center can’t be less than three Jovian radii, write the minimum 

impact parameter and the maximum angular deviation: b = ……………………………………; 

∆θ = …………………………………………………….. 

 

7. Equation for the final probe speed v” in the Sun’s reference frame as a function of V, v0  and 

∆θ …...………………………………..…………………………………………...……… 

 
8. Numerical value of the final speed in the Sun’s reference frame when the angular deviation has 

its maximum value as computed in step 6 ………….…………………………………………… 
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Before attempting to assemble your equipment, read the problem text 
completely! 
 
Please read this first: 
 
1. The time available is 5 hours for one experiment only. 
2. Use only the pen provided. 
3. Use only the front side of the provided sheets. 
4. In addition to "blank" sheets where you may write freely, there is a set of Answer sheets 

where you must summarize the results you have obtained. Numerical results must be 
written with as many digits as appropriate; don’t forget the units. Try – whenever possible – 
to estimate the experimental uncertainties. 

5. Please write on the "blank" sheets the results of all your measurements and whatever else 
you deem important for the solution of the problem, that you wish to be evaluated during 
the marking process. However, you should use mainly equations, numbers, symbols, 
graphs, figures, and use as little text as possible. 

6. It's absolutely imperative that you write on top of each sheet that you'll use: your name 
(“NAME”), your country (“TEAM”), your student code (as shown on your identification tag, 
“CODE”), and additionally on the "blank" sheets: the progressive number of each sheet (from 
1 to N, “Page n.”) and the total number (N) of "blank" sheets that you use and wish to be 
evaluated (“Page total”); leave the “Problem” field blank.  It is also useful to write the 
number of the section you are answering at the beginning of each such section. If  you use 
some sheets for notes that you don’t wish to be evaluated by the marking team, just put a large 
cross through the whole sheet, and don’t number it. 

7. When you've finished, turn in all sheets in proper order (answer sheets first, then used 
sheets in order, unused sheets and problem text at the bottom) and put them all inside the 
envelope where you found them; then leave everything on your desk. You are not allowed 
to take anything out of the room. 

 
This problem consists of 11 pages (including this one and the answer sheets). 
 
This problem has been prepared by the Scientific Committee of the 30th IPhO, including professors at the Universities 
of Bologna, Naples, Turin and Trieste. 
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Torsion pendulum 

 
 
In this experiment we want to study a relatively complex mechanical system – a torsion 
pendulum – and investigate its main parameters. When its rotation axis is horizontal it 
displays a simple example of bifurcation. 
 
 
Available equipment 
 
1. A torsion pendulum, consisting of an outer body (not longitudinally uniform) and an inner threaded 

rod, with a stand as shown in figure 1 
2. A steel wire with handle 
3. A long hexagonal nut that can be screwed onto the pendulum threaded rod (needed only for the 

last exercise) 
4. A ruler and a right triangle template 
5. A timer 
6. Hexagonal wrenches 
7. A3 Millimeter paper sheets.  
8. An adjustable clamp 
9. Adhesive tape 
10. A piece of T-shaped rod 

 
 
The experimental apparatus is shown in figure 1; it is a torsion pendulum that can oscillate 
either around a horizontal rotation axis or around a vertical rotation axis. The rotation axis is 
defined by a short steel wire kept in tension. The pendulum has an inner part that is a threaded 
rod that may be screwed in and out, and can be fixed in place by means of a small hexagonal 
lock nut. This threaded rod can not be extracted from the pendulum body.  
 When assembling the apparatus in step 5 the steel wire must pass through the brass 
blocks and through the hole in the pendulum, then must be locked in place by keeping it 
stretched:  lock it first at one end, then use the handle to put it in tension and lock it at the 
other end. 
 
Warning: The wire must be put in tension only to guarantee the pendulum stability. It's 

not necessary to strain it with a force larger than about 30 N. While straining it, 
don't bend the wire against the stand, because it might break. 
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handle

steel wire

 
 

Figure 1: Sketch of the experimental apparatus when its rotation axis is horizontal. 
 

The variables characterizing the pendulum oscillations are: 
• the pendulum position defined by the angle θ  of deviation from the direction 

perpendicular to the plane of the stand frame, which is shown horizontal in figure 1.  
• the distance x between the free end of the inner threaded rod and the pendulum rotation 

axis 
• the period T of the pendulum oscillations. 
 

The parameters characterizing the system are:  
• the torsional elastic constant κ (torque = κ ⋅ angle) of the steel wire;  
• the masses M1 and M2 of the two parts of the pendulum (1: outer cylinder 1

                                                 
1 Including the small hex locking nut. 

 and 2: 
threaded rod);  
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• the distances R1 and R2 of the center of mass of each pendulum part (1: outer cylinder and 
2: threaded rod) from the rotation axis. In this case the inner mobile part (the threaded rod) 
is sufficiently uniform for computing R2 on the basis of its mass, its length   and the 
distance x. R2 is therefore a simple function of the other parameters;  

• the moments of inertia I1 and I2 of the two pendulum parts (1: outer cylinder and 2: 
threaded rod). In this case also we assume that the mobile part (the threaded rod) is 
sufficiently uniform for computing I2 on the basis of its mass, its length   and the 
distance x. I2 is therefore also a simple function of the other parameters;  

• the angular position θ0 (measured between the pendulum and the perpendicular to the 
plane of the stand frame) where the elastic recall torque is zero. The pendulum is locked 
to the rotation axis by means of a hex screw, opposite to the threaded rod; therefore θ0 
varies with each installation of the apparatus. 

 
Summing up, the system is described by 7 parameters: κ, M1, M2, R1, I1, , θ0, but θ0 

changes each time the apparatus is assembled, so that only 6 of them are really constants and 
the purpose of the experiment is that of determining them, namely κ, M1, M2, R1, I1, , 
experimentally. Please note that the inner threaded rod can’t be drawn out of the pendulum 
body, and initially only the total mass M1 + M2 is given (it is printed on each pendulum).  

In this experiment several quantities are linear functions of one variable, and you 
must estimate the parameters of these linear functions. You can use a linear fit, but alternative 
approaches are also acceptable. The experimental uncertainties of the parameters can be 
estimated from the procedure of the linear fit or from the spread of experimental data about 
the fit. 

The analysis also requires a simple formula for the moment of inertia of the inner 
part (we assume that its transverse dimensions are negligible with respect to its length, see 
figure 2):  
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where /2M=λ  is the linear mass density, and therefore  
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Figure 2: In the analysis of the experiment we can use an equation (eq. 2) for the moment of inertia of 

a bar whose transverse dimensions are much less than its length. The moment of inertia must be 
computed about the rotation axis that in this figure crosses the s axis at s=0. 

 
Now follow these steps to find the 6 parameters M1, M2, κ, R1,  , I1: 
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1. The value of the total mass M1+M2 is given (it is printed on the pendulum), and you can 
find M1 and M2 by measuring the distance R(x) between the rotation axis and the center 
of mass of the pendulum. To accomplish this write first an equation for the position R(x) 
of the center of mass as a function of x  and of the parameters M1, M2, R1,  .       [0.5 
points] 

2.  Now measure R(x) for several values of x (at least 3) 2

 

. Clearly such measurement must 
be carried out when the pendulum is not attached to the steel wire. Use these 
measurements and the previous result to find M1 and M2.        [3 points] 

x



θ

θ0

 
 

Figure 3: The variables θ  and x and the parameters θ0  and  are shown here. 
 
3. Find an equation for the pendulum total moment of inertia I as a function of x  and of the 

parameters M2, I1 and  .        [0.5 points] 
4. Write the pendulum equation of motion in the case of a horizontal rotation axis, as a 

function of the angle θ   (see figure 3) and of x, κ, θ0, M1, M2, the total moment of 
inertia I and the position R(x)  of the center of mass.        [1 point] 

                                                 
2 The small hex nut must be locked in place every time you move the threaded rod. Its mass is included in M1. 
This locking must be repeated also in the following, each time you move the threaded rod. 
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5. In order to determine κ, assemble now the pendulum and set it with its rotation axis 
horizontal. The threaded rod must initially be as far as possible inside the pendulum. 
Lock the pendulum to the steel wire, with the hex screw, at about half way between the 
wire clamps and in such a way that its equilibrium angle (under the combined action of 
weight and elastic recall) deviates sizeably from the vertical (see figure 4). Measure the 
equilibrium angle θe  for several values of x (at least 5).       [4 points] 

 

 
Figure 4: In this measurement set the pendulum so that its equilibrium position deviates from the 

vertical. 
 
6. Using the last measurements, find κ.       [4.5 points] 
7. Now place the pendulum with its rotation axis vertical3

 

, and measure its oscillation 
period for several values of x (at least 5). With these measurements, find I1 and  .      [4 
points] 

At this stage, after having found the system parameters, set the experimental 
apparatus as follows:  
• pendulum rotation axis horizontal 
• threaded rod as far as possible inside the pendulum 
• pendulum as vertical as possible near equilibrium 
• finally add the long hexagonal nut at the end of the threaded rod by screwing it a few 

turns (it can’t go further than that) 
 

In this way the pendulum may have two equilibrium positions, and the situation 
varies according to the position of the threaded rod, as you can also see from the generic 
graph shown in figure 5, of the potential energy as a function of the angle θ. 

The doubling of the potential energy minimum in figure 5 illustrates a phenomenon 
known in mathematics as bifurcation; it is also related to the various kinds of symmetry 
breaking that are studied in particle physics and statistical mechanics.  

 
 

                                                 
3 In order to stabilize it in this position, you may reposition the stand brackets. 
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Figure 5: Graph of the function θθθθ cos)(
2

)( 2
0 +−=

aU  (which is proportional to the 

potential energy of this problem) as a function of θ, with θ0 ≠ 0. The various curves 
correspond to different a values as labeled in the figure; smaller values of a  (a < 1) 
correspond to the appearence of the bifurcation. In our case the parameter a is associated 
with the position x of the threaded rod. 

 
We can now study this bifurcation by measuring the period of the small oscillations 

about the equilibrium position:  
 
8. Plot the period4

 

 T as a function of x. What kind of function is it? Is it increasing, 
decreasing or is it a more complex function?        [2.5 points] 

                                                 
4 You may be able to observe two equilibrium positions, but one of them is more stable than the other (see 
figure 5). Report and plot the period for the more stable one. 



Problem 1 – Solution Page 1 
 
Solution 
 

1. At equilibrium the pressure p inside the vessel must be equal to the room pressure p0 plus the 

pressure induced by the weight of the movable base: 20 r
mgpp
π

+= . This is true before and after 

irradiation. Initially the gas temperature is room temperature. Owing to the state equation of perfect 

gases, the initial gas volume V1 is 
p

nRTV 0
1 =  (where R is the gas constant) and therefore the height 

h1 of the cylinder which is occupied by the gas is 
mgrp

nRT
r

Vh
+

== 2
0

0
2

1
1 ππ

. After irradiation, this 

height becomes h2 = h1+∆s, and therefore the new temperature is  

 
nR

mgrpsT
h
sTT )(1

2
0

0
1

02
+∆

+=






 ∆
+=

π . 

Numerical values: p = 102.32 kPa; T2 = 322 K = 49°C 
 

    2. The mechanical work made by the gas against the plate weight is mg∆s and against the room 
pressure is srp ∆2

0π , therefore the total work is J1.24)( 2
0 =∆+= srpmgL π  

 
    3. The internal energy, owing to the temperature variation, varies by an amount )( 02V TTncU −=∆ . 

The heat introduced into the system during the irradiation time ∆t is 

( ) 





 ++∆=∆++

∆
=+∆= 1)( V2

0
2

0
1

0
V R

cmgrpssrpmg
h

sTncLUQ ππ . This heat comes 

exclusively from the absorption of optical radiation and coincides therefore with the absorbed 
optical energy, Q = 84 J. 
 
The same result can also be obtained by considering an isobaric transformation and remembering 
the relationship between molecular heats: 








 ++∆=










 +∆
+=−= 1)(

)(
)()( V2

0

2
0

V02 R
c

mgrps
nR

mgrps
RcnTTncQ p π

π
 

 
    4. Since the laser emits a constant power, the absorbed optical power is 

)(1 2
0

V mgrp
t
s

R
c

t
QW +

∆
∆








 +=
∆

= π  = 8.4 W. The energy of each photon is hc/λ, and thus the 

number of photons absorbed per unit time is 
hc

Wλ  = 2.2⋅1019 s-1 

 
5. The potential energy change is equal to the mechanical work made against the plate weight, 

therefore the efficiency η of the energy transformation is  
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6. When the cylinder is rotated and its axis becomes horizontal, we have an adiabatic transformation 

where the pressure changes from p to p0, and the temperature changes therefore to a new value T3. 
The equation of the adiabatic transformation constant=γpV  may now be written in the form 

γ
γ 1

0
23

−









=

p
pTT , where 399.11

VV

V

V

p =+=
+

==
c
R

c
Rc

c
c

γ . Finally T3  = 321 K = 48°C 
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Grading guidelines 
 
1. 0.5 Understanding the relationship between inner and outer pressure 
 0.7 Proper  use of  the plate displacement 
 0.2+0.2 Correct results for final pressure 
 0.2+0.2 Correct results for final  temperature 
 
2. 0.6 Understanding that the work is made both against plate weight and against 

atmospheric pressure 
 0.2+0.2 Correct results for work 
 
3. 1 Correct approach 
 0.5 Correct equation for heat 

0.3 Understanding that the absorbed optical energy equals heat 
 0.2 Correct numerical result for optical energy 
 
4. 0.2+0.2 Correct results for optical power 
 0.5 Einstein’s equation 
 0.3+0.3 Correct results for number of photons 
 
5. 0.6 Computation of  the change in potential energy 
 0.2+0.2 Correct results for efficiency 
 
6. 0.8 Understanding that the pressure returns to room value 
 0.4 Understanding that there is an adiabatic transformation 
 0.4 Equation of adiabatic transformation 
 0.5 Derivation of  γ from the relationship between specific heats 

0.2+0.2 Correct results for temperature 
 
 
For “correct results” two possible marks are given: the first one is for the analytical equation and 
the second one for the numerical value. 
For the numerical values a full score cannot be given if the number of digits is incorrect (more than 
one digit more or less than those given in the solution) or if the units are incorrect or missing. 
No bonus can be given for taking into account the gas weight 
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Solution 
 

1. The contribution to B given by each leg of the "V" has the same direction as that of a corresponding 
infinite wire and therefore - if the current proceeds as indicated by the arrow - the magnetic field is 
orthogonal to the wire plane taken as the x-y plane. If we use a right-handed reference frame as 
indicated in the figure, B(P) is along the positive z axis.  
 
 

 
 
For symmetry reasons, the total field is twice that generated by each leg and has still the same 
direction. 
 

2A. When α=π/2 the "V" becomes a straight infinite wire. In this case the magnitude of the field B(P) is 

known to be 
d

i
dc

iB
π
µ

επ 22
0

2
0

== , and since tan(π/4)=1, the factor k is 
d2

i 0

π
µ . 

 
 The following solution is equally acceptable: 

2B. If the student is aware of the equation 
h

iB 210 coscos
4

θθ
π
µ −

=  for a finite stretch of wire lying on a 

straight line at a distance h from point P and whose ends are seen from P under the angles θ1 and θ2, 

he can find that the two legs of the “V” both produce fields 
α
α

π
µ

sin
cos1

4
0

d
i −  and therefore the total 

field is 





=

−
=

2
tan

2sin
cos1

2
00 α

π
µ

α
α

π
µ

d
i

d
iB . This is a more complete solution since it also proves 

the angular dependence,  but it is not required. 
 

3A. In order to compute B(P*) we may consider the "V" as equivalent to two crossed infinite wires (a 
and b in the following figure) plus another "V", symmetrical to the first one, shown in the figure as 
V', carrying the same current i, in opposite direction. 
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 Then )(P)P()P()P( *

V'
*** BBBB ba ++= . The individual contributions are: 

απ
µ
sin2

)P()P( 0**

d
iBB ba == , along the negative z axis; 







=

2
tan

2
)P( 0*

V'
α

π
µ

d
iB , along the positive z axis. 

Therefore we have 





=






 +

=













−=

2
cot

sin
cos1

2
tan

sin
2

2
)P( 0* α

α
αα

απ
µ kk

d
iB , and the field is 

along the negative z axis. 
 
The following solutions are equally acceptable: 

   3B. The point P* inside a "V" with half-span α can be treated as if it would be on the outside of a "V" 
with half-span π-α carrying the same current but in an opposite way, therefore the field is 







=






 −=






 −

=
2

cot
22

tan
2

tan)P( * ααπαπ kkkB ; the direction is still that of the z axis but it is 

along the negative axis because the current flows in the opposite way as previously discussed. 
 

3C. If the student follows the procedure outlined under 2B., he/she may also find the field value in P* 
by the same method. 
 

4. The mechanical moment M acting on the magnetic needle placed in point P is given by  M = µ ∧ B 
(where the symbol ∧ is used for vector product). If the needle is displaced from its equilibrium 
position by an angle β small enough to approximate sinβ with β, the angular momentum theorem 

gives 
dt

dI=
dt
dL=B-=M 2

2 ββµ , where there is a minus sign because the mechanical momentum is 

always opposite to the displacement from equilibrium. The period T of the small oscillations is 

therefore given by 
B

IT
µ

π
ω
π 22
== . 

Writing the differential equation, however, is not required: the student should recognise the same 
situation as with a harmonic oscillator. 

5. If we label with subscript A the computations based on Ampère's interpretation, and with subscript 
BS those based on the other hypothesis by Biot and Savart, we have 
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22
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π
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π
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IdT

d
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i
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For α = π/2 (maximum possible value) TA = TBS; and for α → 0 BSBSA 128.12 TTT ≈→
π

. Since 

within this range 
2/

)2/tan(
α
α  is a monotonically growing function of α, 

BS

A

T
T is a monotonically 

decreasing function of α; in an experiment it is therefore not possible to distinguish between the 
two interpretations if the value of α is larger than the value for which TA = 1.10 TBS (10% 

difference), namely when 
2

05.1
221.1

4
2

tan αα
π

α
==






 . By looking into the trigonometry tables or 

using a calculator we see that this condition is well approximated when α/2 = 0.38 rad; α must 
therefore be smaller than 0.77 rad ≈ 44°. 
A graphical solution of the equation for α is acceptable but somewhat lengthy. A series 
development, on the contrary, is not acceptable. 
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Grading guidelines 
 
 
1. 1 for recognising that each leg gives the same contribution 
 0.5 for a correct sketch 
 
2. 0.5 for recognising that α=π/2 for a straight wire, or for knowledge of the equation given in 

2B. 
 0.25 for correct field equation (infinite or finite) 
 0.25 for value of k  
 
3. 0.7 for recognising that the V is equivalent to two infinite wires plus another V 
 0.3 for correct field equation for an infinite wire 
 0.5 for correct result for the intensity of the required field 
 0.5 for correct field direction 
alternatively 
 0.8 for describing the point as outside a V with π-α half-amplitude and opposite current 
 0.7 for correct analytic result 
 0.5 for correct field direction 
alternatively 
 0.5 for correctly using equation under 2B 
 1 for correct analytic result 

0.5 for correct field direction 
 
4. 0.5 for correct equation for mechanical moment M 

0.5 for doing small angle approximation sin β ≈ β 
1 for correct equation of motion, including sign, or for recognizing analogy with 

harmonic oscillator 
 0.5 for correct analytic result for T 
 
5. 0.3 for correct formulas of the two periods 
 0.3 for recognising the limiting values for α 
 0.4 for correct ratio between the periods 

1 for finding the relationship between α and tangent 
 0.5 for suitable approximate value of α 
 0.5 for final explicit limiting value of α  

 
 

For the numerical values a full score cannot be given if the number of digits is incorrect (more than 
one digit more or less than those given in the solution) or if the units are incorrect or missing 
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Solution 
 

1A. Assuming – as outlined in the text – that the orbit is circular, and relating the radial acceleration 

R
V 2

 to the gravitational field 2
S

R
GM  (where MS is the solar mass) we obtain Jupiter's orbital 

speed m/s10306.1 4S ⋅≈=
R

GM
V . 

 
The following alternative solution is also acceptable: 

1B. Since we treat Jupiter’s motion as circular and uniform, 
J

2
y

RRV πω == , where yJ is the 

revolution period of Jupiter, which is given in the list of the general physical constants. 
 

2.  The two gravitational forces on the space probe are equal when 
 

     
2

S
2 )( ρρ −

=
R

mGMGMm     (2) 

(where ρ  is the distance from Jupiter and M is Jupiter’s mass), whence 
 
     S)( MRM ρρ =−    (3) 

and 

   m10333.202997.0 10

S
⋅==

+
= RR

MM

M
ρ  (4) 

 
and therefore the two gravitational attractions are equal at a distance of about 23.3 million 
kilometers  from Jupiter (about 334 Jupiter radii). 
 

3.  With a simple Galilean transformation we find that the velocity components of the probe in 
Jupiter's reference frame are 

 









=

=

0'

'

vv

Vv

y

x

  

 

and therefore - in Jupiter's reference frame – the probe travels with an angle 
V
v0

0 tanarc=θ  with 

respect to the x axis and its speed is 22
0' Vvv +=  (we also note that 

'
cos

22
0

0 v
V

Vv
V

=
+

=θ  
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and 
'

sin 0
22

0

0
0 v

v
Vv

v
=

+
=θ ). 

 Using the given values we obtain  θ0 = 0.653 rad ≈ 37.4°  and  v'=1.65·104 m/s . 
 

4.  Since the probe trajectory can be described only approximately as the result of a two-body 
gravitational interaction (we should also take into account the interaction with the Sun and other 
planets) we assume a large but not infinite distance from Jupiter and we approximate the total 
energy in Jupiter's reference frame as the probe's kinetic energy at that distance: 
 

     2'
2
1 mvE ≈     (5) 

The corresponding numerical value is E = 112 GJ. 
 

5.  Equation (1) shows that the radial distance becomes infinite, and its reciprocal equals zero, when 
 

    0cos'211 22

22

=++ θ
mMG
bEv    (7) 

namely when 

    

mMG
bEv

22

22'21

1cos
+

−=θ    (8) 

 
We should also note that the radial distance can't be negative, and therefore its acceptable values 
are those satisfying the equation 
 

    0cos'211 22

22

≥++ θ
mMG
bEv    (9) 

or 

    

mMG
bEv

22

22'21

1cos
+

−≥θ    (10) 

 
 The solutions for the limiting case of eq. (10) (i.e. when the equal sign applies) are: 
 

 





















+

−±=
























+−±=

−

±

mMG
bEvmMG

bEv

22

22

2/1

22

22

'21

1arccos'21arccos πθ   (11) 
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and therefore the angle ∆θ (shown in figure 2) between the two hyperbola asymptotes is given by: 
 

    

22

24

22

22

1

1arccos2

'21

1arccos2

)(

MG
bv

mMG
bEv

′
+

−=

+

−=

−−=∆ −+

π

π

πθθθ

  (12) 

 
In the last line, we used the value of the total energy as computed in the previous section. 
 

6.  The angular deviation is a monotonically decreasing function of the impact parameter, whence 
the deviation has a maximum when the impact parameter has a minimum. From the discussion in 
the previous section we easily see that the point of nearest approach is when θ = 0, and in this 
case the minimum distance between probe and planet center is easily obtained from eq. (1): 
 

    

1

22

2422

min

'
11

'
−














++=

MG
bv

GM
bv

r   (13) 

 
 By inverting equation (13) we obtain the impact parameter 
 

    min2
2

min '
2 r

v
GMrb +=    (14) 

 
 We may note that this result can alternatively be obtained by considering that, due to the 
conservation of angular momentum, we have 
 

minmin'' rmvbmvL ==  

 
where we introduced the speed corresponding to the nearest approach. In addition, the 
conservation of energy gives 
 

min

2
min

2 '
2
1'

2
1

r
GMmmvmvE −==  
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and by combining these two equations we obtain equation (14) again. 
 The impact parameter is an increasing function of the distance of nearest approach; 
therefore, if the probe cannot approach Jupiter's surface by less than two radii (and thus rmin = 
3RB, where RB is Jupiter’s body radius), the minimum acceptable value of the impact parameter 
is 
 

    B2
2
Bmin '

69 R
v
GMRb +=     (15) 

 
From this equation we finally obtain the maximum possible deviation: 
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−=

+

−=∆
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2
B22

4

22

2
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'
69

'
1

1arccos2
'

1

1arccos2

R
v
GMR

MG
v

MG
bv

ππθ  (16) 

 
and by using the numerical values we computed before we obtain: 
 
bmin  = 4.90·108 m  ≈ 7.0 RB and  ∆θ max = 1.526 rad ≈ 87.4°  
 

7.  The final direction of motion with respect to the x axis in Jupiter’s reference frame is given by 
the initial angle plus the deviation angle, thus θ 0 + ∆ θ  if the probe passes behind the planet. The 

final velocity components in Jupiter's reference frame are therefore: 
 









∆+=

∆+=

)sin(''

)cos(''

0

0

θθ

θθ

vv

vv

y

x

 

 
whereas in the Sun reference frame they are 
 









∆+=′′

−∆+′=′′

)(sin'

)cos(

0

0

θθ

θθ

vv

Vvv

y

x

  

 
Therefore the final probe speed in the Sun reference frame is 
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  (17) 

 
8. Using the value of the maximum possible angular deviation, the numerical result is v” = 2.62·104 

m/s. 
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Grading guidelines 
 
1. 0.4 Law of gravitation, or law of circular uniform motion 
 0.4 Correct approach 
 0.4+0.3 Correct results for velocity of Jupiter  
 
2. 0.3 Correct approach 
 0.4+0.3 Correct results for distance from Jupiter 
 
3. 1 Correct transformation between reference frames 
 0.3+0.2 Correct results for probe speed in Jupiter reference frame 
 0.3+0.2 Correct results for probe angle 
 
4. 0.8 Understanding how to handle the potential energy at infinity 

0.2 Numerical result for kinetic energy 
 
5. 0.6 Correct approach 

0.6 Equation for the orientation of the asymptotes 
0.8 Equation for the probe deflection angle 

 
6. 0.3+0.2 Correct results for minimum impact parameter 
 0.3+0.2 Correct results for maximum deflection angle 
 
7. 0.5 Equation for velocity components in the Sun reference frame 

0.5 Equation for speed as a function of angular deflection 
 
8. 0.5 Numerical result for final speed 
 
 
For “correct results” two possible marks are given: the first one is for the analytical equation and 
the second one for the numerical value. 
For the numerical values a full score cannot be given if the number of digits is incorrect (more than 
one digit more or less than those given in the solution) or if the units are incorrect or missing. 
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Solution 
 
The numerical values given in the text are those obtained in a preliminary test performed by a 
student of the University of Bologna1

 

, and are reported here only as a guide to the evaluation 
of the student solutions. 

1. and 2. The distance from the center of mass to the rotation axis is: 
 

21

211 )2/()(
MM
xMRMxR

+
−+

=
         (1) 

 
and therefore, if we measure the position of the center of mass2

)( 212 MMM +

 as a function of x  we obtain a 
relationship between the system parameters, and by a linear fit of eq. (1) we obtain an angular 
coefficient equal to , and from these equations, making use of the given total 
mass M1 + M2 =  41.0 g ± 0.1 g, we obtain M1 and M2. The following table shows some 
results obtained in the test run. 
 

n x [mm] R(x) [mm] 

1 204±1 76±1 

2 220±1 83±1 

3 236±1 89±1 

4 254±1 95±1 

5 269±1 101±1 

6 287±1 107±1 

7 302±1 113±1 

8 321±1 119±1 

 
Figure 6 shows the data concerning the position of the pendulum's center of mass together 
with a best fit straight line: the estimated error on the length measurements is now 1 mm and 
we treat it as a Gaussian error. Notice that both the dependent variable R(x) and the 
independent variable x are affected by the experimental uncertainty, however we decide to 
neglect the uncertainty on x, since it is smaller than 1%. The coefficients a  and b  in R(x) = 
ax+b  are 
 
a = 0.366 ± 0.009 
b = 2 mm ± 2 mm 
                                                 
1 Mr. Maurizio Recchi. 
2 This can easily be done by balancing the pendulum, e.g. on the T-shaped rod provided. 
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(therefore b  is compatible with 0) 
 

R(x) [mm] vs. x[mm] 

 
x[mm] 

Figure 6: Graph of the position of the pendulum's center of mass (with respect to the rotation axis) as 
a function of the variable x. The numbering of the data points corresponds to that mentioned in the 

main text. The estimated error is compatible with the fluctuations of the measured data. 
 
For computing the masses only the a  value is needed; using the total pendulum mass we find:  
 
M1 = 26.1 ± 0.4 g 
M2 = 15.0 g ± 0.4 g 
 
Even though many non-programmable pocket calculators can carry out a linear regression, it 
is likely that many students will be unable to do such an analysis, and in particular they may 
be unable to estimate the uncertainty of the fit parameters even if their pocket calculators 
provide a linear regression mode. It is also acceptable to find a and b using several pairs of 
measurements and finally computing a weighted average of the results. For each pair of 
measurements a  and b  are given by 
 

22

12

12

axyb

xx
yya

−=

−
−

=
          (2) 

 
and the parameter uncertainties (assuming them gaussian) by 
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       (3) 

 
In order to calculate (2) and (3) the data can be paired with a scheme like 
{1,5},{2,6},{3,7},{4,8}, where "far" points are coupled in order to minimize the error on 
each pair.  
There may be other alternative and equally acceptable approaches: they should all be 
considered valid if the order of magnitude of the estimated uncertainty is correct. 
 
3. The pendulum's total moment of inertia is the sum of the moments of its two parts, and 
from figure 3 we see that 
 







 ++−=+= 22

12
2

221 3
)()( 

MIxMxMxIIxI      (4) 

 
4. The pendulum's equation of motion is 
 

)()( 02

2

θθκθ
−−=

dt
dxI         (5) 

 
if the rotation axis is vertical, while it's 
 

θθθκθ sinxgRMM
dt
dxI )()()()( 2102

2

++−−=      (6) 

  
if the rotation axis is horizontal. 
 
5. and 6. When the system is at rest in an equilibrium position, the angular acceleration is 
zero and therefore the equilibrium positions θe can be found by solving the equation 
 

0sin)()()( e210e =++−− θθθκ xgRMM       (7) 

 
If the value xi corresponds to the equilibrium angle θe,i, and if we define the quantity (that can 
be computed from the experimental data) ieii xgRMMy ,21 sin)()( θ+= , then eq. (7) may be 

written as 
 

0, κθκθ −= ieiy          (8) 
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and therefore the quantities κ and κθ0 can be found with a linear fit. The following table 
shows several data collected in a trial run according to the geometry shown in figure 7. 
 

n x [mm] h [mm] sinθ e= h/x θe y [N⋅µm] 

1 204±1 40±1 0.196±0.005 0.197±0.005 6.1±0.3 

2 220±1 62±1 0.282±0.005 0.286±0.005 9.4±0.4 

3 238±1 75±1 0.315±0.004 0.321±0.005 11.3±0.5 

4 255±1 89±1 0.349±0.004 0.357±0.004 13.4±0.5 

5 270±1 109±1 0.404±0.004 0.416±0.004 16.4±0.6 

6 286±1 131±1 0.458±0.004 0.476±0.004 19.7±0.7 

7 307±1 162±1 0.528±0.004 0.556±0.004 24.3±0.8 

8 321±1 188±1 0.586±0.004 0.626±0.004 28.2±0.9 

 
 

 
Figure 7: Geometry of the measurements taken for finding the angle. 

 
We see that not only the dependent but also the independent variable is affected by a 
measurement uncertainty, but the relative uncertainty on θ e is much smaller than the relative 
uncertainty on y and we neglect it. We obtain from such data (neglecting the first data point, 
see figure 8): 
 
κ = 0.055 N⋅m⋅rad-1 ± 0.001 N⋅m⋅rad-1  
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κθ0 = -0.0063 N⋅m ± 0.0008 N⋅m 
 
Clearly in this case only the determination of the torsion coefficient κ is interesting. The fit of 
the experimental data is shown in figure 8.  
 

 0κθκθ −=y  [N⋅mm] vs. θ  

 
θ  [rad] 

Figure 8: Fit of eq. (8) as a function of θ. In this case the estimated error is again compatible with the 
experimental data fluctuations. However the data points show a visible deviation from straightness 

which may be due to an error in the first measurement (the one at lowest θ). 
 
7. The moment of inertia can be found experimentally using the pendulum with its rotation 
axis vertical and recalling eq. (5); from this equation we see that the pendulum oscillates with 

angular frequency 
)(

)(
xI

x κω =  and therefore 

 

2

2

4
)()(

π
κ xTxI =          (9) 

 
where T  is the measured oscillation period. Using eq. (9) we see that eq. (4) can be rewritten 
as 
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The left-hand side in eq. (10) is known experimentally, and therefore with a simple linear fit 

we can find the coefficients 2M  and 





 + 22

1 3


MI , as we did before. The experimental data 

are in this case: 
 

n x [mm] T [s] 

1 204±1 0.502±0.002 

2 215±1 0.528±0.002 

3 231±1 0.562±0.002 

4 258±1 0.628±0.002 

5 290±1 0.708±0.002 

6 321±1 0.790±0.002 

 
The low uncertainty on T has been obtained measuring the total time required for 50 full 
periods. 
Using the previous data and another linear fit, we find 
 
  = 230 mm ± 20 mm 

I1 = 1.7⋅10-4 kg⋅m2 ± 0.7⋅10-4 kg⋅m2  
 
and the fit of the experimental data is shown in figure 9.  
 

2
2

2
2

)(
4

xMxTy −=
π
κ  [kg⋅m2] vs. x [m] 

 
x [m] 
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Figure 9: Fit of eq. (10) as a function of x. In this case the estimated error is again compatible with the 
experimental data fluctuations. 

 
8. Although in this case the period T  is a complicated function of x, its graph is simple, and it 
is shown in figure 10, along with the test experimental data. 
 
The required answer is that there is a single local maximum. 

 

T [s] vs. x[m] 

 
x [m] 

 
Figure 10: The period T  of the pendulum with horizontal axis as a function of x. In addition to the 
experimental points the figure shows the result of a theoretical calculation of the period in which the 
following values have been assumed: g = 9.81 m/s2; κ = 0.056 N⋅m/rad; M1 = 0.0261 kg; M2 = 
0.0150 kg; M3 = 0.00664 kg; I1 = 1.0⋅10-4 kg⋅m2;  = 0.21 m; 3 = 0.025 m; a = 0.365; b = 0.0022  

m (so that the position of the center of mass - excluding the final nut of length 3 - is R(x) = ax+b); 

these are the central measured values, with the exception of κ, I1  and  which are taken one standard 

deviation off their central value. Also, the value θ0 = 0.030 rad ≈ 1.7° has been assumed. Even though 

the theoretical curve is the result of just a few trial calculations using the measured values (± one 
standard deviation) and is not a true fit, it is quite close to the measured data. 
 



























































IPhO2001 - theoretical competition

Theoretical Competition

Monday, July 2nd, 2001

Please read this first:

1. The time available is 5 hours for the theoretical competition.
2. Use only the pen provided.
3. Use only the front side of the paper.
4. Begin each part of the problem on a separate sheet.
5. For each question, in addition to the blank sheets where you may write, there is an answer form

where you must summarize the results you have obtained. Numerical results should be written
with as many digits as are appropriate to the given data.

6. Write on the blank sheets of paper whatever you consider is required for the solution of the
question. Please use as little text as possible; express yourself primarily in equations, numbers,
figures, and plots.

7. Fill i n the boxes at the top of each sheet of paper used by writing your Country No and Country
Code, your student number (Student No), the number of the question (Question No), the
progressive number of each sheet (Page No), and the total number of blank sheets used for each
question (Total No of pages). Write the question number and the section letter of the part you
are answering at the top of each sheet. If you use some blank sheets of paper for notes that you
do not wish to be marked, put a large X across the entire sheet and do not include it in your
numbering.

8. At the end of the exam, arrange all sheets for each problem in the following order;
• answer form
• used sheets in order
• the sheets you do not wish to be marked
• unused sheets and the printed question
Place the papers inside the envelope and leave everything on your desk. You are not allowed to
take any sheets of paper out of the room.
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Question 1

1a) KLYSTRON

Klystrons are devices used for ampli fying very high-frequency signals. A klystron basically consists
of two identical pairs of parallel plates (cavities) separated by a distance b, as shown in the figure.

An electron beam with an initial speed v0 traverses the entire system, passing through small holes in
the plates. The high-frequency voltage to be ampli fied is applied to both pairs of plates with a
certain phase difference (where period T corresponds to 2π phase) between them, producing
horizontal, alternating electric fields in the cavities. The electrons entering the input cavity when the
electric field is to the right are retarded and vice versa, so that the emerging electrons form bunches
at a certain distance. If the output cavity is placed at the bunching point, the electric field in this
cavity will absorb power from the beam provided that its phase is appropriately chosen. Let the
voltage signal be a square wave with period T=1.0x10-9 s, changing between V=±0.5 volts. The
initial velocity of the electrons is v0=2.0x106 m/s and the charge to mass ratio is e/m=1.76x1011

C/kg. The distance α is so small that the transit time in the cavities can be neglected. Keeping 4
significant figures, calculate;

a) the distance b, where the electrons bunch. Copy your result onto the answer form. [1.5 pts]

b) the necessary phase difference to be provided by the phase shifter. Copy your result onto the
answer form. [1.0 pts]

1b) INTERMOLECULAR DISTANCE

Let dL and dV represent the average distances between molecules of water in the liquid phase and in
the vapor phase, respectively. Assume that both phases are at 100 °C and atmospheric pressure, and
the vapor behaves like an ideal gas. Using the following data, calculate the ratio dV /dL and copy
your result onto the answer form. [2.5 pts]

Density of water in liquid phase: ρL=1.0x103 kg/m3,

Molar mass of water: M=1.8x10-2 kg/mol
Atmospheric pressure: Pa=1.0x105 N/m2

Gas constant: R=8.3 J/mol . K
Avagadro’s number:  NA=6.0x1023 /mol

v0

input
cavity

output
cavity

α b α

~
phase
shifter
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1c) SIMPLE SAWTOOTH SIGNAL GENERATOR

A sawtooth voltage waveform V0 can be obtained across
the capacitor C in Fig. 1. R is a variable resistor, Vi is an
ideal battery, and SG is a spark gap consisting of two
electrodes with an adjustable distance between them.
When the voltage across the electrodes exceeds the firing
voltage Vf , the air  between the electrodes breaks down,
hence the gap becomes a short circuit and remains so until
the voltage across the gap becomes very small .

a) Draw the voltage waveform V0 versus time t, after the switch is closed. [0.5 pts]

b) What condition must be satisfied in order to have an almost linearly varying sawtooth voltage
waveform V0? Copy your result onto the answer form. [0.2 pts]

c) Provided that this condition is satisfied, derive a simpli fied expression for the period T of the
waveform. Copy your result onto the answer form. [0.4 pts]

d) What should you vary( R and/or SG ) to change the period only? Copy your result onto the
answer form. [0.2 pts]

e) What should you vary ( R and/or SG )  to change the amplitude only? Copy your result onto the
answer form. [0.2 pts]

f) You are given an additional, adjustable
DC voltage supply. Design and draw a
new circuit indicating the terminals
where you would obtain the voltage
waveform 0V ′  described in Fig. 2. [1.0

pts]

1d) ATOMIC BEAM

An atomic beam is prepared by heating a
collection of atoms to a temperature T and
allowing them to emerge horizontally through
a small hole (of atomic dimensions) of
diameter D in one side of the oven. Estimate
the diameter of the beam after it has traveled a
horizontal length L along its path. The mass of
an atom is M. Copy your result onto the
answer form. [2.5 pts]

Diameter = D

Oven at temperature T

Atoms of mass M

L

Vf

t

Figure 2

0V ′

R

C
V0

+

-
Figure 1

Vi
+

-
SG



IPhO2001 - theoretical competition

Question 2
BINARY STAR SYSTEM

a) It is well known that most stars form binary systems. One type of binary system consists of an
ordinary star with mass m0 and radius R, and a more massive, compact neutron star with mass
M, rotating around each other. In all the following ignore the motion of the earth. Observations
of such a binary system reveal the following information:

• The maximum angular displacement of the
ordinary star is ∆θ, whereas that of the neutron
star is ∆φ (see Fig. 1).

• The time it takes for these maximum
displacements is τ.

• The radiation characteristics of the ordinary star
indicate that its surface temperature is T and the
radiated energy incident on a unit area on earth’s
surface per unit time is P.

• The calcium line in this radiation differs from its
normal wavelength λ0 by an amount ∆λ, due
only to the gravitational field of the ordinary
star. (For this calculation the photon can be
considered to have an effective mass of  h/cλ.)

Find an expression for the distance 
�

 from earth to this system, only in terms of the observed
quantities and universal constants. Copy your result onto the answer form. [7 pts]

b) Assume that M>>m0, so that the ordinary star is
basically rotating around the neutron star in a
circular orbit of radius r0. Assume that the ordinary
star starts emitting gas toward the neutron star with
a speed v0, relative to the ordinary star (see Fig. 2).
Assuming that the neutron star is the dominant
gravitational force in this problem and neglecting
the orbital changes of the ordinary star find the
distance of closest approach rf shown in Fig. 2.
Copy your result onto the answer form. [3pts]

Fig. 2

r0

rf

m0

v0

(dm)

M

�

∆φ

∆θ Ordinary star

Neutron star

Telescope

I IIII I

Fig. 1
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Question 3
MAGNETOHYDRODYNAMIC (MHD) GENERATOR

A horizontal rectangular plastic pipe of width w and height h, which closes upon itself, is fill ed with
mercury of resistivity ρ. An overpressure P is produced by a turbine which drives this fluid with a
constant speed v0. The two opposite vertical walls of a section of the pipe with length L are made of
copper.

The motion of a real fluid is very complex. To simpli fy the situation we assume the following:
• Although the fluid is viscous, its speed is uniform over the entire cross section.
• The speed of the fluid is always proportional to the net external force acting upon it.
• The fluid is incompressible.

These walls are electrically shorted externally and a uniform, magnetic field B is applied vertically

upward only in this section. The set up is ill ustrated in the figure above, with the unit vectors 
∧
x , 

∧
y ,

∧
z  to be used in the solution.

a) Find the force acting on the fluid due to the magnetic field  (in terms of L, B, h, w, ρ and
the new velocity v) [2.0 pts]

b) Derive an expression for the new speed v of the fluid (in terms of v0, P, L, B and ρ ) after
the magnetic field is applied. [3.0 pts]

c) Derive an expression for the additional power that must  be supplied by the turbine to
increase the speed to its original value v0. Copy your result onto the answer form. [2.0 pts]

d) Now the magnetic field is turned off and mercury is replaced by water flowing with speed
v0. An electromagnetic wave with a single frequency is sent along the section with length L
in the direction of the flow. The refractive index of water is n, and v0 <<c. Derive an
expression for the contribution of the fluid’s motion to the phase difference between the
waves entering and leaving section L. Copy your result onto the answer form. [3.0 pts]

∧
x

∧
z

∧
y
y

w

h
v

Shorting wires

L

B
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Country no Country code Student No. Question No. Page No. Total
No. of pages
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Phase difference=
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Country no Country code Student No. Question No. Page No. Total
No. of pages

1C
b)

c)

T=

d)

e)

1D

New diameter of the beam =
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Country no Country code Student No. Question No. Page No.
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No. of pages
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2a)

�
=

2b)

rf =
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3a)

3b)

v =

3c)

Power =

3d)

Phase difference =
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Exper imental Competition

Saturday, June 30th, 2001

Please read this first:

1. The time available is 5 hours for the experimental competition.
2. Use only the pen provided.
3. Use only the front side of the paper.
4. Begin each part of the problem on a separate sheet.
5. For each question, in addition to the blank sheets where you may write, there is an answer form

where you must summarize the results you have obtained. Numerical results should be written
with as many digits as are appropriate to the given data.

6. Write on the blank sheets of paper the results of all your measurements and whatever else you
consider is required for the solution of the question. Please use as little text as possible; express
yourself primarily in equations, numbers, figures and plots.

7. Fill i n the boxes at the top of each sheet of paper used by writing your Country no and Country
code, your student number (Student No.), the number of the question (Question No.), the
progressive number of each sheet (Page No.) and the total number of blank sheets used for each
question (Total No. of pages). Write the question number and the section label of the part you
are answering at the beginning of each sheet of writing paper. If you use some blank sheets of
paper for notes that you do not wish to be marked, put a large X across the entire sheet and do
not include it in your numbering.

8. At the end of the exam, arrange all sheets in the following order;
• answer form
• used sheets in order
• the sheets you do not wish to be marked
• unused sheets and the printed question

Place the papers inside the envelope and leave everything on your desk. You are not allowed
to take any sheets of paper and any material used in the experiment out of the
room.
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ROTATING LIQUID

This experiment consists of three basic parts:
1. investigation of the profile of the rotating liquid’s surface and the determination of the

acceleration due to gravity,
2. investigation of the rotating liquid as an optical system,
3. determination of the refractive index of the liquid.

When a cylindrical container fill ed with a liquid rotates about the vertical axis passing through its
center with a uniform angular velocity ω, the liquid’s surface becomes parabolic (see Figure 1). At
equili brium, the tangent to the surface at the point P(x, y) makes an angle θ with the horizontal such
that

Rx for        
g

x
tan ≤ω=

2

θ (1)

where R is the radius of the container and g is the acceleration due to gravity.

It can further be shown that for ω<ωmax (where ωmax is the angular speed at which the center of the
rotating liquid touches the bottom of the container)

at x=x0=
2

R
, y(x0)=h0 (2)

that is; the height of the rotating liquid is the same as if it were not rotating.

The profile of the rotating liquid’s surface is a parabola defined by the equation

C
x

yy
4

2

0 += (3)

where the vertex is at V(0, y0) and the focus is at F(0, y0+C). When optical rays parallel to the axis
of symmetry (optical axis) reflect at the parabolic surface, they all focus at the point F (see Fig.1).
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Apparatus

• A cylindrical rigid plastic cup containing liquid glycerin. Millim etric scales are attached to
the bottom and the sidewall of this cup.

• A turntable driven by a small dc electric motor powered by a variable voltage supply, which
controls the angular velocity.

• A transparent horizontal screen on which you can put transparent or semi-transparent
millimetric scales. The location of the screen can be adjusted along the vertical and
horizontal directions.

• A laser pointer mounted on a stand. The position of the pointer can be adjusted. The head of
the pointer can be changed.

• Additional head for the laser pointer.
• A ruler.
• A highlighter pen.
• A stopwatch. Push the left button to reset, the middle button to select the mode, and the right

button to start and stop the timing.
• Transmission gratings with 500 or 1000 lines/mm.
• Bubble level.
• Glasses.

IMPORTANT NOTES

• DO NOT LOOK DIRECTLY INTO THE LASER BEAM. BE AWARE THAT LASER
LIGHT CAN ALSO BE DANGEROUS WHEN REFLECTED OFF A MIRROR-LIKE
SURFACE. FOR YOUR OWN SAFETY USE THE GIVEN GLASSES.

• Throughout the whole experiment carefully handle the cup containing glycerin.

• The turntable has already been previously adjusted to be horizontal. Use bubble level only
for horizontal alignment of the screen.

• Throughout the entire experiment you will observe several spots on the screen produced by
the reflected and/or refracted beams at the various interfaces between the air, the liquid, the
screen, and the cup. Be sure to make your measurements on the correct beam.

• In rotating the liquid change the speed of rotation gradually and wait for long enough times
for the liquid to come into equilibrium before making any measurements.
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EXPERIMENT

PART 1: DETERMINATION of g USING a ROTATING LIQUID [7.5 pts]

• Derive Equation 1.
• Measure the height h0 of the liquid in the container and the inner diameter 2R of the

container.
• Insert the screen between the light source and the container. Measure the distance H

between the screen and the turntable (see Figure 2).
• Align the laser pointer such that the beam points vertically downward and hits the surface of

the liquid at a distance x0=
2

R
 from the center of the container.

• Rotate the turntable slowly. Be sure that the center of the rotating liquid is not touching the
bottom of the container.

• It is known that at x0= 
2

R
 the height of the liquid remains the same as the original height

h0, regardless of the angular speed ω. Using this fact and measurements of the angle θ of the
surface at x0 for various values of ω, perform an experiment to determine the gravitational
acceleration g.

•• Prepare tables of measured and calculated quantities for each ω.
•• Produce the necessary graph to calculate g.
•• Calculate the value of g and the experimental error in it
•• Copy the values 2R, x0, h0, H and the experimental value of g and its error onto the answer

form.
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PART 2: OPTICAL SYSTEM

In this part of the experiment the rotating liquid will be treated as an image forming optical system.
Since the curvature of the surface varies with the angular speed of rotation, the focal distance of this
optical system depends on ω.

2a) Investigation of the focal distance [5.5 pts]

• Align the laser pointer such that the laser beam is directed vertically downward at the center
of the container. Mark the point P where the beam strikes the screen. Thus the line joining
this point to the center of the cup is the optical axis of this system (see Figure 2).

• Since the surface of the liquid behaves like a parabolic mirror, any incident beam parallel to
the optical axis will pass through the focal point F on the optical axis after reflection.

• Adjust the speed of rotation to locate the focal point on the screen. Measure the angular
speed of rotation ω and the distance H between the screen and the turntable.

• Repeat the above steps for different H values.
• Copy the measured values of 2R and h0 and the value of ω at each H onto the answer form.
• With the help of an appropriate graph of your data, find the relationship between the focal

length and the angular speed. Copy your result onto the answer form.

2b) Analysis of the “ image” (what you see on the screen) [3.5 pts]

In this part of the experiment the properties of the “image” produced by this optical system will be
analyzed. To do so, follow the steps given below.

• Remove the head of the laser pointer by turning it counterclockwise.
• Mount the new head (provided in an envelope) by turning it clockwise. Now your laser

produces a well defined shape rather than a narrow beam.
• Adjust the position of the laser pointer so that the beam strikes at about the center of the cup

almost normally.
• Put a semitransparent sheet of paper on the horizontal screen, which is placed close to the

cup, such that the laser beam does not pass through the paper, but the reflected beam does.
• Observe the size and the orientation of the “image” produced by the source beam and the

beam reflected from the liquid when it is not rotating.
• Start the liquid rotating, and increase the speed of rotation gradually up to the maximum

attainable speed while watching the screen. As ω increases you might observe different
frequency ranges over which the properties of the “image” are drastically different. To
describe these observations complete the table on the answer form by adding a row to this
table for each such frequency range and fill it  in by using the appropriate notations
explained on that page.
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PART 3: REFRACTIVE INDEX [3.5 pts]

In this part of the experiment the refractive index of the given liquid will be determined using a
grating. When monochromatic light of wavelength λ is incident normally on a diff raction grating,
the maxima of the diffraction pattern are observed at angles αm given by the equation

msindm αλ = (4)
where, m is the order of diffraction and d is the distance between the rulings of the grating. In this
part of the experiment a diffraction grating will be used to determine the wavelength of the laser
light and the refractive index of the liquid (see Figure 3).

•• Use the grating to determine the wavelength of the laser pointer. Copy your result onto the
answer form.

•• Immerse the grating perpendicularly into the liquid at the center of the cup.
•• Align the laser beam such that it enters the liquid from the sidewall of the cup and strikes the

grating normally.
•• Observe the diffraction pattern produced on the millimetric scale attached to the cup on the

opposite side. Make any necessary distance measurements.
•• Calculate the refractive index n of the liquid by using your measurements. (Ignore the effect

of the plastic cup on the path of the light.)
•• Copy the result of your experiment onto the answer form.
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Figure 1. Definitions of the bank angle θ at point P(x,y), the vertex V and the focus F for the
parabolic surface produced by rotating the liquid, of initial height h0 and radius R, at a constant
angular speed ω around the y-axis.

P(x,y)

x

ωω

θθh0

R

F(0,y0+C)

V(0,y0)

y
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Figure 2 Experimental setup for parts 1 and 2.

1. Laser pointer on a stand, 2. Transparent screen, 3. Motor, 4. Motor controller, 5. Turntable, 6.
Axis of rotation, 7. Cylindrical container.
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Figure 3 Top view of the grating in a liquid experiment.

1. Scaled sidewall , 2. Grating on a holder, 3. Laser pointer, 4. Cylindrical container.
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Country no Country code Student No. Question No. Page No. Total
No. of pages
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1) Determination of g using a rotating liquid

2R x0 h0 H

Experimental value of g:

2a) Investigation of the focal distance

2R h0

H ω

Relation between focal length and ω:
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2b) Analysis of the “ image”

Use the appropriate notations explained below to describe what you see on
the screen due to reflected beam

ωω range: For the frequency ranges only approximate values are required.

Orientation (in comparison with the object beam as seen on the transparent screen):
Inverted : INV
Erect : ER

Var iation of the size with increasing ω:
Increases : I
Decreases : D
No change : NC

For the frequency ranges you have found above:

Write “R” if the screen is above the focal point.
Write “V” if the screen is below the focal point.

ωω Range Orientation Var iation
of the size

“ image”

ω=0

Country no Country code Student No. Question No. Page No. Total
No. of pages
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3) Refractive index

Wavelength =

Experimental value for n =
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I. Ground-Penetrating Radar 
 
Ground-penetrating radar (GPR) is used to detect and locate underground objects near the 
surface by means of transmitting electromagnetic waves into the ground and receiving the 
waves reflected from those objects. The antenna and the detector are directly on the 
ground and they are located at the same point. 
 
A linearly polarized electromagnetic plane wave of angular  frequency ω propagating in 
the z direction is represented by the following expression for its field: 
 

( )    ztcoseEE z
0 βωα −= −

,               (1) 
 
where Eo is constant, α is the attenuation coefficient and β is the wave number expressed 
respectively as follows 
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with  µ,ε, and σ  denoting the magnetic permeability, the electrical permittivity, and the 
electrical conductivity respectively.  
 
The signal becomes undetected when the amplitude of the radar signal arriving at the 
object drops below 1/e (≈ 37%) of its initial value. An electromagnetic wave of variable 
frequency (10 MHz – 1000 MHz) is usually used to allow adjustment of range and 
resolution of detection. 
 
The performance of GPR depends on its resolution. The resolution is given by the 
minimum separation between the two adjacent reflectors to be detected. The minimum 
separation should give rise to a minimum phase difference of 180o between the two 
reflected waves at the detector.  
 
Questions: 
(Given  : µo = H/m 10 x4 7−π  and εo = F/m 10 x85.8 12− ) 
 

1. Assume that the ground is non-magnetic (µ=µ0) satisfying the condition  

1
2

〈〈





ωε
σ

. Derive the expression of propagation speed v  in terms of µ and ε, 

using equations (1) and (2) [1.0 pts].   
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2. Determine the maximum depth of detection of an object in the ground with 
conductivity of  1.0 mS/m and permittivity of 9ε0, satisfying the condition 

1
2

〈〈





ωε
σ

 , (S=ohm-1 ; use µ=µ0). [2.0 pts] 

3. Consider two parallel conducting rods buried horizontally in the ground. The rods 
are 4 meter deep. The ground is known to have conductivity of  1.0 mS/m and 
permittivity of  9ε0. Suppose the GPR measurement is carried out at a position 
aproximately above one of the rod. Assume point detector is used. Determine the 
minimum frequency required  to get a lateral resolution of  50 cm [3.5 pts].  

4. To determine the depth  of a buried rod d in the same ground, consider the 
measurements carried out along a line perpendicular to the rod. The result is 
described by the following figure: 

 
 
 
  

 
 
 
 
 
 
 

Graph of traveltime t vs detector position x, tmin  = 100 ns. 
 

Derive t as a function of x and determine  d [3.5 pts]. 
 

 
             detector position                 x 
 

t 
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II. Sensing Electrical Signals 

 

Some seawater animals have the ability to detect other creatures at some distance 

away due to electric currents produced by the creatures during the breathing processes 

or other processes involving muscular contraction. Some predators use this electrical 

signal to locate their preys, even when buried under the sands.  

 

The physical mechanism underlying the current generation at the prey and its 

detection by the predator can be modeled as described by Figure II-1. The current 

generated by the prey flows between two spheres with positive and negative potential 

in the prey’s body.  The distance between the centers of the two spheres is ls, each 

having a radius of rs, which is much smaller than ls. The seawater resistivity is ρ. 

Assume that the resistivity of the prey’s body is the same as that of the surrounding 

seawater, implying that the boundary surrounding the prey in the figure can be 

ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-1. A model describing the detection of electric power coming  

       from a prey  by its predator.  
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In order to describe the detection of electric power by the predator coming from the 

prey, the detector is modeled similarly by two spheres on the predator’s body and in 

contact with the surrounding seawater, lying parallel to the pair in the prey’s body. 

They are separated by a distance of ld, each having a radius of rd which is much 

smaller than ld. In this case, the center of the detector is located at a distance y right 

above the source and the line connecting the two spheres is parallel to the electric 

field as shown in Figure II-1. Both ls and ld are also much smaller than y. The electric 

field strength along the line connecting the two spheres is assumed to be constant. 

Therefore the detector forms a closed circuit system connecting the prey, the 

surrounding seawater and the predator as described in Figure II-2.  

 

 

 

 

 

 

Figure II-2. The equivalent closed circuit system involving the sensing 

predator, the prey and the surrounding seawater. 

 

 

In the figure, V is the voltage difference between the detector’s spheres due to the 

electric field induced by the prey, Rm is the inner resistance due to the surrounding sea 

water. Further, Vd and Rd are respectively the voltage difference between the detecting 

spheres and the resistance of the detecting element within the predator.  

 

Questions: 

1. Determine the current density vector j
r

 (current per unit area) caused by a 

point current source Is at a distance r in an infinite medium. [1.5 pts] 

dR

mR

V dV
+
−
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2. Based on the law jE
rr

ρ= , determine the electric field strength pE
r

at the 

middle of the detecting spheres (at point P) for a given current Is that flows 

between two spheres in the prey’s body [2.0 pts]. 

 

3.  Determine for the same current Is, the voltage difference between the source 

spheres (Vs) in the prey [1.5 pts].  Determine the resistance between the two 

source spheres (Rs) [0.5 pts] and the power produced by the source (Ps) [0.5 

pts]. 

 

4.  Determine Rm [0.5 pts], Vd [1.0 pts] in Figure II-2 and calculate also the 

power transferred from the source to the detector (Pd) [0.5 pts]. 

 

5.  Determine the optimum value of Rd leading to maximum detected power [1.5 

pts] and determine also the maximum power [0.5 pts]. 
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III.  A Heavy Vehicle Moving on An Inclined Road 

 

Figure III-1: A simplified model of a heavy vehicle moving on an inclined 

road. 

 

The above figure is a simplified model of a heavy vehicle (road roller) with 

one rear and one front cylinder as its wheels on an inclined road with inclination angle 

of è as shown in Figure III-1. Each of the two cylinders has a total mass 

M(m2=m3=M) and consists of a cylindrical shell of outer radius Ro , inner radius Ri = 

0.8 Ro and eight number of spokes with total mass 0.2 M. The mass of the 

undercarriage supporting the vehicle’s body is negligible. The cylinder can be 

modeled as shown in Figure III-2. The vehicle is moving down the road under the 

influence of gravitational and frictional forces. The front and rear cylinder are 

positioned symmetrically with respect to the vehicle.  

è 

2l 

h

m1           m2        
       rear cylinder 

      m3    
front cylinder 

t 

L 

  m1 
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Figure III-2:  A simplified model of the cylinders. 

 

The static and kinetic friction coefficients between  the cylinder and the road are µs 

and µk respectively. The body of the vehicle has a mass of 5M , length of L and 

thickness of  t . The distance between the front and the rear cylinder is 2 l while the 

distance from the center of cylinder to the base of the vehicle’s body is h. Assume that 

the rolling friction between the cylinder and its axis is negligible. 

 

Questions:  

1. Calculate the moment of inertia of either cylinder [1.5 pts].  

 

2. Draw all forces that act on the body, the front cylinder, and the rear one. Write 

down equations of motion for each part of them [2.5 pts]. 

 

3. The vehicle is assummed to move from rest, then freely move under 

gravitational influence. State all the possible types of motion of the system and 

derive their accelerations in terms of the given physical quantities [4.0 pts]. 

 

4. Assume that after the vehicle travels a distance d by pure rolling from rest the 

vehicle enters a section of the road with  all the friction coefficients drop to 

smaller constant values µs’ and µk’ such that the two cylinders start to slide. 

Calculate the linear and angular velocities of each cylinder after the vehicle 

has traveled a total distance of s meters. Here we assume that d and s is much 

larger than the dimension of vehicle [2.0 pts] 

 
 

Ro 

Ri 
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I. Determination of e/kB Through Electrolysis Process 
 
Background Theory 
 
The electrolysis of water is described by the reaction : 
 
 H2O → 2H+ + O-2   

 2H+ + 2e-  → H2 ; O-2 → 
2
1 O2 + 2e-   

 
The reaction takes place when an electric current is supplied through a pair of 
electrodes immersed in the water. Assume that both gases produced in the reaction are 
ideal. 
 
One of the gases produced by the reaction is kept in a test tube marked by arbitrary 
scale. By knowing the total charge transferred and the volume of the gas in the test 
tube the  quantity e/kB can be determined, where e  is the charge of electron and kB is 
the Boltzmann constant. 
 
For the purpose mentioned above, this experiment is divided into two parts.  
 
Part A: Calibration of the arbitrary scale on the test tube by using a dynamic method. 
This result will be used for part B 
 
Part B: Determination of the physical quantity e/kB by means of water electrolysis 

 
You are not obliged to carry out the two experiments ( part A and part B ) in 
alphabetical order 
 

The following physical quantities are assumed: 
• Acceleration of gravity, g = (9.78 ± 0.01) ms-2 
• Ratio of internal vs external diameters of the test tube, α = 0.82 ±0.01 

The local values of temperature T and pressure P will be provided by the organizer.  
 
 
List of tools and apparatus given for experiment (part A & B): 
• Insulated copper wires of three different diameters: 

1. Brown of larger diameter 
2. Brown of smaller diameter 
3. Blue  

• A regulated voltage source  (0-60 V,  max.1A) 
• A plastic container and a bottle of water.   
• A block of brass with plastic clamp to keep the electrode in place without 

damaging the insulation of the wire. 
• A digital stopwatch. 
• A multimeter (beware of its proper procedure).  
• A wooden test tube holder designed to hold the tube vertically. 
• A multipurpose pipette 
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• A vertical stand. 
• A bottle of white correction fluid for marking. 
• A cutter 
• A pair of scissors 
• A roll of cellotape 
• A steel ball 
• A piece of stainless steel plate to be used as electrode. 
• A test tube with scales. 
• Graph papers. 
Note that all scales marked on the graph papers and the apparatus for the experiments 
(e.g. the test tube) are of the same scale unit, but not calibrated in millimeter. 
 
EXPERIMENT 
 
Part A: Calibration of the arbitrary scale on the test tube  
• Determine a dynamic method capable of translating the arbitrary length scale to a 

known scale available. 
• Write down an expression that relates the measurable quantities from your 

experiment in terms of the scale printed on the test tube, and sketch the 
experiment set up.  

• Collect and analyze the data from your experiment for the determination and 
calibration of the unknown length scale.  

 
Part B: Determination of physical quantity e/kB  
• Set up the electrolysis experiment with a proper arrangement of the test tube in 

order to trap one of the gases produced during the reaction. 
• Derive an equation relating the quantities: time t, current  Ι, and water level 

difference ∆h, measured in the experiment. 
• Collect and analyze the data from your experiment. For simplicity, you may 

assume that the gas pressure inside the tube remains constant throughout the 
experiment. 

• Determine the value of e/kB. 
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 CountryCount ry  S tudent  No .Student  No .  Experiment No.Experiment No.  Page No.Page No.  Total PTotal Pagesages  

      
 
 

ANSWER FORM 
 

PART A 
 

1. State the method of your choice and sketch the experimental set up of 
the method:  [0.5 pts] 

 
 
 

  
 

2. Write down the expression relating the measurable quantities in your 
chosen method: [0.5 pts]. State all the approximations used in 
obtaining this expression [1.0 pts]. 

 
 
 
 
 

3. Collect and organize the data in the following orders : physical 
quantities, values, units  [1.0 pts] 

 
 
 
 
 
 
 
 
 
 

4. Indicate the quality of the calibration by showing the plot relating two 
independently measured quantities and mark the range of validity. [0.5 
pts] 

 
 
 
 
5. Determine the smallest unit of the arbitrary scale in term of mm and its 

estimated error induced in the measurements. [1.5 pts] 
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CountryCount ry  S tudent  No .Student  No .  Experiment No.Experiment No.   Page No.Page No.  Total PagesTotal Pages  

     
 
 
PART B 
 

1. Sketch of the experimental set up. [1.0 pts] 
 
 
 
 
 
 
 
 

2. Derive the following expression: 

   

h)(2
k
e              

2

B

∆=∆
T

rP
tI

π                               [1.5 pts] 

 
 
 
 
 
 
 
 
 
 
3. Collect and organize the data in the following format : physical 

quantities (value, units) [1.0 pts] 
 

 
 
 
 
 
 
 
 
 

4. Determine the value of e/kB  and its estimated error [1.5 pts] 
 



IPhO2002 

 5 

  

II. OPTICAL BLACK BOX 
 
Description 

In this problem, the students have to identify the unknown optical components inside the 
cubic box. The box is sealed and has only two narrow openings protected by red plastic 
covering. The components should be identified by means of  optical phenomena observed in 
the experiment. Ignore the small thickness effect of the plastic covering layer. 

A line going through the centers of the slits is defined as the axis of the box.  Apart from the 
red plastic coverings, there are three (might be identical or different) elements from the 
following list: 
• Mirror, either plane or spherical 
• Lens, either positive or negative 
• Transparent plate having parallel flat surfaces (so called plane-parallel plate) 
• Prism  
• Diffraction grating.    
The transparent components are made of material with a refractive index of 1.47 at the 
wavelength used. 
 
 

Apparatus available: 
• A laser pointer with a wavelength of 670 nm.  CAUTION: DO NOT LOOK 

DIRECTLY INTO THE LASER BEAM. 
• An optical rail 
• A platform for the cube, movable along the optical rail 
• A screen which can be attached to the end of the rail, and detached from it for other 

measurements.  
• A sheet of graph paper which can be pasted on the screen by cellotape.   
• A vertical stand equipped with a universal clamp and a test tube with arbitrary scales, 

which are also used in the  Problem I.   
 

Note that all scales marked on the graph papers and  the apparatus for the experiments are 
of the same scale unit, but not calibrated in millimeter. 
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The Problem 

Identify each of the three components and give its respective specification:  
 

Possible type of component Specification required 

mirror radius of curvature, angle between the mirror axis and  
the axis of the box  

lens* positive or negative,  its focal le ngth, and its position inside the 
box 

plane-parallel plate thickness, the angle between the plate and the axis of the box  

prism apex angle, the angle between one of its deflecting sides and 
the axis of the box 

diffraction grating* line spacing, direction of the lines, and its position inside the 
box 

• implies that its plane is at right angle to the axis of the box 

 
Express your final answers for the specification parameters of each component (e.g. focal 
length, radius of curvature) in terms of millimeter, micrometer or the scale of graph paper.  
 
You don’t have to determine the accuracy of the results. 
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     

 
ANSWER FORM 

 
 

1.  Write down the types of the optical components inside the box :   

  no.1. ………………………………………… [0.5 pts]  

  no.2..  ………………………………………… [0.5 pts]  

  no.3.  ………………………………………… [0.5 pts]  

 

2. The cross section of the box is given in the figure below.  Add a sketch in the figure  
  to show how the three components are positioned inside the box. In your sketch, 
 denote each component with its code number in answer 1 .   
          [0.5 pts for each correct position] 
 
 
 
 
 
 
 
                       axis of the box 
   
             
 
    direction of the slit      direction of the slit  
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     
 
3. Add detailed information with additional sketches regarding arrangement of the optical 

components in answer 2, such as the angle, the distance of the component from the slit, and 
the orientation or direction of the components.  [1.0 pts]  
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     
 
4. Summarize the observed data [0.5 pts], determine the specification of the optical  

component no.1 by deriving the appropriate formula with the help of drawing [1.0 pts], 
calculate the specifications in question and enter your answer in the box below [0.5 pts].    

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name of component no.1 Specification 
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CountryCount ry  Student No.Student No.   Experiment NoExperiment No..  Page No.Page No.   Total PagesTotal Pages  

     

 
5. Summarize the observed data [0.5 pts], determine the specification of the optical  

component no.2 by deriving the appropriate formula with the help of drawing [1.0 pts], 
calculate the specifications in question and enter your answer in the box below [0.5 pts].    

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 

  

 Name of component no.2 Specification 
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     

 
6. Summarize the observed data [0.5 pts], determine the specification of the optical  

component no.3 by deriving the appropriate formula with the help of drawing [1.0 pts], 
calculate the specifications in question and enter your answer in the box below [0.5 pts].    

  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Name of component no.3 Specification 
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THEORETICAL COMPETITION 
Tuesday, July 23rd, 2002 

 
 

Solution I: Ground-Penetrating Radar 
 
1. Speed of radar signal in the material vm:   

 constant  z -constant  tt zω β β ω− = → = +  (0.2 pts)  

β
ω=mv         

2/1

2/1
22

2

1)1(
2

1
















 ++

=

ωε
σµε

ω
mv      (0.4 pts)  

 

 
µεµε

1

)11(
2

1
2/1 =







 +

=mv      (0.4 pts)  
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2.  The maximum depth of detection (skin depth, δ) of an object in the ground is 
inversely proportional to the attenuation constant:  

     (0.5 pts)                                                      (0.3 pts)                       (0.2 pts) 
 

1/2 1/2 1 / 221 / 2 22

2 22 22 2

1 1 1 1

11 .1 11 1 2 22 22

a
δ

µε σµε σµε σ ωωω ε ωε ωε ω

= = = =
             + −   + −                 

2/1
2












=

µ
ε

σ
δ .  

 
  

Numerically  
( )

σ
ε

δ r31.5
=  m, where σ  is in mS/m.         (0.5 pts) 

For a medium with conductivity of 1.0 mS/m and relative permittivity of 9, the skin depth  
 

 
( )5.31 9

 15.93 m
1.0

δ = =             (0.3 pts)  + (0.2 pts) 
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3. Lateral resolution: 
       Antenna 
 
 
 
 
 
 
 
 
 
  

                              (1.0 pts) 

r =0.5 m, d =4 m:  
1

2 21 4
2 2 16

λ λ 
= + 

 
,  2 32 4 0λ λ+ − =                         (0.5 pts) 

The wavelength is λ=0.125 m.      (0.3 pts)  + (0.2 pts) 
The propagation speed of the signal in medium is 

 

rroororo

mv
εµεµεεµµµε

1111 ===  

 1 and 1    where,  m/ns 3.0
r ==== µ

εµεεµ oorrr

m c
c

v  

              m/s 10  m/ns 1.0 8==mv         (0.5 pts) 
 

The minimum frequency need to distinguish the two rods as two separate objects is    
 

    
λ
v

f =min                             (0.5 pts) 

 MHz 800   Hz  10
125.0
9
3.0

9
min == xf     (0.3 pts) + (0.20 pts) 

 
 

4
d

λ+

r 

d 

2 2 2( )
4

r d d
λ+ = +

1
2 2

2 16
d

r
λ λ 

= + 
 

 

rod rod 
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4. Path of EM waves for some positions on the ground surface 
 
 
  
  
  
 
 
 
 
 
 
 
 The traveltime as  function of x is 
   

  
2

2 2

2
t v

d x  = +  
,        (1.0 pts) 

       
2 24 4( ) d x

t x
v
+=      (1.0 pts) 

 

 1 2 22
( )

0.3
rt x d x

ε
= +    

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

For x =0       (1.0 pts) 
    
  100 = 2×(3/0.3)  d 
 
  d = 5 m         (0.5 pts) 
 

ε1, σ1 
T R T R  

d 1 
2 

3 

x 

Buried rod(ε2, σ2) 

T R 

Antenna Positions 
Scanning direction 

Graph of traveltime, t(x) 
             Antenna Positions                 x 
 

t 
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THEORETICAL COMPETITION 
Tuesday, July 23rd, 2002 

 
 

Solution II: Sensing Electrical Signals  
 
 
1.  When a point current source Is is in infinite isotropic medium, the current 
density vector at a distance r from the point is  
 

r
r

I
j s rr

34π
=  

 
[+1.5 pts] (without vector notation, -0.5 pts) 
 
2. Assuming that the resistivities of the 

prey body and that of the surrounding 
seawater are the same, implying the 
elimination of the boundary surrounding 
the prey, the two spheres seem to be in 
infinite isotropic medium with the 
resistivity of ρ. When a small sphere 
produces current at a rate Is, the current 
flux density at a distance r from the 
sphere's center is also 

 

 r
r

I
j s rr

34π
=  

 
 
The seawater resistivity is ρ, therefore the field strength at r is 
 

( ) r
r
I

jrE s rrrr
34π

ρ
ρ ==   [+0.2 pts] 

 
In the model, we have two small spheres. One is at positive voltage relative to the 
other therefore current Is flows from the positively charged sphere to the negatively 
charged sphere. They are separated by ls. The field strength at P(0,y) is: 

2
slx −= 0=x

P

y

+−
2

slx +=

prey
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3. The field strength along the axis between the two source spheres is: 
 

( ) ( )i
l

x
l

x

I
xE

ss

s −


























 +

+






 −

= 22

2

1

2

1
4π
ρr

 [+0.5 pts] 

 
The voltage difference to produce the given current Is is 
 

( ) ( )( )

( )
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The resistance between the two source spheres is: 
 

ss

s
s rI

V
R

π
ρ

2
==  

 
[+0.5 pts] 
 
The power produced by the source is: 
 

s

s
ss r

I
VIP

π
ρ
2

2

==  

 
[+0.5 pts] 
 

4. V is the voltage difference between the 
detector’s spheres due to the electric 
field induced by the prey, Rm is the inner 
resistance due to the surrounding sea 
water. Vd and Rd are respectively the 
voltage difference between the detecting 
spheres and the resistance of the 
detecting element within the predator 
and id is the current flowing in the closed 
circuit.                     

  
. Analog to the resistance between the two 

source spheres, the resistance of the 
medium with resistivity ρ between the 
detector spheres, each having a radius of 
rd is: 

  

 
d

m r
R

π
ρ

2
=  

  
 [+0.5 pts] 
 
 Since ld is much smaller than y, the 

electric field strength between the 
detector spheres can be assumed to be 
constant, that is: 

 

 34 y
lI

E ss

π
ρ

=  [+0.2 pts] 

Therefore, the voltage difference present in the medium between the detector spheres 
is: 

34 y
llI

ElV dss
d π

ρ
==  [+0.3 pts] 

dR

mR

V dV
+
−

di

sl
0=x

y

+−

dl

dR predator

prey
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The voltage difference across the detector spheres is: 
 

d
d

ddss

md

d
d

r
R

R
y

llI
RR

R
VV

π
ρπ

ρ

2
4 3

+
=

+
=  

[+0.5 pts] 
 
The power transferred from the source to the detector is: 
 

2

2

3

2

4






+







=

+
==

d
d

ddss
d

md
ddd

r
R

R
y

llI
V

RR
V

ViP

π
ρπ

ρ  

[+0.5 pts] 
 
 
5. Pd is maximum when  
 

( )
maximum is     

2

22
md

d

d
d

d
t

RR

R

r
R
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+
=







+

=

π
ρ

 [+0.5 pts] 

 
Therefore, 
 

( ) ( )
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2
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The maximum power is: 
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6
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3
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3224 y
rllIr

y
llI
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ρ
ρ

π
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ρ
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[+0.5 pts] 
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SOLUTION T3 : .  A Heavy Vehicle Moving on An Inclined Road  

 
    To simplify the model we use the above figure with h1 = h+0.5 t 
    Ro = R 
 

1. Calculation of the moment inertia of the cylinder 
 

Ri=0.8 Ro       
Mass of cylinder part : mcylinder =0.8 M 
Mass of each rod        : mrod = 0.025 M 

                       

θ 

l 

l 

h1 
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pts 0.1                                                               7.000533.08656.0
becomes each wheel of inertiamoment  The

pts 0.5          00533.0)64.0(025.0
3
1

3
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pts 0.5                                                     656.0)64.01()8.0(5.0                
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2.   Force diagram and balance equations: 
 
To simplify the analysis we devide the system into three parts:  frame (part1) which 
mainly can be treated as flat homogeneous plate, rear cylinders (two cylinders are treated  
collectively as part 2 of the system), and front cylinders (two front cylinders are treated 
collectively as part 3 of the system). 
 
Part 1 : Frame 
 

                                          0.4 pts 
The balance equation related to the forces work to this parts are: 
 
 
 
 
 
 
 

l 

l 

h1 

N13 m1g 
f13h 

f12h 

N12 
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  Required conditions: 

  

pts 0.2  (3)                                                               0NN
 thatso zero, is Oagainst on Then torsi

pts 0.2  (2)                                                                               cos
axis  verticalin the force of Balance

pts 0.2  (1)                                                                       sin
axis horizontal in the force of Balance

1131121312

13121

113121

=++−

+=

=−−

hfhfll

NNgm

amffgm

hh

hh

θ

θ

  

 
Part two : Rear cylinder 
 

     0.25 pts 
 

pts 0.15      (5)                                                                          0cosN
pts 0.15      (4)                                                                         sinf

: rear wheelin condition  balance From

212

221h

=−−
=+−

θ
θ

MgN

MaMgf       

 
For pure rolling: 
 

                                            

(6)                                                                afor   

                                                   

22

2
22

R
I

R
a

IIRf

=

== α

 

For rolling with sliding: 
   

    F2 =  uk  N2             (7)  
 

               0.2 pts 
 
Part Three : Front Cylinder: 
 
 

 
 

f21h 

Mg 
N21 

f2 
N2 
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   0.25 pts 
 

pts 0.15      (9)                                                                                0cosN
pts 0.15      (8)                                                                               sinf

:  lfront whee in thecondition  balance From

313

331h

=−−
=+−

θ
θ

MgN

MaMgf  

 
For pure rolling: 
 
                                                                                                

(10)                                                                                                                  afor   

                                                   

23

3
33

R
I

R
a

IIRf

=

== α

 

For rolling with sliding: 
   
    F3 =  uk N3                                  (11)  
 
                     0.2 pts 
3.  From equation (2), (5) and (9) we get 
 

         m1 gcosθ = N2 – m2g cosθ+N3-m3g cosθ 
      N2 + N3  =  (m1+m2+m3)gcosθ=7Mgcosθ                   (12)  
 
And from equation (3), (5) and (8) we get  
 
(N3-Mg cos θ) l – (N2-Mg cos θ) l=h1 (f2 +Ma-Mg sinθ+f3+Ma-Mg sinθ) 
 
(N3 – N2)= h1 (f2 +2Ma-2Mg sinθ+f3)/l                                                                        
 

Equations 12 and 13 are given  0.25 pts  
 
 CASE  ALL CYLINDER IN PURE ROLLING 
 
From equation (4) and (6) we get  

f31h 

Mg 
N31 

f3 
N3 
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     f21h = (I/R2)a +Ma-Mg sinθ       (14)     0.2 pts 
 
From equation (8) and (10) we get  
  
     f31h = (I/R2)a +Ma-Mg sinθ       (15)     0.2 pts 
 
Then from eq. (1) , (14) and (15) we get 
 
 5Mg sinθ - {(I/R2)a +Ma-Mg sinθ}-{(I/R2)a +Ma-Mg sinθ}= m1a 
 
7 Mg sinθ = (2I/R2 +7M)a  

                    θ
θθ sin833.0

7.027
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27
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2
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=            (16)   0.35 pts 
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          0.2 pts 
The Conditions for pure rolling: 
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3
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3322
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R
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NN

NfNf

ss

ss

µµ

µµ

≤≤

≤≤
                          0.2 pts 

l
h

Mg
l
h

gM

s

s

s

1

1

41.05831.0

5.3
tan
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l
h
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l
h
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s

s

s

1

1

41.05831.0

5.3tan

)sin0.41  cos (3.5mgsin833.07.0

becomesequation right   theWhile

µ

µ
θ

θθµθ

−
≤

+≤×
 

                                                                     (17)            0.1 pts 
 
CASE  ALL CYLINDER SLIDING 
 
From eq. (4)   f21h = Ma +ukN2 – Mgsinθ         (18)            0.15 pts 
From eq. (8)   f31h = Ma +ukN3 – Mgsinθ         (19)            0.15 pts 
From eq. (18) and 19 :   
   5Mg sinθ - (Ma + ukN2 – Mg sinθ)- (Ma + ukN3 – Mg sinθ)=m1a  
 

     
M

NN
g

M
NNMg

a kkk

7
)(

sin
7

sin7 3232 +
−=

−−
=

µ
θ

µµθ
       (20)           0.2 pts 

 
θcos723 MgNN =+  

 
From the above two equations we get : 

θµθ cossina gg k−=                                   0.25 pts   
 
 
The Conditions for complete sliding: are the opposite of that of pure rolling 
 

 
32

3

3
22

2

2

3322

' a
R
I  and               ' a

R
I

'  and                   '

NN

NfNf

ss

ss

µµ

µµ

〉〉

〉〉
  (21)               0.2 pts 

 
Where N2’ and N3’ is calculated in case all cylinder in pure rolling.          0.1 pts  
 
 

l
h

l
h

s

s

s

s

11 41.05831.0

5.3 tan                     and                 
41.05831.0

5.3 tan

get Finally we

µ

µ
θ

µ

µ
θ

−
〉

+
〉          0.2 pts   

The left inequality finally become decisive. 
 
 
CASE  ONE CYLINDER IN PURE ROLLING AND ANOTHER IN SLIDING 
CONDITION 
 
{ For example R3 (front cylinders) pure rolling while R2 (Rear cylinders) sliding} 
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From equation (4)  we get  
  
     F21h = m2a+ ukN2-m2g sinθ      (22)               0.15 pts 
 
From equation (5)  we get  
  
     f31h = m3a+(I/R2)a -m3g sinθ     (23)               0.15 pts 
 
Then from eq. (1) , (22) and (23) we get 
 
 m1g sinθ - { m2a+ukN2-m2g sinθ}-{m3a+(I/R2)a -m3g sinθ}= m1a 
 
m1 g sinθ + m2g sinθ + m3 sinθ- ukN2 = (I/R2 +m3)a + m2 a + m1 a 
 
5Mg sinθ + Mg sinθ + Mg sinθ- ukN2 = (0.7M +M)a + Ma + 5Ma 
 

M
g

M
Mg

a
7.7
N

sin9091.0
7.7

Nsin7 2k2k µ
θ

µθ
−=

−
=                              (24)           0.2 pts 

 

θµ

θµθµ

θµ

sin4546.0)65.01(

)sin27.7/7.2sin9091.07.2(

)sin22(

1
23

22
1

23

22
1

23

Mg
l
h

NN

MgNgMN
l
h

NN

MgMaa
R
I

N
l
h

NN

k

kk

k

=+−

−−×+=−

−++=−

 

θ=+ cos723 MgNN  
 
Therefore we get 
 

l
h
MgMg

MgN

l
h
MgMg

N

k

k

1
3

1
2

65.02

sin4546.0cos7cos7

65.02

sin4546.0cos7

µ

θθ
θ

µ

θθ

+

−−=

+

−=

   (25)     0.3 pts 

Then we can substitute the results above into equation (16) to get the following result 
 

l
h
gg

g
M

ga

k
1

k2k

65.02

sin4546.0cos7
7.7

sin9091.0
7.7
N

sin9091.0
µ

θθµ
θ

µ
θ

+

−−=−=       (26)      

0.2 pts 
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The Conditions for this partial sliding is: 

 
3222

3322

 a
R
I  and                a

R
I

  and                   

NN

NfNf

ss

ss

′〉′≤

′〉′≤

µµ

µµ

   (27)     0.25 pts 

 where 2N ′  and 3N ′  are normal forces for pure rolling condition 
 
 
4. Assumed that after rolling d meter all cylinder start to sliding until reaching the end of 
incline road (total distant is s meter). Assummed that ηmeter is reached in t1 second.  
 

1
1

2
11

2
111

111111

2
2
1

2
1

0

a
d

t

tatatvd

tataatvv

o

ot

=

=+=

=+=+=

 

         0.5 pts 

11 av t =
1

2
a
d

= θθ sin666.1sin833.022 1 dggdda ==                                      (28) 

 
The angular velocity after rolling d meters is same for front and rear cylinders: 
 

θω sin666.111
1 dg

RR
vt

t ==                                                                                      (29) 

         0.5 pts 
 
Then the vehicle sliding untill the end of declining  road. Assumed that the time needed 
by vehicle to move from d position to the end of the declining road is t2 second. 
 

)(2sin666.1

)(2
2
1

sin666.1

2
2
112

2

2
2
11

2

2
2221

222212

dsavvdgv

a

dsavv
t

tatvds

tadgtavv

ttt

tt

t

tt

−++−=

−++−
=

+=−

+=+=

θ

θ

   (30)           0.4 pts 

 
Inserting vt1 and a2  from the previous results we get the final results. 
 
For the angular velocity, while sliding they receive torsion: 
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sin666.11

2
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I
NR
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ttk
tt

k

k
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=

µ
θαωω

µτ
α

µτ

(31) 

              0.6 pts 
 
 



SOLUTION EXPERIMENT I 
 
PART A 
 

1. [Total 0.5 pts] 
The experimental method chosen for the calibration of the arbitrary scale is a simple 

pendulum method [0.3 pts] 

 
Figure 1. Sketch of the experimental set up [0.2 pts] 

 
2. [Total 1.5 pts] 

The expression relating the measurable quantities: [0.5 pts] 
  

 
g
l

Tosc π 2 = ; 
g
l

Tosc
22  4 π=   

       
 Approximations :  
  θθ ≈sin  [0.5 pts] 
  mathematical pendulum (mass of the wire << mass of the steel ball,  
  the radius of the steel ball << length of the wire [0.5 pts]  
  flexibility of the wire, air friction, etc [0.1 pts, only when one of the two 

major points above is not given] 
 
 
 
 
 
 
 

θ 

Arbitrary scale 
mark 

mg 

l 

Vertical stand 

Steel ball 

Wire 



3. [Total 1.0 pts] Data sample from simple pendulum experiment  
# of cycle ≥ 20 [0.2 pts.] , difference in T ≥ 0.01 s  [0.4 pts], # of data ≥ 4 [0.4 pts]  

 
No. 
 

t(s) for 50 cycles Period, T (s) 
 

Scale marked on the 
wire (arbitrary scale) 

1 91.47 1.83 200 
2 89.09 1.78 150 
3 86.45 1.73 100 
4 83.8 1.68 50 

 
4. [Total 0.5 pts] 

No. Period, T (s) 
 

Scale marked on the wire 
(arbitrary scale) 

T2(s2) 

1 1.83 200 3.35 
2 1.78 150 3.17 
3 1.73 100 2.99 
4 1.68 50 2.81 

 
The plot of T2 vs scale marked on the wire: 

 

  
           Scale marked on the wire (arbitrary scale) 

 
5. Determination of the smallest unit of the arbitrary scale in term of mm [Total 1.5 

pts] 

1

2
2 4

1
L

g
Tosc

π=  ,       2

2
2 4

2
L

g
Tosc

π=  

( ) 21

2
22 4

21
LL

g
TT oscosc −=− π

L
g

∆=
24π  

T2 (s2) 

 



( )22
2 214 oscosc TT

g
L −=∆

π
 or other equivalent expression 

 
No. 

 
 Calculated ∆L (m) 

 

∆L in arbitrary 
scale 

Values of smallest 
unit of arbitrary 

scale (mm) 
1. T1

2-T2
2 = 0.171893 s2 0.042626 50 0.85 

2. T1
2-T3

2 =0.357263 s2 0.088595 100 0.89 
3. T1

2-T4
2 =0.537728 s2 0.133347 150 0.89 

4. T2
2-T3

2 =0.18537 s2 0.045968 50 0.92 
5. T2

2-T4
2 =0.365835 s2 0.09072 100 0.91 

6. T3
2-T4

2 =0.180465 s2 0.044752 50 0.90 
 

The average value of smallest unit of arbitrary scale, l   = 0.89 mm  [0.5 pts] 
 
 
The estimated error induced by the measurement: [0.5 pts] 
 

No. Values of smallest 
unit of arbitrary 

scale (mm) 

)( ll −  2)( ll −  

1. 0.85 -0.04 0.0016 
2. 0.89 0 0 
3. 0.89 0 0 
4. 0.92 0.03 0.0009 
5. 0.91 0.02 0.0004 
6. 0.90 0.01 0.0001 

 
And the standard deviation is: 

mm02.0
5
003.0

1

)(
6

1

2

==
−

−
=∆

∑
=

N

ll
l i  

 
other legitimate methods may be used 
 

[0.5 pts] 



 
PART B 
 
1. The experimental set up:[Total 1.0 pts] 

 

 
 

2. Derivation of  equation relating the quantities time t, current I, and water level 
difference ∆h: :[Total 1.5 pts] 

 

     
t
Q

I
∆
∆=           

From the reaction: 2 H+ + 2 e                 H2, the number of molecules produced in the 
process (∆N) requires the transfer of electric change is ∆Q=2e ∆N :           [0.2 pts] 

 

 

   

h)(2
k
e              

T k
2
   )h( P

T k
2e
                    

T k N V 
t
2e N                  

2

B

B2

B

B

∆=∆

∆=∆

∆=

∆=∆
∆

∆=

T
rP

tI

e
tI

r

tI

P

I

π

π
 

 
 
 
 
 

A

Arbitrary scales 

- + 

Water 

Test tube 

Voltage source Power 
supply 

Ampere meter 

Weight 

Electrodes [0.2 pts] 

Container filled with 
water [0.2 pts] 

Water and  
electrode 
inside the 
glass  tube 
[0.2 pts] 

[0.5 pts] 

[0.5 pts] 

[0.2 pts] 

[0.1 pts] 

[0.2 pts] [0.2 pts] 



 
3. The experimental data: [ Total 1.0 pts] 

 
No. 
 

∆h (arbitrary 
scale) 

I (mA) ∆t (s) 
 

1 12 4.00 1560.41 
2 16 4.00 2280.61 
3 20 4.00 2940.00 
4 24 4.00 3600.13 

 
• The circumference φ, of the test tube = 46 arbitrary scale   [0.3 pts] 
• The chosen values for ∆h (≥ 4 scale unit) for acceptable error due to uncertainty 

of the water level reading and for I (≤ 4 mA)  for acceptable disturbance  [0.3 pts] 
• #  of  data ≥ 4            [0.4 pts] 

 
The surrounding condition (T,P) in which the experimental data given above taken: 

  T = 300 K 
  P = 1.00 105 Pa  
 

4. Determination the value of e/kB  [Total 1.5 pts] 
 

No. 
 

∆h (arbitrary 
scale) 

∆h (mm) 
 

I (mA) ∆t (s) 
 

I ∆t ( C ) 

1 12 10.68 4.00 1560.41 6241.64 
2 16 14.24 4.00 2280.61 9120.48 
3 20 17.80 4.00 2940.00 11760.00 
4 24 21.36 4.00 3600.13 14400.52 

 



 
Plot of  I∆t vs ∆h from the data listed above 

 

 
The slope obtained from the plot is 763.94; 
 

4
235

B

1028.1
)82.01089.023(102

30094.763
k
e ×=

×××××
××= −

π Coulomb K/J   

 [1.0 pts] 
 
 
Alternatively [the same credit points] 
 

No. ∆h (mm) I ∆t ( C ) Slope e/kb 
1 10.68 6241.64 584.4232 9774.74 
2 14.24 9120.48 640.4831 10712.37 
3 17.80 11760.00 660.6742 11050.07 
4 21.36 14400.52 674.1816 11275.99 

I ∆t 

∆h 



 
 
Average of e/kb = 1.07 × 104   Coulomb K/J      
 [1.0 pts] 
  

No. 
 

e/kb difference Square 
difference 

1 9774.74 -928.55 862205.5 
2 10712.37 9.077117 82.39405 
3 11050.07 346.7808 120256.9 
4 11275.99 572.6996 327984.9 

 
 
Estimated error          [0.5 pts] 
 
The standard deviation obtained is 0.66 × 103  Coulomb K/J,  
Other legitimate measures of estimated error may be also used    
  
 
 

 
 
 

 
 



SOLUTION OF EXPERIMENT PROBLEM 2 

 
1.  The optical components are [total 1.5 pts]: 

  no.1 Diffraction grating  [0.5 pts] 

  no.2 Diffraction grating  [0.5 pts] 

  no.3  Plan-parallel plate  [0.5 pts] 

 

 

2.  Cross section of the box [total 1.5 pts]: 

           

           

           

           

           

           

           

           

            

           no.1       no.3      no.2  
       [0.5 pts]       [0.5 pts]        [0.5 pts]   
 
 
 
 
 
 
 
 
 
 
 



3.  Additional information [total 1.0 pts]: 
 
           

           

           

           

           

           

           

           

            

           no.1       no.3      no.2  

   Distance of the grating (no.1)    Distance of the grating (no.2) 

   to the left wall is practically zero         to the right wall is practically zero 
   [0.2 pts]       [0.2 pts]        

   Lines of grating no.1 is at    Lines of grating no. 2 

   right angle to the slit     is parallel to the slit 
    [0.3 pts]      [0.3 pts] 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.  Diffraction grating [total 2.0 pts]: 
 
      ∆ 
               drawing and labels  should be complete  
   d         [0.6 pts] 
     θ 
 
          θ 
 
 
 
 
  Path length difference: 

     ∆ =  d sin θ  ,             d = spacing of the grating 

  Diffraction order:   

     ∆ =  m λ ,      m = order number 

  Hence, for the first order (m = 1): 

      sin θ = λ / d      [0.4 pts] 
 

  Observation data: 

    tan θ  θ   sin θ 

    0.34    18.780 0.3219 

    0.32  17.740 0.3048               number of data ≥ 3 
    0.32  17.740 0.3048    [0.5 pts]  
  

Name of component no.1 Specification  

Diffraction grating Spacing = 2.16 µm 

Lines at right angle to the slit 

   [0.4 pts] 

   [0.1 pts] 

  

Note: true value of grating spacing is 2.0 µm, deviation of the result ≤ 10% 



5.  Diffraction grating [total 2.0 pts]: 

      For the derivation of the formula, see nr.4 above. 

           [1.0 pts] 

      Observation data: 

   tanθ  θ   sinθ 

   1.04  46.120 0.7208 

   0.96  43.830 0.6925                number of data ≥ 3 

   1.08  47.200 0.7330    [0.5 pts] 
   

Name of component no.2 Specification  

Diffraction grating Spacing = 0.936 µm 

Lines parallel to the slit 

    [0.4 pts] 

    [0.1 pts] 

  

Note: true value of grating spacing is 1.0 µm, deviation of the result ≤ 10% 

 

 
 

 

 

 

 

 

 

 

 

 

 



6.  Plan-parallel plate [total 2.0 pts]: 

 

 

         ϕ    A              D 

        ϕ′ 
                C 

          B           

           n           drawing and labels should be complete    

            [0.4 pts] 

        90°−ϕ 

      Snell’s law: 
      sin ϕ  =  n sin ϕ′   ,          ϕ′  =  ∠ BAC 

      Path length inside the plate: 
   AC  =  AB / cos ϕ′  ,   AB  =  h  =  plate thickness 

      Beam displacement: 
   CD  =  t  =  AC sin ∠ CAD  ,    ∠ CAD  =  ϕ − ϕ′ 
      Hence: 
    t  =  h sin ϕ  [ 1 − cos ϕ / (n2 − sin2 ϕ)1/2 ]   [0.6 pts] 

      Observation data: 
      ϕ   t 
      0  0  (angle between beam and axis 49°) 

      490  7.3 arbitrary scale    [0.5 pts] 
 

Name of component no.3 Specification  

Plane-parallel plate Thickness = 17.9 mm 

Angle to the axis of the box 49° 

 [0.2 pts] 

 [0.3 pts] 

Note: - true value of plate thickness is 20 mm   
  - true value of angle to the axis of the box is 52°  
  - deviation of the results ≤ 20%. 



 

 2 

Theoretical Question 1 
 

A Swing with a Falling Weight 
A rigid cylindrical rod of radius R is held horizontal above the ground. With a string of 

negligible mass and length L ( RL π2> ), a pendulum bob of mass m is suspended from point 
A at the top of the rod as shown in Figure 1a. The bob is raised until it is level with A and then 
released from rest when the string is taut. Neglect any stretching of the string. Assume the 
pendulum bob may be treated as a mass point and swings only in a plane perpendicular to the 
axis of the rod. Accordingly, the pendulum bob is also referred to as the particle. The 
acceleration of gravity is g . 
 

 

 

 

 

 

 

 

 

 

 

Let O be the origin of the coordinate system. When the particle is at point P, the string 
is tangential to the cylindrical surface at Q. The length of the line segment QP is called s. 
The unit tangent vector and the unit radial vector at Q are given by t̂  and r̂ , respectively. 
The angular displacement θ  of the radius OQ, as measured counterclockwise from the 
vertical x-axis along OA, is taken to be positive.  

When 0=θ , the length s is equal to L and the gravitational potential energy U of the 
particle is zero. As the particle moves, the instantaneous time rates of change of θ  and s are 
given by θ  and s , respectively. 

Unless otherwise stated, all the speeds and velocities are relative to the fixed point O. 
 
Part A 

In Part A, the string is taut as the particle moves. In terms of the quantities introduced 
above (i.e., s, θ, s ,θ , R, L, g, t̂ and r̂ ), find: 
(a) The relation between θ  and s .                              (0.5 point) 

(b) The velocity Qv  of the moving point Q relativeto O. (0.5 point) 

(c) The particle’s velocity v ′  relative to the moving point Q when it is at P (0.7 point) 
(d) The particle’s velocity v  relative to O when it is at P. (0.7 point) 

m 

R 

θ  

Figure 1a      

s 

x 

O 

A L 

Q 

P 

r̂  

t̂  
g  
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(e) The t̂ -component of the particle’s acceleration relative to O when it is at P. (0.7 point) 
(f) The particle’s gravitational potential energy U when it is at P. (0.5 point) 
(g) The speed vm

 
 of the particle at the lowest point of its trajectory. (0.7 point) 

Part B 
In Part B, the ratio L to R has the following value: 

886.6352.3534.3
16

cot
3
2

8
9 =+=+= ππ

R
L  

(h) What is the speed sv  of the particle when the string segment from Q to P is both straight 
and shortest in length? (in terms of g and R) (2.4 points) 

(i) What is the speed Hv  of the particle at its highest point H when it has swung to the other 
side of the rod? (in terms of g and R) (1.9 points) 

 
Part C 

In Part C, instead of being suspended from A, the pendulum bob of mass m is 
connected by a string over the top of the rod to a heavier weight of mass M, as shown in 
Figure 1b. The weight can also be treated as a particle. 
 
 
 
 
 
 
 
 

Initially, the bob is held stationary at the same level as A so that, with the weight 
hanging below O, the string is taut with a horizontal section of length L. The bob is then 
released from rest and the weight starts falling. Assume that the bob remains in a vertical 
plane and can swing past the falling weight without any interruption. 

The kinetic friction between the string and the rod surface is negligible. But the static 
friction is assumed to be large enough so that the weight will remain stationary once it has 
come to a stop (i.e. zero velocity). 
(j) Assume that the weight indeed comes to a stop after falling a distance D and 

that ( ) RDL >>− . If the particle can then swing around the rod to θ  = 2π while both 
segments of the string free from the rod remain straight, the ratio α = D /L must not be 
smaller than a critical value α c. Neglecting terms of the order R /L or higher, obtain an 
estimate on α c in terms of  M /m. (3.4 points) 

A 

M 

m 

L 

R 

Figure 1b 

x 

θ  

O 
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Answer Sheet           Theoretical Question 1 
A Swing with a Falling Weight 

 
(a) The relation between θ  and s  is 
 
 
(b) The velocity of the moving point Q relative to O is 
 
 
 
(c) When at P, the particle’s velocity  relative to the moving point Q is 
 
 
(d) When at P, the particle’s velocity relative to O is 
 
 
(e) When at P, the t̂ -component of the particle’s acceleration relative to O is 
 
 
(f) When at P, the particle’s gravitational potential energy is 
 
 
(g) The particle’s speed  when at the lowest point of its trajectory is 
 
 
 
(h) When line segment QP is straight with the shortest length, the particle‘s speed  is 

(Give expression and value in terms of g and R ) 
 
 
 
(i) At the highest point, the particle’s speed  is (Give expression and value in terms of g and R) 
 
 
(j) In terms of the mass ratio M /m,  the critical value α c of the ratio D /L is 

 

 

Qv  = 

v ′  = 

v  = 

 

U = 

mv  = 

sv  = 

Hv  = 

α c  = 
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Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 
 

Consider a uniform rod of unstressed length ℓ and cross-sectional area A (Figure 2a). 
Its length changes by ∆ℓ when equal and opposite forces of magnitude F are applied to its 
ends faces normally. The stress T on the end faces is defined to be F/A. The fractional 
change in its length, i.e., ∆ℓ/ℓ, is called the strain S of the rod. In terms of stress and strain, 
Hooke’s law may be expressed as 

SYT =   or  


∆Y
A
F =                       (1) 

where Y is called the Young’s modulus of the rod material. Note that a compressive stress T 
corresponds to F < 0 and a decrease in length (i.e., ∆ℓ < 0). Such a stress is thus negative in 
value and is related to the pressure p by T = –p. 

For a uniform rod of density ρ, the speed of propagation of longitudinal waves (i.e., 
sound speed) along the rod is given by 

ρ/Yu =                                  (2) 

 
 
 
 
 

 The effect of damping and dissipation can be ignored in answering the following 
questions. 

Part A: mechanical properties 
A uniform rod of semi-infinite length, extending from x = 0 to ∞ (see Figure 2b), has a 

density ρ. It is initially stationary and unstressed. A piston then steadily exerts a small 
pressure p on its left face at x = 0 for a very short time ∆t, causing a pressure wave to 
propagate with speed u to the right. 
 
 
 
 
 
 
(a) If the piston causes the rod’s left face to move at a constant velocity v (Figure 2b), what are 

y 

x 
ℓ 

F 

z 

F 

Figure 2a 
∆ℓ 

A 

x 

Figure 2c 

ξ 

p v 

unstressed 

wave motion 

Figure 2b 
∞ x = 0 

p p 
v 

compressed unstressed 
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the strain S and pressure p at the left face during the time ∆t? Answers must be given in 
terms of ρ, u, and v only.   (1.6 points) 

(b) Consider a longitudinal wave traveling along the x direction in the rod. For a cross section 
at x when the rod is unstressed (Figure 2c), let ξ(x, t) be its displacement at time t and 
assume 

)(sin),( 0 tuxktx −= ξξ                     (3) 
where ξ 0

Part B: electromechanical properties (including piezoelectric effect) 

 and k are constants. Determine the corresponding velocity v(x, t), strain S(x, t), 
and pressure p(x, t) as a function of x and t.              (2.4 points) 

Consider a quartz crystal slab of length b, thickness h, and width w (Figure 2d). Its 
length and thickness are along the x-axis and z-axis. Electrodes are formed by thin metallic 
coatings at its top and bottom surfaces. Electrical leads that also serve as mounting support 
(Figure 2e) are soldered to the electrode’s centers, which may be assumed to be stationary for 
longitudinal oscillations along the x direction. 
 
 
 
 
 
 
 
 

The quartz crystal under consideration has a density ρ of 2.65×103 kg/m3 and Young’s 
modulus Y of  7.87×1010 N/m2

For a standing wave of frequency f =ω / 2π, the displacement ξ (x, t) at time t of a cross 
section of the slab with equilibrium position x may be written as 

. The length b of the slab is 1.00 cm and the width w and height 
h of the slab are such that h << w and w << b. With switch K left open, we assume only 
longitudinal modes of standing wave oscillation in the x direction are excited in the quartz 
slab. 

txgtx ωξξ cos)(2),( 0= ,    )0( bx ≤≤                  (4a) 

where ξ 0







 −+






 −=

2
cos

2
sin)( 21

bxkBbxkBxg

 is a positive constant and the spatial function g(x) is o f  t h e  f o rm 

          (4b) 

g(x) has the maximum value of one and k=ω/u. Keep in mind that the centers of the electrodes 
are stationary and the left and right faces of the slab are free and must have zero stress (or 
pressure). 
 

y 

x 
b 

− 

+ h w 

z K 

)(tV  

Figure 2d 

b/2 

x 

z electrodes 

b/2 

h 

Figure 2e 

quartz 
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(c) Determine the values of B1 and B2

(d) What are the two lowest frequencies at which longitudinal standing waves may be excited 
in the quartz slab?                                  (1.2 point) 

 in Eq. (4b) for a longitudinal standing wave in the 
quartz slab. (1.2 point) 

 
The piezoelectric effect is a special property of a quartz crystal. Compression or 

dilatation of the crystal generates an electric voltage across the crystal, and conversely, an 
external voltage applied across the crystal causes the crystal to expand or contract depending 
on the polarity of the voltage. Therefore, mechanical and electrical oscillations can be coupled 
and made to resonate through a quartz crystal. 

To account for the piezoelectric effect, let the surface charge densities on the upper and 
lower electrodes be –σ and +σ, respectively, when the quartz slab is under an electric field E 
in the z direction. Denote the slab’s strain and stress in the x direction by S and T, respectively. 
Then the piezoelectric effect of the quartz crystal can be described by the following set of 
equations: 

EdTYS p+= )/1(                           (5a) 
ETd Tp εσ +=                           (5b) 

where 1/Y = 1.27×10 −11 m2/N is the elastic compliance (i.e., inverse of Young’s modulus) at 
constant electric field and εT = 4.06×10 −11 F/m is the permittivity at constant stress, while dp 
= 2.25×10 −12

Let switch K in Fig. 2d be closed. The alternating voltage V(t) = V
 m/V is the piezoelectric coefficient. 

m 

With E being uniform, the wavelength λ and the frequency f of a longitudinal standing 
wave in the slab are still related by λ = u / f with u given by Eq. (2). But, as Eq. (5a) shows, T 
= Y S is no longer valid, although the definitions of strain and stress remain unchanged and the 
end faces of the slab remain free with zero stress. 

cos ω t now acts 
across the electrodes and a uniform electric field E(t) = V(t)/h in the z direction appears in the 
quartz slab. When a steady state is reached, a longitudinal standing wave oscillation of 
angular frequency ω appears in the slab in the x direction. 

(e) Taking Eqs. (5a) and (5b) into account, the surface charge density σ  on the lower 
electrode as a function of x and t is of the form, 

h
tVDbxkDtx )(

2
cos),( 21 








+






 −=σ  

   where k =ω /u. Find the expressions for D1 and D2

(f) The total surface charge Q(t) on the lower electrode is related to V(t) by 
.  (2.2 points) 

)(1
2

tan21)( 0
2 tVCkb

kb
tQ 














 −+= α                    (6) 

Find the expression for C0 and the expression and numerical value of α 2.    (1.4 points)                                        
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 [Answer Sheet]        Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 
 
Wherever requested, give each answer as analytical expressions followed by 
numerical values and units. For example: area of a circle A = π r 2 = 1.23 m2. 

 
(a) The strain S and pressure p at the left face are (in terms of ρ, u, and v) 

 S = 

 p = 

(b) The velocity v(x, t), strain S(x, t), and pressure p(x, t) are 

 v(x, t) = 

 S(x, t) = 

 p(x, t) = 

(c) The values of B1 and B2 are 
 B1 = 

B2= 
(d) The lowest two frequencies of standing waves are (expression and value) 

 The Lowest 

 The Second Lowest 

(e) The expressions of D1 and D2 are 
 D 1 =  
 D 2 = 

(f) The constants α 2 (expression and value) and C0 are (expression only) 

  α 2 = 

 C0 = 
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Theoretical Question 3 
Part A 

Neutrino Mass and Neutron Decay 
 

A free neutron of mass mn decays at rest in the laboratory frame of reference into three 
non-interacting particles: a proton, an electron, and an anti-neutrino. The rest mass of the 
proton is mp, while the rest mass of the anti-neutrino mv is assumed to be nonzero and much 
smaller than the rest mass of the electron me. Denote the speed of light in vacuum by c. The 
measured values of mass are as follows: 

mn＝939.56563 MeV/c2, mp＝ 938.27231 MeV/c2, me＝0.5109907 MeV/c2 
In the following, all energies and velocities are referred to the laboratory frame. Let E be the 
total energy of the electron coming out of the decay. 
(a) Find the maximum possible value Emax of E and the speed vm of the anti-neutrino when E 

= Emax. Both answers must be expressed in terms of the rest masses of the particles and the 
speed of light. Given that mv < 7.3 eV/c2, compute Emax and the ratio vm /c to 3 significant 
digits.                                (4.0 points) 
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Part B 
Light Levitation 

 

A transparent glass hemisphere with radius R and mass m has an index of refraction n. In 
the medium outside the hemisphere, the index of refraction is equal to one. A parallel beam of 
monochromatic laser light is incident uniformly and normally onto the central portion of its 
planar surface, as shown in Figure 3. The acceleration of gravity g  is vertically downwards. 
The radius δ  of the circular cross-section of the laser beam is much smaller than R . Both the 
glass hemisphere and the laser beam are axially symmetric with respect to the z-axis. 

The glass hemisphere does not absorb any laser light. Its surface has been coated with a 
thin layer of transparent material so that reflections are negligible when light enters and leaves 
the glass hemisphere. The optical path traversed by laser light passing through the 
non-reflecting surface layer is also negligible. 
(b) Neglecting terms of the order (δ /R)3 or higher, find the laser power P needed to balance 

the weight of the glass hemisphere.                      (4.0 points) 
Hint: 2/1cos 2θθ −≈ when θ is much smaller than one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 

R 

glass hemisphere 

laser beam 

z 

n 

2δ 

g  
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 [Answer Sheet]        Theoretical Question 3 
 

Wherever requested, give each answer as analytical expressions followed by numerical 
values and units. For example: area of a circle A = π r 2 = 1.23 m2. 

 
Neutrino Mass and Neutron Decay 

 
(a) (Give expressions in terms of rest masses of the particles and the speed of light) 

The maximum energy of the electron is (expression and value) 
 
 
 
 
 
 
The ratio of anti-neutrino’s speed at E = Emax to c is (expression and value) 
 
 
 
 
 
 

 
 

Light Levitation 
 

(b) The laser power needed to balance the weight of the glass hemisphere is 
 

 
 
 Emax = 
 
 

 
 
 vm /c = 
 
 

 
 P = 
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Please Read This First: 
 
1. Use only the pen provided. 
2. Use only the front side of the answer sheets and paper. 
3. In your answers please use as little text as possible; express yourself primarily 

in equations, numbers and figures. If the required result is a numerical 
number, underline your final result with a wavy line. 

4. Write on the blank sheets of paper the results of your measurements and 
whatever else you consider is required for the solution of the question and that 
you wish to be marked. 

5. It is absolutely essential that you enter in the boxes at the top of each sheet of 
paper used your Country and your student number [Student No.]. In addition, 
on the blank sheets of paper used for each question, you should enter the 
question number [Question No. : e.g. A-(1)], the progressive number of each 
sheet [Page No.] and the total number of blank sheets that you have used and 
wish to be marked for each question [Total No. of pages]. If you use some 
blank sheets of paper for notes that you do not wish to be marked, put a large 
cross through the whole sheet and do not include them in your numbering. 

6. At the end of the exam please put your answer sheets and graphs in order. 
7. Error bars on graphs are only needed in part A of the experiment. 
8. Caution: Do not look directly into the laser beam. You can damage your 

eyes!! 
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Apparatuses and materials 
1. Available apparatuses and materials are listed in the following table: 
 

Item Apparatus & material Quantity 

 

Item Apparatus & material Quantity 

A Photodetector (PD) 1 I Batteries 2 

B 
Polarizers with 
Rotary mount 

2 J Battery box 1 

C 
90 TN-LC cell (yellow 

wires) with rotary LC mount 
1 K Optical bench 1 

D Function generator 1 L Partially transparent papers 2 

E Laser diode (LD) 1 M Ruler 1 

F Multimeters 2 N 
White tape * 
(for marking on apparatus) 

1 

G 
Parallel LC cell  
(orange wires) 

1 O Scissors 1 

H Variable resistor 1 P Graph papers 10 

* Do not mark directly on apparatus. When needed, stick a piece of the white tape on the parts 
and mark on the white tape.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1 

A 
B B 

H 
F F 

D 

E 

G I 

K 

J 

ON 
OFF 
 

HI 
LO 
 C
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2. Instructions for the multimeter: 
 

‧“DC/AC” switch for selecting DC or AC measurement. 
‧Use the “VΩ” and the “COM” inlets for voltage and resistance measurements. 
‧Use the “mA” and the “COM” inlets for small current measurements. The display then 

shows the current in milliamperes. 
‧Use the function dial to select the proper function and measuring range.  “V” is for 

voltage measurement, “A” is for current measurement and “Ω”is for resistance 
measurement.  

 
 

 

Common  
port 

Voltage & 
Resistance  
port 

Current 
port (mA) 

 

Current 
range 

Voltage 
range 

DC/AC  
switch 

Function 
dial 

Current 
port (mA) 

Resistance 
range 

Common  
port 

Voltage & 
Resistance  
port 

Fig. 2 
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3. Instructions for the Function Generator: 
‧The power button may be pressed for “ON” and pressed again for “OFF” 
‧Select the frequencies range, and press the proper button. 
‧The frequency is shown on the digital display. 
‧Use the coarse and the fine frequency adjusting knobs to tune the proper frequency. 
‧Select the square-wave form by pressing the left most waveform button. 
‧Use the amplitude-adjusting knob to vary the output voltage. 
 

 

Output 
Amplitude 
Adjusting 
knob 

Waveform 
buttons 

Frequency 
Range 
buttons 

Frequency  
display 

Frequency 
Coarse 
Adjusting
knob 

Frequency 
Fine 
Adjusting
knob 

Power 
On/Off 
button 

Output 
connector 

Fig.3 
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Part A: Optical Properties of Laser Diode  
 

I. Introduction 
 
1. Laser Diode 

The light source in this experiment is a laser diode which emits laser light with 
wavelength 650 nm. When the current of the laser diode (LD) is greater than the threshold 
current, the laser diode can emit monochromatic, partially polarized and coherent light. 
When the current in the laser diode is less than the threshold, the emitted light intensity is 
very small. At above the threshold current, the light intensity increases dramatically with 
the current and keeps a linear relationship with the current. If the current increases further, 
then the increasing rate of the intensity with respect to the current becomes smaller because 
of the higher temperature of the laser diode. Therefore, the optimal operating current range 
for the laser diode is the region where the intensity is linear with the current. In general, the 
threshold current Ith is defined as the intersection point of the current axis with the 
extrapolation line of the linear region. 
Caution: Do not look directly into the laser beam. You can damage your eyes!! 

 
2. Photodetector 

The photodetector used in this experiment consists of a photodiode and a current 
amplifier. When an external bias voltage is applied on the photodiode, the photocurrent is 
generated by the light incident upon the diode. Under the condition of a constant 
temperature and monochromatic incident light, the photocurrent is proportional to the light 
intensity. On the other hand, the current amplifier is utilized to transfer the photocurrent 
into an output voltage. There are two transfer ratios in our photodetector – high and low 
gains. In our experiment, only the low gain is used. However, because of the limitation of 
the photodiode itself, the output voltage would go into saturation at about 8 Volts if the 
light intensity is too high and the photodiode cannot operate properly any more. Hence the 
appropriate operating range of the photodetector is when the output voltage is indeed 
proportional to the light intensity. If the light intensity is too high so that the photodiode 
reaches the saturation, the reading of the photodetector can not correctly represent the 
incident light intensity. 

 
 
II. Experiments and procedures 
 
Characteristics of the laser diode & the photodetector 
 

In order to make sure the experiments are done successfully, the optical alignment of 
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light rays between different parts of an experimental setup is crucial. Also the light source 
and the detector should be operated at proper condition. Part A is related to these questions 
and the question of the degree of polarization. 

 

1. Mount the laser diode and photodetector in a horizontal line on the optical bench, as shown 
in Fig. 4. Connect the variable resistor, battery set, ampere meter, voltage meter, laser 
diode and photodetector according to Fig. 5. Adjust the variable resistor so that the current 
passing through LD is around 25 mA and the laser diode emits laser light properly. Choose 
the low gain for the photodetector. Align the laser diode and the photodetector to make the 
laser light level at the small hole on the detector box and the reading of the photodetector 
reaches a maximum value. 
Caution: Do not let the black and the red leads of the battery contact with each other 
to avoid short circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
2. Use the output voltage of the photodetector to represent the laser light intensity J. Adjust 

the variable resistor to make the current I of the laser diode varying from zero to a 
maximum value and measure the J as I increases. Be sure to choose appropriate current 
increment in the measurement. 

 

~60cm 

LD PD 

Fig. 4  Optical setup (LD：laser diode; PD：photodetector). 
 

Fig. 5  Equivalent circuit for the connection of the laser diode. 
 

3V 
 

A 
I 

100Ω LD PD 

V 
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Question A-(1) (1.5 point) 
Measure, tabulate, and plot the J vs. I curve.  

 
Question A-(2) (3.5 points) 
Estimate the maximum current Im with uncertainty in the linear region of the 
J vs. I curve. Mark the linear region on the J - I curve figure by using arrows (↓) and 
determine the threshold current Ith with uncertainty. 

 
3. Choose the current of the laser diode as Ith + 2(Im – Ith)/3 to make sure the laser diode and 

photodetector are operated well. 
4. To prepare for the part B experiment: Mount a polarizer on the optical bench close to the 

laser diode as shown in Fig. 6. Make sure the laser beam passing through the center portion 
of the polarizer. Adjust the polarizer so that the incident laser beam is perpendicular to the 
plane of the polarizer. (Hint: You can insert a piece of partially transparent paper as a test 
screen to check if the incident and reflected light spots coincide with each other.) 

 
 
 
 
 
 
 
 
 

5. Keep the current of the laser diode unchanged, mount a second piece of polarizer on the 
optical bench and make sure proper alignment is accomplished, i.e., set up the source, 
detector and polarizers in a straight line and make sure each polarizer plane is 
perpendicular to the light beam. 

LD PD P 

Fig. 6  Alignment of the polarizer (P：polarizer). 
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 Part B  Optical Properties of Nematic Liquid Crystal : 
Electro-optical switching characteristic of 90o TN LC cell 

 
I. Introduction 
 
1. Liquid Crystal 

Liquid crystal (LC) is a state of matter that is intermediate between the crystalline 
solid and the amorphous liquid. The nematic LCs are organic compounds consist of 
long-shaped needle-like molecules. The orientation of the molecules can be easily aligned 
and controlled by applying an electrical field. Uniform or well prescribed orientation of the 
LC molecules is required in most LC devices. The structure of the LC cell used in this 
experiment is shown in Fig 7. Rubbing the polyimide film can produce a well-aligned 
preferred orientation for LC molecules on substrate surfaces, thus due to the molecular 
interaction the whole slab of LC can achieve uniform molecular orientation. The local 
molecular orientation is called the director of LC at that point.  

The LC cell exhibits the so-called double refraction phenomenon with two principal 
refractive indices. When light propagates along the direction of the director, all polarization 
components travel with the same speed 0/ ncvo = , where no is called the ordinary index of 
refraction. This propagation direction (direction of the director) is called the optic axis of 
the LC cell. When a light beam propagates in the direction perpendicular to the optic axis, 
in general, there are two speeds of propagation. The electric field of the light polarized 
perpendicular (or parallel) to the optic axis travels with the speed of 0/ ncvo = (or 

ee ncv /= , where ne is called the extraordinary index of refraction). The birefringence 
(optical anisotropy) is defined as the difference between the extraordinary and the ordinary 
indices of refraction oe nnn −≡∆ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Glass Substrate 

ITO Electrode 

Glass Substrate 

PI alignment Film 

LC Layer ITO Electrode 

Fig. 7  LC cell structure 
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2. 90o Twisted Nematic LC Cell 
In the 90o twisted nematic (TN) cell shown in Fig. 8, the LC director of the back 

surface is twisted 90o with respect to the front surface. The front local director is set 
parallel to the transmission axis of the polarizer. An incident unpolarized light is converted 
into a linearly polarized light by the front polarizer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When a linearly polarized light traverses through a 90o TN cell, its polarization 

follows the twist of the LC directors (polarized light sees ne only) so that the output beam 
remains linearly polarized except for that its polarization axis is rotated by 90o (it’s called 
the polarizing rotary effect by ne; similarly we can also find polarizing rotary effect by no). 
Thus, for a normally black (NB) mode using a 90o TN cell, the analyzer’s (a second 
polarizer) transmission axis is set to be parallel to the polarizer’s transmission axis, as 
shown in Fig. 9. However, when the applied voltage V across the LC cell exceeds a critical 
value Vc, the director of LC molecules tends to align along the direction of applied external 
electrical field which is in the direction of the propagation of light. Hence, the polarization 
guiding effect of the LC cell is gradually diminishing and the light leaks through the 
analyzer. Its electro-optical switching slope γ is defined as (V90–V10)/V10, where V10 and 
V90 are the applied voltages enabling output light signal reaches up to 10% and 90% of its 
maximum light intensity, respectively.  

 
 
 
 
 

 

PI  Polarizer PI  Analyzer 

LC molecules 

Light 
Propagation 
Direction 

Fig. 8  90o TN LC cell 
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II. Experiments and procedures 
 
1. Setup a NB 90o TN LC mode between two polarizers with parallel transmission axes and 

apply 100 Hz square wave voltage using a function generator onto the ITO portions of two 
glass substrates and vary the applied voltage (Vrms) from 0 to 7.2 Volts.  
* In the crucial turning points, take more data if necessary. 

 
Question B-(1) (5.0 points) 
Measure, tabulate, and plot the electro-optical switching curve (J  vs. Vrms curve) of the 
NB 90o TN LC, and find its switching slope γ, where γ is defined as (V90–V10)/V10. 

 
 

Question B-(2) (2.5 points) 
Determine the critical voltage Vc of this NB 90o TN LC cell.  Show explicitly with graph 
how you determine the value Vc.  
Hint:* When the external applied voltage exceeds the critical voltage, the light 
transmission increases rapidly and abruptly.  

Fig. 9  NB mode operation of a 90o TN cell 

NB operation 

Z 

Polarizer 90o TN-LC 

E 

Analyzer 
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Part C  Optical Properties of Nematic Liquid Crystal : 
Electro-optical switching characteristic of parallel aligned LC cell 

 
I. Introduction 

Homogeneous Parallel-aligned LC Cell 
For a parallel-aligned LC cell, the directors in the front and back substrates are 

parallel with each other, as shown in Fig. 10. When a linearly polarized light impinges on a 
parallel-aligned cell with its polarization parallel to the LC director (rubbing direction), a 
pure phase modulation is achieved because the light behaves only as an extraordinary ray.  

 
 
 
 
 
 
 

 
 
 

 
On the other hand, if a linearly polarized light is normally incident onto a parallel 

aligned cell but with its polarization making o45=θ  relative to the direction of the 
aligned LC directors (Fig. 11), then phase retardation occurs due to the different 
propagating speed of the extraordinary and ordinary rays in the LC medium. In this 

o45=θ  configuration, when the two polarizers are parallel, the normalized transmission 
of a parallel aligned LC cell is given by 

2
cos2

||

δ
=T  

The phase retardation δ is expressed as  

λλπδ /),(2 Vnd ∆=  

where d is the LC layer thickness,  λ is the wavelength of light in air, V is the root mean 
square of applied AC voltage, and Δn, a function of λ and V, is the LC birefringence. It 
should be also noted that, at V = 0,  Δn (= ne–no) has its maximum value, so does δ. Also 
Δn decreases as V increases. 

In the general case, we have 

2
sin2sin1 22

//
δθ−=T  

LC molecule 

Glass substrate (ITO+PI) 

Fig. 10  Homogeneous parallel aligned LC 
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2
sin2sin 22 δθ=⊥T  

where // and ⊥  represent that the transmission axis of analyzer is parallel and 
perpendicular to that of the polarizer, respectively. 

 
II. Experiments and procedures 
 

1. Replace NB 90o TN LC cell with parallel-aligned LC cell. 
2. Set up θ= 45o configuration at V = 0 as shown in Fig. 11. Let the analyzer’s transmission 

axis perpendicular to that of the polarizer, then rotate the parallel-aligned LC cell until the 
intensity of the transmitted light reaches the maximum value ( ⊥T ). This procedure 
establishes the θ = 45o configuration. Take down ⊥T value, then, measure the intensity of 
the transmitted light ( //T ) of the same LC cell at the analyzer’s transmission axis parallel to 

that of the polarizer (also at V = 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question C-(1) (2.5 points) 
Assume that the wavelength of laser light 650 nm, LC layer thickness 7.7 μm, and 
approximate value of Δn ≈ 0. 25 are known. From the experimental data T⊥  and 

T‖obtained above, calculate the accurate value of the phase retardation δ and accurate 
value of birefringence Δn of this LC cell at V=0.  

 

Fig. 11  Schematic diagram of experimental setup 
(The arrow L is the alignment direction.) 

Homogeneous 
Parallel Aligned  
LC cell        
    

λ VAC 

For T// 

For T⊥ Analyzer 
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P 
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3. Similar to the above experiment (1), in the θ= 45o configuration, apply 100 Hz square 
wave voltage using a function generator onto the ITO portions of two glass substrates, vary 
the applied voltage (Vrms) from 0 to 7 Volts and measure the electro-optical switching 
curve (T‖) at the analyzer’s transmission axis parallel to the polarizer’s transmission axis. 
(Hint: Measuring the T⊥ switching curve is helpful to increase the data accuracy of the 
above T‖ measurement; the data of T⊥ are not needed in the following questions. ) 
* In the crucial turning points, take more data if necessary (especially in the range of 

0.5-4.0 Volts). 
 

Question C-(2) (3.0 points) 
Measure, tabulate, and plot the electro-optical switching curve for T‖ of this parallel 
aligned LC cell in the θ = 45o configuration. 

 
Question C-(3) (2.0 points) 
From the electro-optical switching data, find the value of the external applied voltage Vπ. 
Hint: * Vπ is the applied voltage which enables the phase retardation of this anisotropic 

LC cell become π (or 180o). 
* Remember that Δn is a function of applied voltage, and Δn decreases as V 

increases.  
* Interpolation is probably needed when you determine the accurate value of this Vπ. 
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Solution to Theoretical Question 1 
 

A Swing with a Falling Weight 

Part A 
(a) Since the length of the string θRsL +=  is constant, its rate of change must be zero. 

Hence we have 
0=+ θ Rs                              (A1) 

(b) Relative to O, Q moves on a circle of radius R with angular velocity θ , so 

tstRvQ
ˆˆ




 −== θ                           (A2) 

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval ∆t 
is ttsrstsrsr ∆+−=∆+−∆=′∆ ]ˆ)ˆ)([(ˆ)()ˆ)(( 



 θθ . It follows 

tsrsv ˆˆ 



 +−=′ θ                            (A3) 

 
 
 
 
 
 
 
 
 
 
(d) The velocity of the particle relative to O is the sum of the two relative velocities given in 

Eqs. (A2) and (A3) so that 

rstRtsrsvvv Q ˆˆ)ˆˆ( θθθ 





 −=++−=+′=                (A4) 

(e) Refer to Fig. A2. The ( t̂− )-component of the velocity change v∆  is given 
by tvvvt ∆=∆=∆⋅− θθ 

)ˆ( . Therefore, the t̂ -component of the acceleration tva ∆∆= /  
is given by θvat −=⋅ ˆˆ . Since the speed v of the particle is θs  according to Eq. (A4), 
we see that the t̂ -component of the particle’s acceleration  at P is given by 

2)(ˆ θθθθ 

 ssvta −=−=−=⋅                        (A5) 

 
 
 
 
 
 

t̂  

Q 

r̂−  

s 

s+∆s ∆θ 
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P 

Figure A1 
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Note that, from Fig. A2, the radial component of the acceleration may also be obtained as 

dtsddtdvra /)(/ˆ θ −=−=⋅ . 

(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by mghU −= . 
It may be expressed in terms of s and θ  as 

]sin)cos1([)( θθθ sRmgU +−−=                  (A6) 
 
 
 
 
 
 
 
 
 
(g) At the lowest point of its trajectory, the particle’s gravitational potential energy  U must 

assume its minimum value Um

mθ
. By differentiating Eq. (A6) with respect to θ and using 

Eq. (A1), the angle  corresponding to the minimum gravitational energy can be 
obtained. 

[ ]
θ

θθθ

θθ
θ

θ
θ

cos
cossin)(sin

cossinsin

mgs
sRRmg

s
d
dsRmg

d
dU

−=
+−+−=







 ++−=

 

At mθθ = , 0=
m

d
dU

θθ
. We have

2
πθ =m . The lowest point of the particle’s trajectory is 

shown in Fig. A4 where the length of the string segment of QP is s = L−πR /2. 
 
 
 
 
 
 
 
 
 
 

From Fig. A4 or Eq. (A6), the minimum potential energy is then 
( ) )]2/([2/ RLRmgUUm ππ −+−==                  (A7) 

Initially, the total mechanical energy E is 0. Since E is conserved, the speed  vm of the 
particle at the lowest point of its trajectory must satisfy 

R 

x 

O 

s 

A 

Q 

P  Figure A4 
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mm UmvE +== 2
2
10                           (A8) 

From Eqs. (A7) and (A8), we obtain 

)]2/([2/2 RLRgmUv mm π−+=−=                 (A9) 

 

Part B 
(h) From Eq. (A6), the total mechanical energy of the particle may be written as 

]sin)cos1([
2
1)(

2
10 22 θθθ sRmgmvUmvE +−−=+==          (B1) 

From Eq. (A4), the speed v is equal to θs . Therefore, Eq. (B1) implies 

]sin)cos1([2)( 22 θθθ sRgsv +−==                   (B2) 

Let T be the tension in the string. Then, as Fig. B1 shows, the t̂ -component of the net 
force on the particle is –T + mg sin θ . From Eq. (A5), the tangential acceleration of the 
particle is )( 2θs− . Thus, by Newton’s second law, we have 

θθ sin)( 2 mgTsm +−=−                          (B3) 
 
 
 
 
 
 
 
 
 
 
 
 

According to the last two equations, the tension may be expressed as 

))(sin(2

)sin)]((
2
3

2
[tan2

]sin3)cos1(2[)sin(

21

2

θ

θθθ

θθθθ

yy
s

mgR
R
L

s
mgR

sR
s

mggsmT

−=

−−=

+−=+= 

          (B4) 

 
The functions )2/tan(1 θ=y  and 2/)/(32 RLy −= θ  are plotted in Fig B2. 
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at 
which .y2 = y1 sθ is called ( πθπ 2<< s ) and is given by 

2
tan)(

2
3 s

s R
L θ

θ =−                          (B5) 

or, equivalently, by 

2
tan

3
2 s

sR
L θ

θ −=                           (B6) 

Since the ratio L/R is known to be given by 

)
8

(
2
1tan

3
2)

8
(

16
cot

3
2

8
9 ππππππ +−+=+=

R
L               (B7) 

one can readily see from the last two equations that 8/9πθ =s . 

 
Table B1 shows that the tension T must be positive (or the string must be taut and straight) 
in the angular range 0<θ  < θ s. Once θ  reaches θ s, the tension T becomes zero and the 
part of the string not in contact with the rod will not be straight afterwards. The shortest 
possible value smin sθθ = for the length s of the line segment QP therefore occurs at and 
is given by 

Table B1 

 )( 21 yy −  θsin   tension T 

πθ <<0  positive positive positive 
πθ =  + ∞ 0 positive 

sθθπ <<  negative negative positive 

sθθ =  zero negative zero 
πθθ 2<<s  positive negative negative 

Figure B2 
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RRRRLs s 352.3
16

cot
3

2)
8

9
16

cot
3
2

8
9(min ==−+=−= ππππθ         (B8) 

When sθθ = , we have T = 0 and Eqs. (B2) and (B3) then leads to ss gsv θsinmin
2 −= . 

Hence the speed  v s

gR

gRgRgsv ss

133.1
16

cos
3

4
8

sin
16

cot
3

2sinmin

=

==−= πππθ

 is 

         (B9) 

 
(i) When sθθ ≥ , the particle moves like a projectile under gravity. As shown in Fig. B3, it is 

projected with an initial speed  v s ),( ss yxP = from the position  in a direction making 
an angle )2/3( sθπφ −= with the y-axis. 
The speed Hv of the particle at the highest point of its parabolic trajectory is equal to the 
y-component of its initial velocity when projected. Thus, 

gRgRvv ssH 4334.0
8

sin
16

cos
3

4)sin( ==−= πππθ          (B10) 

The horizontal distance H traveled by the particle from point P to the point of maximum 
height is 

R
g

v
g

v
H sss 4535.0

4
9sin

22
)(2sin 22

==
−

= ππθ
              (B11) 

 
 
 
 
 
 
 
 
 
 
 

The coordinates of the particle when sθθ = are given by 

RsRsRx sss 358.0
8

sin
8

cossincos minmin =+−=−= ππθθ         (B12) 

RsRsRy sss 478.3
8

cos
8

sincossin minmin −=−−=+= ππθθ        (B13) 

Evidently, we have )(|| HRys +> . Therefore the particle can indeed reach its maximum 
height without striking the surface of the rod. 
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Part C 
(j) Assume the weight is initially lower than O by h as shown in Fig. C1. 
 
 
 
 
 
 
 
 
 

When the weight has fallen a distance D and stopped, the law of conservation of total 
mechanical energy as applied to the particle-weight pair as a system leads to 

)( DhMgEMgh +−′=−                         (C1) 
where E′ is the total mechanical energy of the particle when the weight has stopped. It 
follows 

MgDE =′                               (C2) 
Let Λ be the total length of the string. Then, its value at θ = 0 must be the same as at any 
other angular displacement θ. Thus we must have 

)()
2

(
2

DhRshRL ++++=++= πθπΛ                 (C3) 

Noting that D = α L and introducing ℓ = L−D, we may write 
LDL )1( α−=−=                              (C4) 

From the last two equations, we obtain 
θθ RRDLs −=−−=                            (C5) 

After the weight has stopped, the total mechanical energy of the particle must be 
conserved. According to Eq. (C2), we now have, instead of Eq. (B1), the following 
equation: 

[ ]θθ sin)cos1(
2
1 2 sRmgmvMgDE +−−==′              (C6) 

The square of the particle’s speed is accordingly given by 





 +−+== θθθ sin)cos1(22)( 22

R
sgR

m
MgDsv              (C7) 

Since Eq. (B3) stills applies, the tension T of the string is given by 

)(sin 2θθ smmgT −=+−                        (C8) 
From the last two equations, it follows 
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s
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             (C9) 

where Eq. (C5) has been used to obtain the last equality. 
We now introduce the function 

θθθθ sin
2
3cos1)( 






 −+−=

R
f                      (C10) 

From the fact RDL >>−= )( , we may write 

)sin(1cossin
2
31)( φθθθθ −+=−+≈ A

R
f                (C11) 

where we have introduced 
2)

2
3(1

R
A +=  ,  






= −

3
2tan 1 Rφ                   (C12) 

From Eq. (C11), the minimum value of f(θ) is seen to be given by 
2

min 2
3111 






+−=−=

R
Af                       (C13) 

Since the tension T remains nonnegative as the particle swings around the rod, we have 
from Eq. (C9) the inequality 

0
2
311)( 2

min ≥





+−+

−
=+

RmR
LMf

mR
MD                (C14) 

or 
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++






≥+
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ML
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2
311

2
            (C15) 

From Eq. (C4), Eq. (C15) may be written as 

)1(
2
31 α−






 +≥+








R
L

mR
ML

mR
ML                     (C16) 

Neglecting terms of the order (R/L) or higher, the last inequality leads to 

m
M

m
M

L
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R
L

mR
ML

R
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mR
ML

mR
ML

3
21

1

1
3
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21

2
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1
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1
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+
≈
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−
=
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−
=







 +
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−≥α           (C17) 

The critical value for the ratio D/L is therefore 

m
Mc

3
21

1

+
=α                            (C18) 
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Marking Scheme 
 

Theoretical Question 1 
A Swing with a Falling Weight 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.3 pts. 

(a) 
 

0.5 

Relation between θ and s .  ( θ Rs −= )            
 0.2 for θ∝ s . 
 0.3 for proportionality constant (-R). 

(b) 
 

0.5 

Velocity  of Q relative to O.  ( tRvQ
ˆθ = )            

 0.2 for magnitude Rθ . 
 0.3 for direction t̂ . 

(c) 
 

0.7 

Particle’s velocity  at P relative to Q. ( tsrsv ˆˆ 



 +−=′ θ )    
 0.2+0.1 for magnitude and direction of r̂ -component. 
 0.3+0.1 for magnitude and direction of t̂ -component. 

(d) 
0.7 

Particle’s velocity  at P relative to O.  ( rsvvv Q ˆθ −=+′= ) 
 0.3 for vector addition of v ′  and Qv . 
 0.2+0.2 for magnitude and direction of v . 

(e) 
 

0.7 

t̂ -component of particle’s acceleration at P. 
 0.3 for relating a  or ta ˆ⋅  to the velocity in a way that implies 

svta /|ˆ| 2=⋅ . 
 0.4 for 2ˆ θ sta −=⋅  (0.1 for minus sign.) 

(f) 
 

0.5 

Potential energy U. 
 0.2 for formula mghU −= . 
 0.3 for θθ sin)cos1( sRh +−=  or U as a function of θ, s, and R. 

(g) 
 

0.7 

Speed at lowest point vm.  
 0.2 for lowest point at 2/πθ =  or U equals minimum Um. 
 0.2 for total mechanical energy 02/2 =+= mm UmvE . 

 0.3 for )]2/([2/2 RLRgmUv mm π−+=−= . 
Part B 

 
4.3 pts. 

(h) 
 

2.4 

Particle’s speed  vs when QP is shortest. 
 0.4 for tension T becomes zero when QP is shortest. 

 0.3 for equation of motion )(sin 2θθ smmgT −=+− . 

 0.3 for ]sin)cos1([2/)(0 2 θθθ sRmgsmE +−−==  . 

 0.4 for 
2

tan)(
2
3 s

s R
L θ

θ =− . 

 0.5 for 8/9πθ =s . 

 0.3+0.2  for gRgRvs 133.116/cos3/4 == π  
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(i) 
 

1.9 

The speed vH of the particle at its highest point. 
 0.4 for particle undergoes projectile motion when sθθ ≥ . 
 0.3 for angle of projection )2/3( sθπφ −= . 
 0.3 for Hv  is the y-component of its velocity at sθθ = . 
 0.4 for noting particle does not strike the surface of the rod. 
 0.3+0.2 for 

gRgRvH 4334.0)8/sin()16/cos(3/4 == ππ . 
Part C 

 
3.4 pts 

(j) 
 

3.4 

The critical value cα  of the ratio D/L. 
 0.4 for particle’s energy MgDE =′  when the weight has stopped. 
 0.3 for θRDLs −−= . 
 0.3 for ]sin)cos1([2/2 θθ sRmgmvMgDE +−−==′ . 

 0.3 for )(sin 2θθ smmgT −=+− . 
 0.3 for concluding T must not be negative. 
 0.6 for an inequality leading to the determination of the range of D/L. 
 0.6 for solving the inequality to give the range of α = D/L. 
 0.6 for )3/21( mMc +=α . 
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Solution to Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 

Part A 
(a) Refer to Figure A1. The left face of the rod moves a distance v∆t while the pressure wave 

travels a distance u∆t with ρ/Yu = . The strain at the left face is 

u
v

tu
tvS −=−==

∆
∆∆



                         (A1a) 

From Hooke’s law, the pressure at the left face is 

uv
u
vYYSp ρ==−=                         (A1b) 

 
 
 
 
 
 
 
 
 
 
(b) The velocity v is related to the displacement ξ as in a simple harmonic motion (or a 

uniform circular motion, as shown in Figure A2) of angular frequency ku=ω . Therefore, 
if )(sin),( 0 tuxktx −= ξξ , then 

)(cos),( 0 tuxkkutxv −−= ξ .                          (A2) 
The strain and pressure are related to velocity as in Problem (a). Hence, 

)(cos/),(),( 0 tuxkkutxvtxS −=−= ξ                   (A3) 

)(cos),(
)(cos),(),(

0

0
2

tuxkkYtxYS
tuxkuktxuvtxp

−−=−=
−−==

ξ
ξρρ               (A4) 

--------------------------------------------------------------------------- 
Alternatively, the answers may be obtained by differentiations: 

)(cos),( 0 tuxkku
t

txv −−== ξ
∆
ξ∆ , 

)(cos),( 0 tuxkk
x

txS −== ξ
∆

ξ∆ , 

)(cos),( 0 tuxkkY
x

Ytxp −−=−= ξ
∆

ξ∆ . 

------------------------------------------------------------------------------ 

p 

u∆t 

t=0 

∆t/2 p p Figure A1 

v∆t 

∆t p p 

ξ 
kx−ω t 

v 

x 

0ξ  

Figure A2 
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Part B 
(c) Since the angular frequency ω and speed of propagation u are given, the wavelength  is 

given by λ = 2π / k with k = ω / u. The spatial variation of the displacement ξ is therefore 
described by 







 −+






 −=

2
cos

2
sin)( 21

bxkBbxkBxg                  (B1) 

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This leads to 
B2 = 0. Given that the maximum of g(x) is 1, we have B1







 −±=

2
sin)( bx

u
xg ω

 = ±1 and 

                         (B2) 

Thus, the displacement is 

tbx
u

tx ωωξξ cos
2

sin2),( 0 





 −±=                   (B3) 

 
(d) Since the pressure p (or stress T ) must vanish at the end faces of the quartz slab (i.e., x = 0 

and x = b), the answer to this problem can be obtained, by analogy, from the resonant 
frequencies of sound waves in an open pipe of length b. However, given that the centers 
of the electrodes are stationary, all even harmonics of the fundamental tone must be 
excluded because they have antinodes, rather than nodes, of displacement at the bisection 
plane of the slab. 

Since the fundamental tone has a wavelength  λ = 2b, the fundamental frequency is 
given by )2/(1 buf = . The speed of propagation u is given by 

3
3

10
1045.5

1065.2
1087.7 ×=

×
×==

ρ
Yu m/s                 (B4) 

and, given that b =1.00×10-2

)kHz(273
21 ==
b

uf

 m, the two lowest standing wave frequencies are 

, )kHz(818
2
33 13 ===
b
uff           (B5) 

-------------------------------------------------------------------------------------------------------------- 
[Alternative solution to Problems (c) and (d)]: 

A longitudinal standing wave in the quartz slab has a displacement node at x = b/2. It 
may be regarded as consisting of two waves traveling in opposite directions. Thus, its 
displacement and velocity must have the following form 

tbxk

utbxkutbxktx

m

m

ωξ

ξξ

cos
2

sin2

2
sin

2
sin),(







 −=















 +−+






 −−=

               (B6) 

tbxk

utbxkutbxkkutxv

m

m

ωωξ

ξ

sin
2

sin2

2
cos

2
cos),(







 −−=















 +−−






 −−−=

           (B7) 

where ω  = k u and the first and second factors in the square brackets represent waves 
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traveling along the +x and –x directions, respectively. Note that Eq. (B6) is identical to Eq. 
(B3) if we set ξ m = ±ξ 0

For a wave traveling along the –x direction, the velocity v must be replaced by –v in 
Eqs. (A1a) and (A1b) so that we have 

. 

u
vS −=  and uvp ρ=     (waves traveling along +x)       (B8) 

u
vS =   and uvp ρ−=    (waves traveling along –x)       (B9) 

As in Problem (b), the strain and pressure are therefore given by 

tbxkk

utbxkutbxkktxS

m

m

ωξ

ξ

cos
2

cos2

2
cos

2
cos),(







 −=















 +−−






 −−−−=

          (B10) 

tbxku

utbxkutbxkutxp

m

m

ωωξρ

ωξρ

cos
2

cos2

2
cos

2
cos),(







 −−=















 +−+






 −−−=

        (B11) 

Note that v, S, and p may also be obtained by differentiating ξ as in Problem (b). 
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the slab at all 

times because they are free. From Eq. (B11), this is possible only if 0)2/cos( =kb or 

,5,3,1,2
==== nnb

f
fb

u
kb π

λ
πω           (B12) 

In terms of wavelength λ, Eq. (B12) may be written as 

,5,3,1,2 == n
n
bλ .                     (B13) 

The frequency is given by 

,5,3,1,
22

==== nY
b
n

b
nuuf

ρλ
.          (B14) 

This is identical with the results given in Eqs. (B4) and (B5). 
-------------------------------------------------------------------------------------------------------------- 

 
(e) From Eqs. (5a) and (5b) in the Question, the piezoelectric effect leads to the equations 

)( EdSYT p−=                              (B15) 

E
d

YSYd
T

p
Tp 










−+=

ε
εσ

2

1                     (B16) 

Because x = b/2 must be a node of displacement for any longitudinal standing wave in the 
slab, the displacement ξ and strain S must have the form given in Eqs. (B6) and (B10), i.e., 
with ku=ω , 

)cos(
2

sin),( φωξξ +





 −= tbxktx m                    (B17) 
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)cos(
2

cos),( φωξ +





 −= tbxkktxS m                   (B18) 

where a phase constant φ is now included in the time-dependent factors. 
By assumption, the electric field E between the electrodes is uniform and depends only 

on time: 

h
tV

h
tVtxE m ωcos)(),( ==                       (B19) 

Substituting Eqs. (B18) and (B19) into Eq. (B15), we have 









−+






 −= tV

h
d

tbxkkYT m
p

m ωφωξ cos)cos(
2

cos           (B20) 

The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times because they 
are free. This is possible only if φ  = 0 and 

h
Vdkbk m

pm =
2

cosξ                          (B21) 

Since φ  = 0, Eqs. (B16), (B18), and (B19) imply that the surface charge density must have 
the same dependence on time t and may be expressed as 

txtx ωσσ cos)(),( =                         (B22) 
with the dependence on x given by 

h
Vd

Ybxkkb
d

Y

h
Vd

YbxkkYdx

m

T

p
T

p

m

T

p
Tmp



























−+






 −=
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 −=

ε
ε

ε
εξσ

22

2

1
2

cos

2
cos

1
2

cos)(

            (B23) 

 
(f) At time t, the total surface charge Q(t) on the lower electrode is obtained by integrating 

),( txσ in Eq. (B22) over the surface of the electrode. The result is 
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22
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αα

εε
ε

ε
ε

σσ
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C

d
Ykb
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d

Y
h

bw

dx
d

Ybxkkb
d

Y
h
w

dxwx
V

wdxtx
tVtV

tQ

T

p

T

p
T

b

T

p
T

p

b

m
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          (B24) 

where  

h
bwC Tε=0 ,   3

222
2 1082.9

06.427.1
10)25.2( −

−

×=
×

×
==

T

pd
Y

ε
α         (B25) 

(The constant α is called the electromechanical coupling coefficient.) 
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Note: The result C 0 = ε T 

xx ≈tan
bw/ h can readily be seen by considering the static limit k = 0 

of Eq. (5) in the Question. Since  when x << 1, we have 

0
22

0
0

)]1([)(/)(lim CCtVtQ
k

=−+≈
→

αα                (B26) 

Evidently, the constant C 0 is the capacitance of the parallel-plate capacitor formed by the 
electrodes (of area bw) with the quartz slab (of thickness h and permittivity ε T) serving as 
the dielectric medium. It is therefore given by ε T bw / h. 
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Marking Scheme 
 

Theoretical Question 2 
A Piezoelectric Crystal Resonator under an Alternating Voltage 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.0 pts. 

(a) 
 

1.6 

The strain S and pressure p on the left face. 
 0.4 for |∆ℓ| = v∆t and ℓ = u∆t. 
 0.4 for S = -v/u.                    (0.1 for sign) 
 0.4 for relating p to S as p = −YS.      (0.1 for sign) 
 0.4 for p = ρu v .                    (0.1 for sign) 

(b) 
 

2.4 

The velocity v(x, t), strain S(x, t), and pressure p(x, t). 
 0.3×3 sinusoidal variation with correct phase constant. (0.2 for phase 

constant.) 
 0.3×3 for amplitude. 
 0.2×3 for dependence on x and t as (kx- ku t). 

Part B 
 

6.0 pts 

(c) 
 

1.2 

The function g(x) for a standing wave of angular frequency ω. 
 0.4 for g(b/2) = 0. 
 0.3+0.1 for B1=±1 (0.1 for both signs) 
 0.4 for B2 = 0  

(d) 
 

1.2 

The two lowest standing wave frequencies. 
 0.2 for wavelength of fundamental tone λ = 2b. 
 0.2 for excluding even harmonics. 
 (0.3+0.1) for f1 = u/2b = 273 kHz.      (0.1 for value) 
 (0.3+0.1) for f3 = 3u/2b = 818 kHz.     (0.1 for value) 

(e) 
 

2.2 

The surface charge density σ  as a function of x and t. 
 0.1×2 for ξ  and S, each a separable function of x and t. 
 0.1×2 for ξ and S, each depends on time as cos ω t with φ = 0. 
 0.3 for spatial part )2/(sin)( bxkx m −= ξξ . 
 0.3 for spatial part )2/(cos)( bxkkxS m −= ξ . 
 0.3 for YhVdbxkkxT mpm ]/)2/(cos[)( −−= ξ . 
 0.3 for hVdkbk mpm /)2/cos( =ξ . 
 0.6 for D1 (0.3) and D2 (0.3) in )(xσ . 

(f) 
 

1.4 

The constants C0 and 2α . 
 0.2 for relation between σ and Q as 

Q(t) = ( ∫
b dxwx0 )(σ ) cos ω t. 

 0.3 for noting Q(t)/V(t) ≈ C0 as k → 0. 
 0.4 for C0 = ε T bw / h. 
 0.4+0.1 for 322 1082.9/ −×== TpYd εα . (0.1 for value) 
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Solution toTheoretical Question 3 
Part A 

Neutrino Mass and Neutron Decay 
 

(a) Let ),( 2
ee qcEc  , ),( 2

pp qcEc  , and ),( 2
vv qcEc  be the energy-momentum 4-vectors of the 

electron, the proton, and the anti-neutrino, respectively, in the rest frame of the neutron. 
Notice that νν qqqEEE pepe

 ,,,,,  are all in units of mass. The proton and the anti-neutrino 

may be considered as forming a system of total rest mass cM , total energy cEc2 , and 
total momentum cqc . Thus, we have 

vpc EEE += ,     vpc qqq  += ,     222
ccc qEM −=           (A1) 

Note that the magnitude of the vector cq  is denoted as qc. The same convention also 
applies to all other vectors. 

Since energy and momentum are conserved in the neutron decay, we have 

nec mEE =+                              (A2) 

ec qq  −=                               (A3) 
When squared, the last equation leads to the following equality 

2222
eeec mEqq −==                           (A4) 

From Eq. (A4) and the third equality of Eq. (A1), we obtain 

2222
eecc mEME −=−                          (A5) 

With its second and third terms moved to the other side of the equality, Eq. (A5) may be 
divided by Eq. (A2) to give 

)(1 22
ec

n
ec mM

m
EE −=−                       (A6) 

As a system of coupled linear equations, Eqs. (A2) and (A6) may be solved to give 

)(
2

1 222
cen

n
c Mmm

m
E +−=                      (A7) 

)(
2

1 222
cen

n
e Mmm

m
E −+=                      (A8) 

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as 

))()()((
2

1

)2()(
2

1 22222

cencencencen
n

encen
n

e

MmmMmmMmmMmm
m

mmMmm
m

q

−−+−−+++=

−−+=
    (A9) 

Eq. (A8) shows that a maximum of eE  corresponds to a minimum of 2
cM . Now the 

rest mass cM  is the total energy of the proton and anti-neutrino pair in their center of 

mass (or momentum) frame so that it achieves the minimum 
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( ) vpc mmMM +==min                       (A10) 

when the proton and the anti-neutrino are both at rest in the center of mass frame. Hence, 
from Eqs. (A8) and (A10), the maximum energy of the electron E = c2Ee is 
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When Eq. (A10) holds, the proton and the anti-neutrino move with the same velocity vm 
of the center of mass and we have 
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where the last equality follows from Eq. (A3). By Eqs. (A7) and (A9), the last expression 
in Eq. (A12) may be used to obtain the speed of the anti-neutrino when E = Emax. Thus, 
with M = mp+mv, we have 
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------------------------------------------------------------------------------------------------------ 
[Alternative Solution] 

Assume that, in the rest frame of the neutron, the electron comes out with momentum 

eqc  and energy c2Ee, the proton with pqc  and pEc2 , and the anti-neutrino with vqc  and 

vEc2 . With the magnitude of vector αq  denoted by the symbol qα, we have 

222
ppp qmE += ,   222

vvv qmE += ,   222
eee qmE +=             (1A) 

Conservation of energy and momentum in the neutron decay leads to 

envp EmEE −=+                            (2A) 

 evp qqq  −=+                              (3A) 

When squared, the last two equations lead to 

222 )(2 envpvp EmEEEE −=++                       (4A) 

22222 2 eeevpvp mEqqqqq −==⋅++                       (5A) 

Subtracting Eq. (5A) from Eq. (4A) and making use of Eq. (1A) then gives 

enenvpvpvp EmmmqqEEmm 2)(2 2222 −+=⋅−++                (6A) 

or, equivalently, 
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)(22 2222
vpvpvpenen qqEEmmmmEm  ⋅−−−−+=                (7A) 

If θ  is the angle between pq  and vq , we have vpvpvp qqqqqq ≤=⋅ θcos  so that Eq. (7A) 
leads to the relation 

)(22 2222
vpvpvpenen qqEEmmmmEm −−−−+≤               (8A) 

Note that the equality in Eq. (8A) holds only if θ = 0, i.e., the energy of the electron c2Ee takes 
on its maximum value only when the anti-neutrino and the proton move in the same direction. 

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron be 
pcβ  and vcβ , respectively. We then have ppp Eq β=  and vvv Eq β= . As shown in Fig. 

A1, we introduce the angle φ v ( 2/0 πφ <≤ v ) for the antineutrino by 

vvv mq φtan= ,   vvvvv mqmE φsec22 =+= ,   vvvv Eq φβ sin/ ==      (9A) 

 
 
 
 
 

Similarly, for the proton, we write, with 2/0 πφ <≤ p , 

ppp mq φtan= ,  ppppp mqmE φsec22 =+= ,  pppp Eq φβ sin/ ==    (10A) 

Eq. (8A) may then be expressed as 
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The factor in parentheses at the end of the last equation may be expressed as 
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and clearly assumes its minimum possible value of 1 when φp = φ v, i.e., when the 
anti-neutrino and the proton move with the same velocity so that β p = β v. Thus, it follows 
from Eq. (11A) that the maximum value of Ee is 
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and the maximum energy of the electron E = c2Ee is 
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Ev 

mv 

qv 

φ v Figure A1 



 

 30 

When the anti-neutrino and the proton move with the same velocity, we have, from Eqs. 
(9A), (10A), (2A) ,(3A), and (1A), the result 
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Substituting the result of Eq. (13A) into the last equation, the speed vm of the anti-neutrino 
when the electron attains its maximum value Emax is, with M = mp+mv, given by 
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------------------------------------------------------------------------------------------------------ 
Part B 

Light Levitation 
 

(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and leads to 

tin θθ sinsin =                            (B1) 

Neglecting terms of the order (δ /R)3or higher in sine functions, Eq. (B1) becomes 
tin θθ ≈                               (B2) 

For the triangle ∆FAC in Fig. B1, we have 
 

iiiit nn θθθθθβ )1( −=−≈−=        (B3) 
 

Let 0f  be the frequency of the incident light. If pn  
is the number of photons incident on the plane surface per 
unit area per unit time, then the total number of photons 
incident on the plane surface per unit time is 2πδpn . The 
total power P of photons incident on the plane surface is 

))(( 0
2 hfn pπδ , with h being Planck’s constant. Hence, 

0
2hf
Pn p

πδ
=               (B4) 

The number of photons incident on an annular disk of 
inner radius r and outer radius r +dr on the plane surface 
per unit time is )2( rdrn p π , where ii RRr θθ ≈= tan . 

Therefore, 

iipp dRnrdrn θθππ )2()2( 2≈                        (B5) 

The z-component of the momentum carried away per unit time by these photons when 

F 

β  

A 

δ  

θ t 

θ i 

θ i 

C 

Fig. B1 

z 

n 



 

 31 

refracted at the spherical surface is 
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so that the z-component of the total momentum carried away per unit time is 
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where imim R
θδθ ≈=tan . Therefore, by the result of Eq. (B5), we have 
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The force of optical levitation is equal to the sum of the z-components of the forces exerted 
by the incident and refracted lights on the glass hemisphere and is given by 

c
P

R
n

R
n

c
P

c
PF

c
P

z 2

22

2

22

4
)1(

4
)1(1)( δδ −

=






 −
−−=−+             (B9) 

Equating this to the weight mg of the glass hemisphere, we obtain the minimum laser 
power required to levitate the hemisphere as 
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Marking Scheme 
 

Theoretical Question 3 
Neutrino Mass and Neutron Decay 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.0 pts. 

(a) 
 

4.0 

The maximum energy of the electron and the corresponding speed of the 
anti-neutrino. 
 0.5 use energy-momentum conservation and can convert it into 

equations. 
 0.5 obtain an expression for eE  that allows the determination of its 

maximum value. 
 (0.5+0.2) for concluding that proton and anti-neutrino must move 

with the same velocity when eE  is maximum. (0.2 for the same 
direction) 

 0.6 for establishing the minimum value of )( vpvp qqEE 

⋅−  to be 

vpmm  or a conclusion equivalent to it. 
 (0.5+0.1) for expression and value of Emax. 

 0.5 for concluding )/(22
eneev EmmE −−=β . 

 (0.5+0.1) for expression and value of vm /c. 
 
 
 

Light Levitation 
Part B 

 
4.0 pts 

(b) 
 

4.0 

Laser power needed to balance the weight of the glass hemisphere. 
 0.3 for law of refraction tin θθ sinsin = . 
 0.3 for making the linear approximation tin θθ ≈ . 
 0.4 for relation between angles of deviation and incidence. 
 0.3 for photon energy ε = hν. 
 0.3 for photon momentum p = ε /c. 
 0.3 for momentum of incident photons per unit time = P/c. 
 0.6 for momentum of photons refracted per unit time as a function of 

the angle of incidence. 
 0.4 for total momentum of photons refracted per unit time = 

[1-(n-1)2δ 2/(4R2)]P/c. 
 0.4 for force of levitation = sum of forces exerted by incident and 

refracted photons. 
 0.4 for force of levitation = (n-1)2δ 2P/(4cR 2). 
 0.3 for the needed laser power P = 4mgcR 2/(n-1)2δ 2. 
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Solutions to Experimental Problems 
 
Part A: Optical Properties of Laser Diode  
 

 
 

 
 
a. Data (0.3 pts.) : Proper data table marked with variables and units.  
Table A-(1): Data for J vs. I. 

I (mA) 9.2 15.2 19.5 21.6 22.2 22.7 23.0 23.4 23.8 

J (V) 0.00 0.01 0.02 0.03 0.05 0.06 0.09 0.12 0.30 

I (mA) 24.2 24.6 25.0 25.4 25.8 26.2 26.6 27.0 27.4 

J (V) 0.66 1.02 1.41 1.88 2.23 2.64 3.04 3.36 3.78 

I (mA) 27.8 28.2 28.6 29.0 29.4 29.8 30.2 30.5 31.0 

J (V) 4.12 4.48 4.79 5.13 5.44 5.72 6.05 6.25 6.55 

I (mA) 31.4 31.8 32.2 32.6 33.0 33.4 33.8 34.2 34.6 

J (V) 6.75 6.99 7.22 7.40 7.60 7.78 7.93 8.07 8.14 

I (mA) 35.0 35.5 36.0 36.5 37.0 37.6 38.0 38.6  

J (V) 8.18 8.20 8.22 8.24 8.24 8.25 8.26 8.27  

 
Current error : ±0.1 mA; Voltage error : ±0.01 V  
 

Question A-(1) (Total 1.5 point) 
Measure, tabulate, and plot the J vs. I curve. 
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b. Plotting (0.3 pts.): Proper sizes of scales, and units for abscissa and ordinate that bear 
relation to the accuracy and range of the experiment. 

c. Curve (0.9 pts.): Proper data and adequate line shape  
 ‧ As shown in Fig. A-1. Start ~0 → Threshold → Linear → Saturate.  
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Im ± ∆ Im 

Fig. A-1  Graph of light intensity J versus current I 
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a. Linear region marking (0.5 pts.) in Fig. A-1. 
b. Least-square method or eye-balling with ruler and error analysis (1.5 pt.) 

  
  Least-square fitting Eye-balling with ruler 
Error bar in graph 0.0x mA (0.5 pts) Error bar in graph 0.x mA (0.5 pts) 
Least-square method (0.5 pts) Expanded scale graph (0.5 pts)  
Error analysis (0.5 pts) draw three lines for error analysis(0.5 pts) 

 
c. Im ± ∆ Im (0.5 pts.): Adequate value of Im (0.3 pts.) and error(± ∆ Im ) (0.2 pts.) from the 

linear region of J-I curve. 
d. Adequate value of Ith with error (1.0 pts.) 

Ith = (21~26) ± (0.01 or 0.2 for single value) mA 

  Adequate value of Ith (0.5 pts.) and error (± ∆ Ith ) (0.5 pts.) 

 

Question A-(2) ( Total 3.5 points) 
Estimate the maximum current Im with uncertainty in the linear region of the J - I. Mark 
the linear region on the J - I curve figure by using arrows (↓) and determine the threshold 
current Ith with detailed error analysis. 
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Fig. A-2  Straight lines and extrapolations 
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Appendix： 

◎A1-1 
● Least-Square Method： 
I = mJ +b  →  b = Ith  
For y = mx +b 

 y: I(mA) x: J xy x2 y(x) = mx+b (y-y(x))2 

1 23.8 0.30 7.14 0.090 23.7937 3.969E-05 

2 24.2 0.66 15.972 0.4356 24.17134 0.000821 

3 24.6 1.02 25.092 1.0404 24.54898 0.00260 

4 25.0 1.41 35.25 1.9881 24.95809 0.00176 

5 25.4 1.88 47.752 3.5344 25.45112 0.00261 

6 25.8 2.23 57.534 4.9729 25.81827 0.000334 

7 26.2 2.64 69.168 6.9696 26.24836 0.00234 

8 26.6 3.04 80.864 9.2416 26.66796 0.00462 

9 27.0 3.36 90.72 11.2896 27.00364 1.325E-05 

10 27.4 3.78 103.572 14.2884 27.44422 0.00196 

11 27.8 4.12 114.536 16.9744 27.80088 7.744E-07 

12 28.2 4.48 126.336 20.0704 28.17852 0.000461 

13 28.6 4.79 136.994 22.9441 28.50371 0.00927 

 
Σy = 

340.6 

Σx =  
33.71 

Σxy =  
910.93 

Σx2 = 
113.840 

 
Σ (y-y(x))2 =  

0.0268 
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03.048.23 ±=thI  mA 

 
◎A1-2 
● Eye-balling Method： 
I =mJ +b  →  b = Ith  
For y = mx+b 
Line 1: y = 1.00 x + 23.66 
Line 2: y = 1.05 x+ 23.48  
Line3: y = 1.13 x + 23.31 
Ith(av.) = 23.48 
Ith(std.) = 0.18 

2.05.23 ±=thI  mA 
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 Part B: Optical Properties of Nematic Liquid Crystal  
Electro-optical switching characteristic of 90o TN LC cell 

 
Question B-(1) (5.0 points) 
Measure, tabulate, and plot the electro-optical switching curve (J vs. Vrms curve) of the NB 
90o TN LC, and find its switching slope γ, where γ is defined as (V90–V10)/V10. 

 
a. Proper data table marked with variables and units. (0.3 pts)                                 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

0.00 0.00 2.44 1.22 
0.10 0.00 2.50 1.26 
0.20 0.00 2.55 1.27 
0.30 0.00 2.60 1.29 
0.40 0.00 2.67 1.32 
0.50 0.00 2.72 1.33 
0.60 0.00 2.85 1.36 
0.70 0.00 2.97 1.37 
0.80 0.00 3.11 1.38 
0.90 0.00 3.20 1.39 
1.00 0.00 3.32 1.39 
1.10 0.02 3.41 1.39 
1.20 0.04 3.50 1.40 
1.24 0.04 3.60 1.39 
1.30 0.04 3.70 1.40 
1.34 0.03 3.80 1.40 
1.38 0.02 4.03 1.40 
1.45 0.01 4.22 1.40 
1.48 0.01 4.40 1.39 
1.55 0.02 4.61 1.39 
1.59 0.03 4.78 1.40 
1.64 0.05 5.03 1.39 
1.71 0.11 5.20 1.39 
1.78 0.21 5.39 1.38 
1.81 0.26 5.61 1.39 
1.85 0.33 5.81 1.38 
1.90 0.44 6.02 1.38 
1.96 0.57 6.21 1.38 
2.03 0.70 6.40 1.38 
2.08 0.80 6.63 1.38 
2.15 0.92 6.80 1.38 
2.21 1.02 7.02 1.38 
2.28 1.10 7.20 1.38 
2.33 1.14   
2.39 1.19   
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b. Properly choose the size of scales and units for abscissa and ordinate that bears the 
relation to the accuracy and range of the experiment. (0.3 pts) 

c. Correct measurement of the light intensity (J) as a function of the applied voltage (Vrms) 
and adequate J - Vrms curve plot. 
 The intensity of the transmission light is smaller than 0.05 Volts in the normally 

black mode. (0.4 pts) 
 There is a small optical bounce before the external applied voltage reaches the 

critical voltage. (0.8 pts) 
 The intensity of the transmission light increases rapidly and abruptly when the 

external applied voltage exceeds the critical voltage. (0.4 pts) 
 The intensity of the transmission light displays the plateau behavior as the external 

applied voltage exceeds 3.0 Volts. (0.4 pts) 

0.5
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1.0

0.0

V90

V10

 

d. Adequate value of γ with error. 
 Find the maximum value of the light intensity in the region of the applied voltage 

between 3.0 and 7.2 Volts (0.6 pts) 
 Determine the value of 90 % of the maximum light intensity. Obtain the value of the 

applied voltage V90 by interpolation. (0.6 pts) 
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 Determine the value of 10 % of the maximum light intensity. Obtain the value of the 
applied voltageV10 by interpolation. (0.6 pts) 

 Correct γ ± ∆γ value, (0.42 ~ 0.44) ± 0.02. (0.4+0.2 pts) 
 
 
 
 
 
a. Adequate value of VC with error, VC ± ∆VC. 

 Make the expanded scale plot and take more data points in the region of VC. 
(0.8 pts) 

 Determine the value of VC when the intensity of the transmission light increases 
rapidly and abruptly. (0.7 pts) 

 Correct VC ± ∆VC value, (1.20 ~ 1.50) ± 0.01 Volts. (0.8+0.2 pts) 
 
 

0.02

0.04

0.06

0.08

0.12

0.14

0.16

1.2 1.3 1.4 1.5 1.6 1.7

Li
gh

t I
nt

en
si

ty
 (V

ol
ts

)

Applied Voltage (Volts)

VC

0.10

0.00

 
(The data shown in this graph do not correspond to the data shown on the previous 
page. This graph only shows how to obtain Vc.) 

Question B-(2) (Total 2.5 points) 
Determine the critical voltage Vc of this NB 90o TN LC cell.  Show explicitly with 
graph how you determine the value Vc. 
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Part C:  Optical Properties of Nematic Liquid Crystal : 
Electro-optical switching characteristic of parallel aligned LC cell 

 
 
 
 
 
 
 
 

a. Adequate value of δ and ∆n with error. 
 Take and average the values of T‖. (0.3 pts) 
 Take and average the values of T⊥. (0.3 pts) 
 Determine the value of order m.  (0.9 pts) 
 Correct δ value, 15.7 ~ 18.2.  (0.5 pts) 
 Correct ∆n value, 0.20 ~ 0.24  (0.5 pts) 

01.031.0
3

31.031.031.0
// ±=

++
=T  Volts 

01.004.1
3

04.103.104.1
±=

++
=⊥T  Volts 

*

//
83.1

2
tan −=±=

⊥

T
Tδ   )214.2(214.4 ππδ morm +−+=∴  

61.18
65.0

25.07.722
=

××
=

∆
=

π
λ

πδ nd  

Take )3(2 orm =  )32.5(70.16 πδ =∴  

From 
λ

πδ nd∆
=

2  22.0
2

==∆∴
d

n
π
δλ  

Accepted value for )24.0~20.0(=∆∴ n  

*If 83.1
2

tan =
δ , the value for δ  will be either π68.4  or π68.6 , which is not 

consistent with data figure of problem C-(2). 
 

Question C-(1) (2.5 points) 
Assume that the wavelength of laser light 650 nm, LC layer thickness 7.7 μm, and 
approximate value of Δn ≈ 0. 25 are known. From the experimental data T⊥ and T‖ 

obtained above, calculate the accurate value of the phase retardation δ and accurate 
value of birefringence Δn of this LC cell at V=0. 
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a. Proper data table marked with variables and units. (0.3 pts)                                     

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

0.00 0.30 2.01 1.47 3.33 0.00 
0.10 0.30 2.04 1.48 3.36 0.00 
0.20 0.29 2.07 1.48 3.39 0.00 
0.30 0.29 2.10 1.48 3.42 0.00 
0.40 0.29 2.13 1.45 3.45 0.00 
0.50 0.28 2.16 1.42 3.48 0.00 
0.60 0.26 2.19 1.38 3.51 0.00 
0.70 0.23 2.22 1.33 3.60 0.01 
0.80 0.19 2.25 1.27 3.70 0.02 
0.90 0.09 2.28 1.20 3.80 0.03 
0.99 0.00 2.31 1.14 3.90 0.04 
1.02 0.06 2.34 1.07 4.00 0.07 
1.05 0.16 2.37 1.00 4.10 0.09 
1.08 0.25 2.40 0.94 4.20 0.11 
1.11 0.40 2.43 0.87 4.30 0.14 
1.14 0.67 2.46 0.79 4.40 0.16 
1.17 0.93 2.49 0.72 4.50 0.19 
1.20 1.25 2.52 0.66 4.60 0.22 
1.26 1.31 2.55 0.61 4.70 0.25 
1.29 1.36 2.58 0.56 4.80 0.28 
1.32 1.32 2.61 0.51 4.90 0.31 
1.35 1.09 2.64 0.46 5.01 0.34 
1.38 0.85 2.67 0.42 5.11 0.37 
1.41 0.62 2.70 0.37 5.21 0.39 
1.44 0.46 2.73 0.33 5.29 0.42 
1.47 0.29 2.76 0.30 5.39 0.44 
1.50 0.13 2.79 0.26 5.51 0.48 
1.53 0.06 2.82 0.23 5.57 0.49 
1.59 0.03 2.85 0.21 5.70 0.52 
1.62 0.05 2.88 0.18 5.80 0.55 
1.65 0.15 2.91 0.16 5.90 0.57 
1.68 0.24 2.94 0.14 6.01 0.60 
1.71 0.34 2.97 0.12 6.10 0.62 
1.74 0.49 3.00 0.09 6.19 0.64 
1.77 0.63 3.06 0.08 6.30 0.66 
1.80 0.78 3.09 0.06 6.40 0.69 
1.83 0.92 3.12 0.05 6.60 0.73 
1.86 1.05 3.18 0.04 6.70 0.74 
1.89 1.19 3.21 0.03 6.80 0.76 
1.92 1.27 3.24 0.02 7.00 0.80 
1.95 1.34 3.27 0.02 7.20 0.83 
1.98 1.40 3.30 0.01   

Question C-(2) (Total 3.0 points) 
Measure, tabulate, and plot the electro-optical switching curve for T‖ of this parallel 
aligned LC cell in the θ = 45o configuration. 
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b. Properly choose the size of scales and units for abscissa and ordinate that bears the 
relation to the accuracy and range of the experiment. (0.3 pts) 

c. Correct measurement of the T‖ as a function of the applied voltage (Vrms) and 
adequate T‖-Vrms curve plot. 

  Three minima and two sharp maxima. (1.5 pts) 
  Maxima values within 15% from each other. (0.5 pts) 
  Minima are less than the values of 0.1 Volts. (0.4 pts) 
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a. Adequate value of Vπ with error. 
 Make the expanded scale plot and take more data points in the region of Vπ. (0.3 pts) 
 Indicate the correct minimum of Vπ. (0.8 pts) 
 Obtain the value of Vπ by interpolation or rounding. (0.5 pts) 
 Correct Vπ value : (3.2 ~ 3.5) 01.0± Volts. (0.2+0.2 pts) 
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Question C-(3) (Total 2.0 points)  
From the electro-optical switching data, find the value of the external applied voltage Vπ. 
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Marking Scheme 
 

Part A: Optical Properties of Laser Diode  
No. Contents Sub 

Scores 
Total 

Scores 
 A(1) Measure, tabulate, and plot the J vs. I curve.  

 
 1.5 pts. 

a Proper data table marked with variables and units. 0.3  
b Proper sizes of scales, and units for abscissa and ordinate that bear 

relation to the accuracy and range of the experiment. 
0.3  

c Proper data and adequate curve plotting (Fig. A-1) 0.9  
A(2) Estimate the maximum current Im with uncertainty in the linear region 

of the J vs. I curve. Mark the linear region on the J - I curve figure by 
using arrows (↓) and determine the threshold current Ith with 
uncertainty. 

 3.5 pts. 

a Mark the linear region. 0.5  
b Least-square fit or eye-balling with ruler and error analysis 1.5  
c Obtain Im ± ∆Im properly 0.5  
d Adequate value of Ith ± ∆ Ith 1.0  

 
Part B:  Optical Properties of Nematic Liquid Crystal  

Electro-optical switching characteristic of 90o TN LC cell 
No. Contents Sub 

Scores 
Total 

Scores 
B-(1) Measure, tabulate, and plot the electro-optical switching curve (J vs. 

Vrms curve) of the NB 90o TN LC, and find its switching slope γ, 
where γ is defined as (V90–V10)/V10. 

 5.0 pts. 

a Proper data table marked with variables and units. 0.3  
b Properly choose the size of scales and units for abscissa and ordinate 

that bears the relation to the accuracy and range of the experiment. 
0.3  

c Correct measurement of the light intensity (J) as a function of the 
applied voltage (Vrms) and adequate J - Vrms curve plot. 

  

  The intensity of the transmission light reaches zero value in the 
normally black mode.  

0.4  

  There is a small optical bounce before the external applied voltage 
reaches the critical voltage. 

0.8  

  The intensity of the transmission light increases rapidly and 0.4  
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abruptly when the external applied voltage exceeds the critical 
voltage. 

  The intensity of the transmission light displays the plateau 
behavior as the external applied voltage exceeds 3.0 Volts. 

0.4  

d Adequate value of γ with error, γ ± ∆γ.   
  Correctly analyzing the maximum light intensity. 0.6  
  Correctly analyzing the value of V90. 0.6  
  Correctly analyzing the value of V10. 0.6  
  Correct γ ± ∆γ value, (0.42 ~ 0.44) ± 0.02.  0.6  

B-(2) Determine the critical voltage Vc of this NB 90o TN LC cell.   
Show explicitly with graph how you determine the value Vc. 

 2.5 pts. 

 Adequate value of VC with error, VC ± ∆ VC.   
  Make the expanded scale plot and take more data points in the 

region of VC. 
0.8  

  Correctly analyzing the value of VC. 0.7  
  Correct VC ± ∆ VC value, (1.2 ~ 1.5) ± 0.01 Volts. 1.0  

 
 
Part C:  Optical Properties of Nematic Liquid Crystal : 

Electro-optical switching characteristic of parallel aligned LC cell 
No. Contents Sub 

Scores 
Total 

Scores 
C-(1) Assume that the wavelength of laser light 650 nm, LC layer thickness 

7.7 μm, and approximate value of Δn ≈ 0. 25 are known. From the 
experimental data T⊥ and T‖ obtained above, calculate the accurate 
value of the phase retardation δ and accurate value of birefringence 
Δn of this LC cell at V=0. 

 2.5 pts. 

 Adequate value of δ and ∆n with error.   
  Correctly analyzing the values of T‖. 0.3  
  Correctly analyzing the values of T⊥. 0.3  
  Correctly determining the value of order m. 0.9  
  Correct δ value, 17.7 ~ 18.2. 0.5  
  Correct ∆n value, 0.23 ~ 0.25. 0.5  

C-(2) Measure, tabulate, and plot the electro-optical switching curve for T 

of this parallel aligned LC cell in the θ = 45o configuration. 
 3.0 pts. 

a Proper data table marked with variables and units. 0.3  
b Properly choose the size of scales and units for abscissa and ordinate 0.3  
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that bears the relation to the accuracy and range of the experiment. 
c Correct measurement of the T‖ as a function of the applied voltage 

(Vrms) and adequate T‖-Vrms curve plot. 
  

  Three minima and two sharp maxima. 1.5  
  Maxima values within 15 % from each other. 0.5  
  Minima are less than the values of 0.1 Volts. 0.4  

 C-(3) From the electro-optical switching data, find the value of the external 
applied voltage Vπ 

 2.0 pts. 

 Adequate value of Vπ with error.   
  Make the expanded scale plot and take more data points in the 

region of Vπ. 
0.3  

  Indicate the correct minimum of Vπ. 0.8  
  Correctly analyzing the value of Vπ. 0.5  
  Correct Vπ± ∆ Vπvalue, (3.2 ~ 3.5 ) ± 0.1 Volts. 0.4  

 



  Theoretical Question 1  Page 1/2 
 

 

Theoretical Question 1: 

“Ping-Pong” Resistor 
 
A capacitor consists of two circular parallel plates both with radius R separated by 
distance d, where Rd << , as shown in Fig. 1.1(a). The top plate is connected to a 
constant voltage source at a potential V while the bottom plate is grounded. Then a thin 
and small disk of mass m  with radius r ( dR,<< ) and thickness t  ( r<< ) is placed on 
the center of the bottom plate, as shown in Fig. 1.1(b).  

Let us assume that the space between the plates is in vacuum with the dielectric 
constant 0ε ; the plates and the disk are made of perfect conductors; and all the 
electrostatic edge effects may be neglected. The inductance of the whole circuit and the 
relativistic effects can be safely disregarded. The image charge effect can also be 
neglected. 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Schematic drawings of (a) a parallel plate capacitor 
connected to a constant voltage source and (b) a side view of the 
parallel plates with a small disk inserted inside the capacitor. (See text 
for details.) 

 

(a) [1.2 points] Calculate the electrostatic force pF  between the plates separated by d  

before inserting the disk in-between as shown in Fig. 1.1(a).   
 
(b) [0.8 points] When the disk is placed on the bottom plate, a charge q  on the disk of 
Fig. 1.1(b) is related to the voltage V  by Vq χ= . Find χ  in terms of r , d , and 0ε .  
 
(c) [0.5 points] The parallel plates lie perpendicular to a uniform gravitational field g . 
To lift up the disk at rest initially, we need to increase the applied voltage beyond a 

(a) 

d 
V  

R 

mg 

t
r d

q

+V
side view 

(b) 
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threshold voltage thV . Obtain thV  in terms of m , g , d , and χ . 
 
(d) [2.3 points] When thVV > , the disk makes an up-and-down motion between the 
plates. (Assume that the disk moves only vertically without any wobbling.) The 
collisions between the disk and the plates are inelastic with the restitution coefficient 

)v/v( beforeafter≡η , where beforev  and afterv  are the speeds of the disk just before and 
after the collision respectively. The plates are stationarily fixed in position. The speed of 
the disk just after the collision at the bottom plate approaches a “steady-state speed” sv , 
which depends on V  as follows: 

βα += 2
sv V .     (1.1) 

Obtain the coefficients α  and β  in terms of m , g , χ , d , and η .  Assume that the 
whole surface of the disk touches the plate evenly and simultaneously so that the 
complete charge exchange happens instantaneously at every collision. 
 
(e) [2.2 points] After reaching its steady state, the time-averaged current I  through the 
capacitor plates can be approximated by 2VI γ=  when mgdqV >> . Express the 
coefficient γ  in terms of m , χ , d , and η .  
 
(f) [3 points] When the applied voltage V  is decreased (extremely slowly), there exists 
a critical voltage cV  below which the charge will cease to flow.  Find cV  and the 
corresponding current cI  in terms of m , g , χ , d , and η .   By comparing cV  with 
the lift-up threshold thV  discussed in (c), make a rough sketch of the VI −  
characteristics when V  is increased and decreased in the range from 0=V  to 3 thV . 
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(a)  =pF   

 
 
 
(b)  =χ  
 
 
 
(c)  =thV  
 
 
 
(d)  =α                                   =β  
 
 
 
 
(e)  =γ  
 
 
 
(f)  =cI  
 
 
 
 
 

=cV  
 
 

I 
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Theoretical Question 2 

Rising Balloon 
 
A rubber balloon filled with helium gas goes up high into the sky where the pressure 
and temperature decrease with height. In the following questions, assume that the shape 
of the balloon remains spherical regardless of the payload, and neglect the payload 
volume. Also assume that the temperature of the helium gas inside of the balloon is 
always the same as that of the ambient air, and treat all gases as ideal gases. The 
universal gas constant is R =8.31 J/mol·K and the molar masses of helium and air are 

HM = 4.00×10 3− kg/mol and AM  = 28.9×10 3− kg/mol, respectively. The gravitational 
acceleration is g = 9.8 m/s2.  

 

[Part A ] 

(a) [1.5 points] Let the pressure of the ambient air be P  and the temperature be T . 
The pressure inside of the balloon is higher than that of outside due to the surface 
tension of the balloon. The balloon contains n  moles of helium gas and the pressure 
inside is PP ∆+ . Find the buoyant force BF  acting on the balloon as a function of P  

and P∆ . 

(b) [2 points] On a particular summer day in Korea, the air temperature T  at the height 
z  from the sea level was found to be )/1()( 00 zzTzT −=  in the range of 15< <0 z  
km with 0z =49 km and 0T =303 K. The pressure and density at the sea level were 0P  
= 1.0 atm = 5101.01×  Pa and 0ρ = 1.16 kg/m3, respectively. For this height range, the 
pressure takes the form 

           η)/1()( 00 zzPzP −=  .           (2.1)  

Express η  in terms of 0z , 0ρ , 0P , and g , and find its numerical value to the two 
significant digits. Treat the gravitational acceleration as a constant, independent of 
height.     
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[Part B ] 
 
When a rubber balloon of spherical shape with un-stretched radius 0r  is inflated to a 
sphere of radius r  ( 0r≥ ), the balloon surface contains extra elastic energy due to the 

stretching. In a simplistic theory, the elastic energy at constant temperature T  can be 
expressed by  

)312(4 4
22

0 −+=
λ

λκπ RTrU             (2.2)  

where 0/ rr≡λ  (≥1) is the size-inflation ratio and κ  is a constant in units of mol/m2.  

(c) [2 points] Express P∆ in terms of parameters given in Eq. (2.2), and sketch P∆  as 
a function of λ = 0/ rr . 

 
(d) [1.5 points] The constant κ  can be determined from the amount of the gas needed 

to inflate the balloon. At 0T =303 K and 0P =1.0 atm = 5101.01×  Pa, an un-stretched 

balloon ( 1=λ ) contains 0n =12.5 moles of helium. It takes n =3.6 0n =45 moles in total 
to inflate the balloon to λ =1.5 at the same 0T  and 0P . Express the balloon parameter 

a , defined as 0/κκ=a , in terms of n , 0n , and λ , where 
0

00
0 4RT

Pr
≡κ . Evaluate a  

to the two significant digits.  
 
[Part C]  
 
A balloon is prepared as in (d) at the sea level (inflated to 5.1=λ  with 456.3 0 == nn  

moles of helium gas at 0T =303 K and 0P =1 atm= 5101.01×  Pa). The total mass 

including gas, balloon itself, and other payloads is =TM 1.12 kg. Now let the balloon 

rise from the sea level. 

(e) [3 points] Suppose that the balloon eventually stops at the height fz  where the 

buoyant force balances the total weight. Find fz  and the inflation ratio fλ  at that 
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height. Give the answers in two significant digits. Assume there are no drift effect and 

no gas leakage during the upward flight. 
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(a) BF  =                                    
 
 
 
 
 
(b)  η =                                 Numerical  

value of η = 
 
 
 
 
 
(c) P∆ = 
 
 
 
 
 
 
 
 
 
 
(d) a  =                                    Numerical 
                                            value of a = 
 

 
 
 
 

(e) fz  =                        km   fλ  = 
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Theoretical Question 3 

Atomic Probe Microscope 
 
Atomic probe microscopes (APMs) are powerful tools in the field of nano-science.  
The motion of a cantilever in APM can be detected by a photo-detector monitoring the 
reflected laser beam, as shown in Fig. 3.1. The cantilever can move only in the vertical 
direction and its displacement z  as a function of time t  can be described by the 
equation 

 Fkz
dt
dzb

dt
zdm =++2

2

,    (3.1) 

where m  is the cantilever mass, 2
0ωmk =  is the spring constant of the cantilever, b  

is a small damping coefficient satisfying 0)/(0 >>> mbω , and finally F  is an 
external driving force of the piezoelectric tube. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 A schematic diagram for a scanning probe microscope (SPM). 
The inset in the lower right corner represents a simplified mechanical 
model to describe the coupling of the piezotube with the cantilever.  

 

[Part A] 
(a) [1.5 points] When tFF ωsin0= , )(tz  satisfying Eq. (3.1) can be written as 

)sin()( φω −= tAtz , where 0>A  and πφ ≤≤0 . Find the expression of the 

VR 
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m 
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k
m
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amplitude A  and φtan  in terms of 0F , m , ω , 0ω , and b . Obtain A  and the 
phase φ  at the resonance frequency 0ωω = . 

 
(b) [1 point] A lock-in amplifier shown in Fig.3.1 multiplies an input signal by the lock-
in reference signal, tVV RR ωsin0= , and then passes only the dc (direct current) 
component of the multiplied signal. Assume that the input signal is given by 

)sin(0 iiii tVV φω −= . Here 0RV , 0iV , iω , and iφ  are all positive given constants. Find 
the condition on ω  (>0) for a non-vanishing output signal. What is the expression for 
the magnitude of the non-vanishing dc output signal at this frequency? 

 
(c) [1.5 points] Passing through the phase shifter, the lock-in reference voltage 

tVV RR ωsin0=  changes to )2/sin(' 0 πω += tVV RR . RV ' , applied to the piezoelectric 
tube, drives the cantilever with a force RVcF '1= . Then, the photo-detector converts the 
displacement of the cantilever, z , into a voltage zcVi 2= . Here 1c  and 2c  are 
constants. Find the expression for the magnitude of the dc output signal at 0ωω = . 

 
(d) [2 points] The small change m∆  of the cantilever mass shifts the resonance 
frequency by 0ω∆ . As a result, the phase φ  at the original resonance frequency 0ω  
shifts by φ∆ . Find the mass change m∆  corresponding to the phase shift 

1800/πφ =∆ , which is a typical resolution in phase measurements. The physical 
parameters of the cantilever are given by =m 1.0×10-12 kg, 0.1=k N/m, and 

=)/( mb 1.0×103 s-1. Use the approximations ( ) axx a +≈+ 11  and 
xx /1)/2(tan −≈+π  when 1|| <<x . 

 
[Part B] 
From now on let us consider the situation that some forces, besides the driving force 
discussed in Part A, act on the cantilever due to the sample as shown in Fig.3.1.  
 
(e) [1.5 points] Assuming that the additional force )(hf  depends only on the distance 

h  between the cantilever and the sample surface, one can find a new equilibrium 
position 0h . Near 0hh = , we can write )()()( 030 hhchfhf −+≈ , where 3c  is a 
constant in h .  Find the new resonance frequency 0'ω  in terms of 0ω , m , and 3c . 

 
(f) [2.5 points] While scanning the surface by moving the sample horizontally, the tip of 
the cantilever charged with eQ 6=  encounters an electron of charge eq =  trapped 
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(localized in space) at some distance below the surface. During the scanning around the 
electron, the maximum shift of the resonance frequency 0ω∆ ( 00' ωω −= ) is observed to 
be much smaller than 0ω . Express the distance 0d  from the cantilever to the trapped 
electron at the maximum shift in terms of m , q , Q , 0ω , 0ω∆ , and the Coulomb 
constant ek . Evaluate 0d  in nm (1 nm = 9101 −× m) for 200 =∆ω  s-1.  
The physical parameters of the cantilever are =m 1.0×10-12 kg and 0.1=k N/m. 
Disregard any polarization effect in both the cantilever tip and the surface. Note that 

9
0 100.94/1 ×== πεek  N·m2/C2 and 19106.1 −×−=e  C.  
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(a) =A                         and  =φtan                     

 
 
 

At 0ωω = , =A                  and =φ                       

 
 
 
 
 
(b) The condition on ω  for a non-vanishing output signal :                       
 
 
 

The magnitude of the dc signal =                  
 
 
 
(c) The magnitude of the signal =                   
 
 
 
 
(d) =∆m                           kg 
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(e) =0'ω                           

 
 
 
 
(f) =0d                          ; Evaluated =0d                  nm. 
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35th International Physics Olympiad 
 

Pohang, Korea 
 

15 ~ 23 July 2004 
 

EExxppeerriimmeennttaall  CCoommppeettiittiioonn  
MMoonnddaayy,,  1199  JJuullyy  22000044 

 
Please, first read the following instruction carefully: 
 
1. The time available is 5 hours.  
2. Use only the pen provided. 
3. Use only the front side of the writing sheets. Write only inside the boxed area.  
4. In addition to the blank writing sheets, there are Answer Forms where you must 

summarize the results you have obtained. 
5. Write on the blank writing sheets the results of your measurements and whatever 

else you consider is required for the solution to the question. Please, use as little text 
as possible; express yourself primarily in equations, numbers, figures, and plots. 

6. In the boxes at the top of each sheet of paper write down your country code 
(Country Code) and student number (Student Code). In addition, on each blank 
writing sheets, write down the progressive number of each sheet (Page Number) 
and the total number of writing sheets used (Total Number of Pages). If you use 
some blank writing sheets for notes that you do not wish to be marked, put a large X 
across the entire sheet and do not include it in your numbering. 

7. At the end of the experiment, arrange all sheets in the following order: 
• Answer forms (top)  
• used writing sheets in order 
• the sheets you do not wish to be marked 
• unused writing sheets  
• the printed question (bottom) 

8. It is not necessary to specify the error range of your values. However, their 
deviations from the actual values will determine your mark.  

9. Place the papers inside the envelope and leave everything on your desk. You are not 
allowed to take any sheet of paper or any material used in the experiment out of 
the room. 
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Apparatus and materials 
1. List of available apparatus and materials 
 

 Name Quantity  Name Quantity
A Photogate timer 1 L Philips screw driver 1 
B Photogate 1 M Weight with a string 1 
C Connecting cable 1 N Electronic balance 1 
D Mechanical “black box” 

(Black cylinder) 
1 O Stand with a ruler 1 

E Rotation stage 1 P U-shaped support 1 
F Rubber pad 1 Q C-clamp 1 
G Pulley 2  Ruler (0.50 m, 0.15 m) 1 each
H Pin 2  Vernier calipers 1 
I U-shaped plate 1  Scissors 1 
J Screw 2  Thread 1 
K Allen (hexagonal, L- 

shaped) wrench 
1  Spares (string, thread, 

pin, screw, Allen wrench) 
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2. Instruction for the Photogate Timer 

 
The Photogate consists of an infrared LED and a photodetector. By connecting the 
Photogate to the Photogate Timer, you can measure the time duration related to the 
blocking of the infrared light reaching the sensor. 
 

• Be sure that the Photogate is connected to the Photogate Timer. Turn on the 
power by pushing the button labelled “POWER”. 

• To measure the time duration of a single blocking event, push the button 
labelled “GATE”. Use this “GATE” mode for speed measurements. 

• To measure the time interval between two or three successive blocking events, 
push the corresponding “PERIOD”. Use this “PERIOD” mode for oscillation 
measurements. 

• If “DELAY” button is pushed in, the Photogate Timer displays the result of each 
measurement for 5 seconds and then resets itself. 

• If “DELAY” button is pushed out, the Photogate Timer displays the result of the 
previous measurement until the next measurement is completed. 

• After any change of button position, press the “RESET” button once to activate 
the mode change. 

 
Caution: Do not look directly into the Photogate. The invisible infrared light may be 

harmful to your eyes.  
 

 
Photogate, Photogate Timer, and connection cable 
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3. Instruction for the Electronic Balance 
 

• Adjust the bottom legs to set the balance stable. (Although there is a level 
indicator, setting the balance in a completely horizontal position is not 
necessary.) 

• Without putting anything on the balance, turn it on by pressing the “On/Off” 
button.  

• Place an object on the round weighing pan. Its mass will be displayed in grams. 
• If there is nothing on the weighing pan, the balance will be turned off 

automatically in about 25 seconds. 
 

 
Balance 
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4. Instruction for the Rotation Stage 
 

• Adjust the bottom legs to set the rotation stage stable on a rubber pad in a near 
horizontal position. 

• With a U-shaped plate and two screws, mount the Mechanical “Black Box” 
(black cylinder) on the top of the rotating stub. Use Allen (hexagonal, L-shaped) 
wrench to tighten the screws. 

• The string attached to the weight is to be fixed to the screw on the side of the 
rotating stub. Use the Philips screw driver.   

 
Caution: Do not look too closely at the Mechanical “Black Box” while it is rotating. 

Your eyes may get hurt. 
 

 
Mechanical “Black Box” and rotation stage 

 

     
Rotating stub            Weight with a string 
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Mechanical “Black Box” 

 
[Question]  Find the mass of the ball and the spring constants of two 
springs in the Mechanical “Black Box”. 
 
General Information on the Mechanical “Black Box”  
 

The Mechanical “Black Box” (MBB) consists of a solid ball attached to two 
springs in a black cylindrical tube as shown in Fig. 1. The two springs are fashioned 
from the same tightly wound spring with different number of turns. The masses and the 
lengths of the springs when they are not extended can be ignored. The tube is 
homogeneous and sealed with two identical end caps. The part of the end caps plugged 
into the tube is 5 mm long. The radius of the ball is 11 mm and the inner diameter of the 
tube is 23 mm. The gravitational acceleration is given as g = 9.8 m/s2. There is a finite 
friction between the ball and the inner walls of the tube. 

 

 
Fig. 1  Mechanical “Black Box” (not to scale) 

 
The purpose of this experiment is to find out the mass m of the ball and the spring 

constants k1 and k2 of the springs without opening the MBB. The difficult aspect of this 
problem is that any single experiment cannot provide the mass m or the position l of the 
ball because the two quantities are interconnected. Here, l is the distance between the 
centers of the tube and the ball when the MBB lies horizontally in equilibrium when the 
friction is zero. 

The symbols listed below should be used to represent the physical quantities of 
interest. If you need to use other physical quantities, use symbols different from those 
already assigned below to avoid confusion. 

lCM
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Assigned Physical Symbols 
 
Mass of the ball: m 
Radius of the ball: r (= 11 mm) 
Mass of the MBB excluding the ball: M 
Length of the black tube: L 
Length of each end cap extending into the tube: δ (= 5.0 mm) 
Distance from the center-of-mass of the MBB to the center of the tube: lCM 
Distance between the center of the ball and the center of the tube: x (or l at 

equilibrium when the MBB is horizontal) 
Gravitational acceleration: g (= 9.8 m/s2) 
Mass of the weight attached to a string: mo 
Speed of the weight: v 
Downward displacement of the weight: h 
Radius of the rotating stub where the string is to be wound: R 
Moments of inertia: I, Io, I1, I2, and so on 
Angular velocity and angular frequencies: ω, ω1, ω2, and so on 
Periods of oscillation: T1, T2  
Effective total spring constant: k 
Spring constants of the two springs: k1, k2 
Number of turns of the springs: N1, N2 

 

Caution: Do not try to open the MBB.  If you open it, you will be disqualified 
and your mark in the Experimental Competition will be zero. 

 
Caution: Do not shake violently nor drop the MBB. The ball may be detached 

from the springs.  If your MBB seems faulty, report to the proctors 
immediately.  It will be replaced only once without affecting your 
mark.  Any further replacement will cut down your mark by 0.5 
points each time. 
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PART-A  Product of the mass and the position of the ball (m× l ) (4.0 points) 
 
l is the position of the center of the ball relative to that of the tube when the MBB 

lies horizontally in equilibrium as in Fig. 1. Find the value of the product of the mass m 
and the position l of the ball experimentally. You will need this to determine the value of 
m in PART-B. 

 
1. Suggest and justify, by using equations, a method allowing to obtain m× l. (2.0 

points) 
 
2. Experimentally determine the value of m× l. (2.0 points) 
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PART-B  The mass m of the ball (10.0 points) 
 

Figure 2 shows the MBB fixed horizontally on the rotating stub and a weight 
attached to one end of a string whose other end is wound on the rotating stub. When the 
weight falls, the string unwinds, and the MBB rotates. By combining the equation 
pertinent to this experiment with the one obtained in PART-A, you can find an equation 
for m.  

Between the ball and the inner walls of the cylindrical tube acts a frictional force. 
The physical mechanisms of the friction and the slipping of the ball under the rotational 
motion are complicated. To simplify the analysis, you may ignore the energy dissipation 
due to kinetic friction.  

 

Fig. 2  Rotation of the Mechanical “Black Box” (not to scale) 
The angular velocity ω of the MBB can be obtained 
from the speed v of the weight passing through the 
Photogate. x is the position of the ball relative to the 
rotation axis, and d is the length of the weight. 
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1. Measure the speed of the weight v for various values of downward displacement 

h of the weight. It is recommended to scan the whole range from h = 1.0×10-2 m 
to 4.0×10-1 m by measuring v just once at each h with an interval of 1.0×10-2 
~2.0×10-2 m. Plot the data on graph paper in a form that is suitable to find the 
value of m. After you get a general idea of the relation between v and h, you may 
repeat the measurement or add some data points, if necessary. When the MBB 
rotates slowly, the ball does not slip from its static equilibrium position because 
of the friction between the ball and the tube. When the MBB rotates sufficiently 
fast, the ball hits and actually stays at the end cap of the tube because the springs 
are weak. Identify the slow rotation region and the fast rotation region on the 
graph. (4.0 points) 

 
2. Show your measurements are consistent with the fact that h is proportional to v2 

( h = C v2 ) in the slow rotation region. Show from your measurements that h = 
Av2+B in the fast rotation region. (1.0 points) 

 
3. The moment of inertia of a ball of radius r and mass m about the axis passing 

through its center is 2mr2/5. If the ball is displaced a distance a perpendicular to 
the axis, the moment of inertia increases by ma2. Use the symbol I to represent 
the total moment of inertia of all the rotating bodies excluding the ball. Relate 
the coefficient C to the parameters of the MBB such as m, l, etc. (1.0 points) 

 
4. Relate the coefficients A and B to the parameters of the MBB such as m, l, etc. 

(1.0 points) 
 

5. Determine the value of m from your measurements and the results obtained in 
PART-A. (3.0 points) 
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PART-C  The spring constants k1 and k2  (6.0 points) 
 

In this part, you need to perform small oscillation experiments using the MBB as a 
rigid pendulum. There are two small holes at each end of the MBB. Two thin pins 
inserted into the holes can be used as the pivot of small oscillation. The U-shaped 
support is to be clamped to the stand and used to support the pivot. Note that the angular 
frequency ω  of small oscillation is given as ω = [torque/(moment of inertia ×  
angle)]1/2. Here, the torque and the moment of inertia are with respect to the pivot.  
Similarly to PART-B, consider two experimental conditions, shown in Fig. 3, to avoid 
the unknown moment of inertia Io of the MBB excluding the ball.  

 

 
 

(1) (2) 
 

Fig. 3  Oscillation of the Mechanical “Black Box” (not to scale) 
The periods of small oscillation, T1 and T2, for two  
configurations shown above can be measured using  
the Photogate. Two pins and a U-shaped support are  
supplied for this experiment. 



  Experimental Competition / Question  Page 12/12 
 

 
1. Measure the periods T1 and T2 of small oscillation shown in Figs 3(1) and (2) and 

write down their values, respectively. (1.0 points) 
 
2. Explain (by using equations) why the angular frequencies ω1 and ω2 of small 

oscillation of the configurations are different. Use the symbol Io to represent the 
moment of inertia of the MBB excluding the ball for the axis perpendicular to the 
MBB at the end. Use the symbol ∆l as the displacement of the ball from the 
horizontal equilibrium position. (1.0 points) 

 
3. Evaluate ∆l by eliminating Io from the previous results. (1.0 points)  
 
4. By combining the results of PART-C 1~3 and PART-B, find and write down the 

value of the effective total spring constant k of the two-spring system. (2.0 points) 
 
5. Obtain the respective values of k1 and k2. Write down their values. (1.0 points) 
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Country Code Student Code 
  

 
  
  

AAnnsswweerr  FFoorrmm  
 
 
 
PART-A 
 
 
1. Suggest and justify, by using equations, a method allowing to obtain m× l. (2.0 

points) 
 

 

 

 

 

 

 

 

 

 

 

 

2. Experimentally determine the value of m×l. (2.0 points) 
 

 

 

 

 

 

 

 

m×l =                                               . 
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Country Code Student Code 
  

 
PART-B 
 
 

1. Measure v for various values of h. Plot the data on a graph paper in a form that is 
suitable to find the value of m. Identify the slow rotation region and the fast rotation 
region on the graph. (4.0 points) 

 
(On a separate graph paper) 

 
2. Show from your measurements that h = C v2 in the slow rotation region, and h = 

Av2+B in the fast rotation region. (1.0 points) 
 

(In the plot above) 

 

3. Relate the coefficient C to the parameters of the MBB. (1.0 points) 
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Country Code Student Code 
  

 
4. Relate the coefficients A and B to the parameters of the MBB. (1.0 points) 
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Country Code Student Code 
  

 
5. Determine the value of m from your measurements and the results obtained in 

PART-A. (3.0 points) 
 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

m =                                         . 
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Country Code Student Code 
  

 
PART-C 
 
1. Measure the periods T1 and T2 of small oscillation shown in Figs. 3 (1) and (2) and 

write down their values, respectively. (1.0 points) 
 

 
 

T1 =                                                      . 
 
 
 

T2 =                                                      . 
 
 

2. Explain, by using equations, why the angular frequencies ω1 and ω2 of small 
oscillation of the configurations are different. (1.0 points) 
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Country Code Student Code 
  

 
3. Evaluate ∆l by eliminating Io from the previous results. (1.0 points) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∆l =                                                . 
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Country Code Student Code 
  

 
4. Write down the value of the effective total spring constant k of the two-spring 

system. (2.0 points) 
 
 
 
 
 
 
 
 
 

k =                                                   . 
 
 

5. Obtain the respective values of k1 and k2. Write down their values. (1.0 points) 
 
 

 

 

 

 

 

 

 

 

 

 
k1 =                                                  . 

 
 
 

k2 =                                                  . 



  Theoretical Question 1 / Solutions  Page 1/12 
 

  

Theoretical Question 1: Ping-Pong Resistor 
 
1. Answers  
 

(a)  2

2

0
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R 2
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d
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(b)  
d
r 2
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2. Solutions 
(a) [1.2 points] 
The charge Q  induced by the external bias voltage V  can be obtained by applying 
the Gauss law: 

∫ =⋅ QsdE rr
0ε      (a1) 

)()( 2
0

2
0 R

d
VREQ πεπε ⋅





=⋅= ,    (a2)  

where  EdV = . 
The energy stored in the capacitor: 

d
VRVd

d
VRVdVQU

VV 2
2

0
0

2
0

0 2
1)( πεπε =′






 ′

=′′= ∫∫ .   (a3) 

The force acting on the plate, when the bias voltage V  is kept constant: 

2

2
2

0R 2
1

d
VR

d
UF πε−=
∂
∂

+=∴ .    (a4) 

 
[An alternative solution:] 
Since the electric field 'E  acting on one plate should be generated by the other plate 
and its magnitude is 

d
VEE
22

1' == ,     (a5) 

the force acting on the plate can be obtained by 
'R QEF = .      (a6) 

 
 
(b) [0.8 points] 
The charge q  on the small disk can also be calculated by applying the Gauss law: 

∫ =⋅ qsdE rr
0ε .     (b1) 

Since one side of the small disk is in contact with the plate,  

VV
d
rrEq χπεπε =−=⋅−=

2

0
2

0 )( .    (b2) 
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Alternatively, one may use the area ratio for Q
R
rq 








−= 2

2

π
π . 

d
r 2

0
πεχ −=∴ .     (b3) 

 
(c) [0.5 points] 
The net force, netF , acting on the small disk should be a sum of the gravitational and 
electrostatic forces: 

egnet FFF += .     (c1) 

The gravitational force: mgF −=g . 

The electrostatic force can be derived from the result of (a) above: 

22
2

2

0e 22
1 V

d
V

d
rF χπε == .   (c2) 

 
In order for the disk to be lifted, one requires :0net >F  

0
2

2 >−mgV
d
χ .    (c3) 

χ
mgdV 2

th =∴ .    (c4) 

 
(d) [2.3 points] 
Let sv  be the steady velocity of the small disk just after its collision with the bottom 
plate. Then the steady-state kinetic energy sK  of the disk just above the bottom plate 
is given by 

2
ss v

2
1 mK = .     (d1) 

For each round trip, the disk gains electrostatic energy by  
qVU 2=∆ .     (d2) 

For each inelastic collision, the disk lose its kinetic energy by 

after2before
2

afterbeforeloss 11)1( KKKKK 







−=−=−=∆

η
η .  (d3) 

Since sK  is the energy after the collision at the bottom plate and )( s mgdqVK −+  is 
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the energy before the collision at the top plate, the total energy loss during the round trip 
can be written in terms of sK : 

))(1(11
s

2
s2tot mgdqVKKK −+−+








−=∆ η

η
.   (d4) 

In its steady state, U∆  should be compensated by totK∆ .  

))(1(112 s
2

s2 mgdqVKKqV −+−+







−= η

η
.   (d5) 

Rearranging Eq. (d5), we have 
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Therefore, 

( )gd
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Comparing with the form: 

βα += 2
sv V ,     (d8) 
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[An alternative solution:] 
Let nv  be the velocity of the small disk just after n-th collision with the bottom plate. 
Then the kinetic energy of the disk just above the bottom plate is given by 

2v
2
1

nn mK = .     (d10) 

When it reaches the top plate, the disk gains energy by the increase of potential energy: 

mgdqVU −=∆ up .    (d11) 

Thus, the kinetic energy just before its collision with the top plate becomes 

up
2
upup v

2
1 UKmK nn ∆+==− .   (d12) 
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Since beforeafter v/v=η , the kinetic energy after the collision with the top plate becomes 
scaled down by a factor of 2η : 

up
2

up −− ⋅=′ nn KK η .    (d13) 

Now the potential energy gain by the downward motion is: 
mgdqVU +=∆ down     (d14) 

so that the kinetic energy just before it collides with the bottom plate becomes: 

downupdown UKK nn ∆+′= −− .   (d15) 

Again, due to the loss of energy by the collision with the bottom plate, the kinetic 
energy after its )1( +n -th collision can be obtained by 

.)1()1(
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22224
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   (d16) 

As ∞→n , we expect the velocity svv →n , that is, 2
ss v

2
1 mKK n =→ : 
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(e) [2.2 points] 
The amount of charge carried by the disk during its round trip between the plates is 

qQ 2=∆ , and the time interval −+ +=∆ ttt , where +t ( −t ) is the time spent during the 
up- (down-) ward motion respectively.   
Here +t ( −t ) can be determined by 

dtat

dtat

=+

=+

−−−−

++++

2
0

2
0

2
1v

2
1v

    (e1) 

where +0v ( −0v ) is the initial velocity at the bottom (top) plate and +a ( −a ) is the up- 
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(down-) ward acceleration respectively.   
Since the force acting on the disk is given by  

mg
d

qVmgqEmaF mm === ± ,   (e2) 

in the limit of qVmgd << , ±a  can be approximated by  

md
qVaaa ≈== −+0 ,    (e3) 

which implies that the upward and down-ward motion should be symmetric. Thus, 
Eq.(e1) can be described by a single equation with −+ == ttt0 , -00s vvv == + , and 

−+ == aaa0 .  Moreover, since the speed of the disk just after the collision should be 
the same for the top- and bottom-plates, one can deduce the relation: 

( )00ss vv ta+=η ,     (e4) 
from which we obtain the time interval 02tt =∆ , 
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From Eq. (d6), in the limit of qVmgd << , we have 

qVmK 
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By substituting the results of Eqs. (e3) and (e6), we get 
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[Alternative solution #1:] 
Starting from Eq. (e3), we can solve the quadratic equation of Eq. (e1) so that 
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When it reaches the steady state, the initial velocities ±0v  are given by 

s0 vv =+      (e11) 

2
s

0
s0s0 v

21v)v(v data +=+⋅= +− ηη ,   (e12) 

where sv  can be rewritten by using the result of Eq. (e6),  
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As a result, we get ss0 v1vv =⋅≅− η
η and consequently 








−=± 11v

0

s

ηa
t , which is 

equivalent to Eq. (e4).   
 
[Alternative solution #2:] 
The current I  can be obtained from  

d
q

t
qI v22
=

∆
= ,     (e14) 

where v  is an average velocity. Since the up and down motions are symmetric with the 
same constant acceleration in the limit of qVmgd << , 
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η

s
s

vv
2
1v .     (e15) 

Thus, we have 

sv11
2 








+=
ηd

qI .    (e16) 

Inserting the expression (Eq. (e15)) of sv  into Eq. (e16), one obtains an expression 
identical to Eq. (e8). 
 
(f) [3 points] 
The disk will lose its kinetic energy and eventually cease to move when the disk can not 
reach the top plate.  In other words, the threshold voltage cV  can be determined from 
the condition that the velocity -0v  of the disk at the top plate is zero, i.e., 0v0 =- .   

In order for the disk to have 0v -0 =  at the top plate, the kinetic energy sK  at the 
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top plate should satisfy the relation: 

0ss =−+= mgdqVKK c ,   (f1) 

where sK  is the steady-state kinetic energy at the bottom plate after the collision. 
Therefore, we have 
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or equivalently,  

0)1()1( 22 =−−+ mgdqVc ηη .    (f3) 
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From the relation cVq χ= ,  

χη
η mgdV 2
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In comparison with the threshold voltage thV  of Eq. (c4), we can rewrite Eq. (f5) by 

thVzV cc =      (f6) 
where cz  should be used in the plot of I  vs. )/( thVV  and 

)1(2
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2

η
η
+
−

=cz .     (f7) 

 
[Note that an alternative derivation of Eq. (f1) is possible if one applies the energy 
compensation condition of Eq. (d5) or the recursion relation of Eq. (d17) at the top 
plate instead of the bottom plate.] 

Now we can setup equations to determine the time interval +− +=∆ ttt : 

dtat =+ −−−−
2

0 2
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0 2
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where the accelerations are given by 
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Since 0v0 =− , we have ( )−−+ = taη0v  and −− = adt /22 .  
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By using ( ) +−+ −== dada 22v 22
0 η , we can solve the quadratic equation of Eq. (f9): 
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[A more elaborate Solution:] 
 
One may find a general solution for an arbitrary value of V .  By solving the quadratic 
equations of Eqs. (f8) and (f9), we have 
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(It is noted that one has to keep the smaller positive root.) 
 
 
To simplify the notation, we introduce a few variables: 

(i) 
thV

Vy =  where 
χ

mgdV 2
th = , 

(ii) 
)1(2

1
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2

η
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=cz , which is defined in Eq. (f7), 

(iii) 20 1
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−
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gdw  and ( )g
dw 21 1

2
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= , 

In terms of y , w , and cz , 
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3. Mark Distribution 

No. Total 
Pt. 

Partial 
Pt. Contents 

0.3 Gauss law, or a formula for the capacitance of a parallel plate 

0.5 Total energy of a capacitor at 
V  

='E electrical field by the other 
plate 

(a) 1.2 

0.4 Force from the energy 
expression  

'QEF =  

0.3 Gauss law Use of area ratio and result of (a) (b) 0.8 

0.5 Correct answer 

0.1 Correct lift-up condition with force balance  

0.2 Use of area ratio and result of (a) 

(c) 0.5 

0.2 Correct answer 

0.5 Energy conservation and the work done by the field 

0.5 Loss of energy due to collisions 

0.8 Condition for the steady state: 
energy balance equation (loss = 
gain) 

Condition for the steady state: 
recursion relation 

(d) 2.3 

0.5 Correct answer 

0.2 qQ 2=∆  per trip 

0.5 Acceleration ±a  in the limit of mgdqV >> ; −+ = aa  by 
symmetry 

0.3 Kinetic equations for d , v , 
a , and t , solutions for ±t  

0.4 Expression of ±0v  and ±t  in 
its steady state 

0.4 Solutions of ±t  in 
approximation 

By using the symmetry, derive 
the relation (e4) 

(e) 2.2 

0.4 Correct answer 

0.5 Condition for cV ; 0up =K or 
0v up,s =  

0.3 energy balance equation 

Using (d8), Recursion relations 

0.3 Correct answer of cV  

0.7 Kinetic equations for t∆  

0.3 Correct answer of cI  

(f) 3.0 

0.9 Distinction between thV  and cV , 
the asymptotic behavior 2VI γ=  in plots 

Total 10   
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Theoretical Question 2: Rising Balloon 

 
1. Answers  
 

(a) 
PP

PngMF AB ∆+
=   

 

(b) =γ  
0

00

P
gzρ  = 5.5  

 

(c) =∆P  





 − 7

0

114
λλ

κ
r
RT    

2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

 

(d) a =0.110 
 

(e) fz =11 km,  fλ =2.1.  
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2. Solutions 
 
[Part A] 
(a) [1.5 points] 
Using the ideal gas equation of state, the volume of the helium gas of n  moles at 
pressure PP ∆+  and temperature T  is  

)/( PPnRTV ∆+=                             (a1)  

while the volume of 'n  moles of air gas at pressure P and temperature T  is 
PRTnV /'= .                               (a2) 

Thus the balloon displaces 
PP

Pnn
∆+

='  moles of air whose weight is  gnM A ' .  

This displaced air weight is the buoyant force, i.e., 

 
PP

PngMF AB ∆+
= .     (a3) 

(Partial credits for subtracting the gas weight.) 
 
(b) [2 points] 
The pressure difference arising from a height difference of z  is gzρ−  when the air 
density ρ  is a constant. When it varies as a function of the height, we have 

         g
T
P

P
Tg

dz
dP

0

00ρρ −=−=                           (b1) 

where the ideal gas law PT /ρ = constant is used. Inserting Eq. (2.1) and 

00 /1/ zzTT −=  on both sides of Eq. (b1), and comparing the two, one gets  

52.5
1001.1

8.9109.416.1
5

4

0

00 =
×

×××
==

P
gzργ .                 (b2) 

The required numerical value is 5.5. 
 

[Part B] 
(c) [2 points] 
The work needed to increase the radius from r  to drr +  under the pressure 
difference P∆  is  

PdrrdW ∆= 24π ,                             (c1) 
while the increase of the elastic energy for the same change of r  is  
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dr
r
rrRTdr

dr
dUdW )44(4 5

6
0−=






= πκ .                       (c2) 

Equating the two expressions of dW , one gets 

 )1(4 7

6
0

r
r

r
RTP −=∆ κ  = 






 − 7

0

114
λλ

κ
r
RT .                    (c3) 

This is the required answer.  
The graph as a function of λ (>1) increases sharply initially, has a maximum at λ =71/6 

=1.38, and decreases as 1−λ  for largeλ . The plot of )/4/( 0rRTP κ∆  is given below.  

 

2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

 
 
(d) [1.5 points] 
From the ideal gas law,  

0000 RTnVP =                               (d1) 
where 0V  is the unstretched volume.  

At volume 0
3VV λ=  containing n  moles, the ideal gas law applied to the gas inside 

at 0TT =  gives the inside pressure inP  as 

03
0

0in / P
n

nVnRTP
λ

==  .                         (d2) 

On the other hand, the result of (c) at 0TT =  gives 

              

inP = 077
0

0
00 ))11(1()11(4 Pa

r
RTPPP

λλλλ
κ

−+=−+=∆+ .          (d3)  

Equating (d2) and (d3) to solve for a ,  
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71

3
0 1)/(

−− −
−

=
λλ

λnna .                                        (d5) 

Inserting 0/ nn =3.6 and λ =1.5 here, a =0.110.   

 
 

[Part C] 
(e) [3 points] 
The buoyant force derived in problem (a) should balance the total mass of TM =1.12 kg. 

Thus, from Eq. (a3), at the weight balance, 

PP
P
∆+

=
nM

M

A

T .                                 (e1) 

On the other hand, applying again the ideal gas law to the helium gas inside of volume 

0
33

0
33

3
4

3
4 VrrV λπλπ === , for arbitrary ambient P  and T , one has 

00
0

0

3)(
n
n

T
TP

V
nRTPP ==∆+ λ                           (e2) 

for n  moles of helium. Eqs. (c3), (e1), and (e2) determine the three unknowns P , 
P∆ , and λ  as a function of T and other parameters. Using Eq. (e2) in Eq. (e1), one 

has an alternative condition for the weight balance as 

  
0

T30

0 nM
M

T
T

P
P

A

=λ  .                             (e3)  

Next using (c3) for P∆  in (e2), one has 

00
0

62

0

3 )1(4
n
n

T
TP

r
RTP =−+ −λλκλ  

or, rearranging it, 

 )1( 62

0

30

0

−−−= λλλ a
n
n

T
T

P
P ,                         (e4) 

where the definition of a  has been used again. 
Equating the right hand sides of Eqs. (e3) and (e4), one has the equation for λ  as 

 )1( 62 −− λλ = )(1 T

0 AM
Mn

an
− =4.54.                      (e5) 

The solution for λ  can be obtained by 

 54.4)54.41/(54.4 32 ≈−≈ −λ : ≅fλ 2.13.       (e6) 
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To find the height, replace )//()/( 00 TTPP  on the left hand side of Eq. (e3) as a 

function of the height given in (b) as  

0

T31
0

30

0

)/1(
nM

Mzz
T
T

P
P

A
ff =−= − λλ γ =3.10 .                (e7) 

 Solution of Eq. (e7) for fz  with fλ =2.13 and 1−γ =4.5 is  

fz = 49 ( )5.4/13 )13.2/10.3(1−× = 10.9 (km).    (e8) 

The required answers are =fλ 2.1, and =fz 11 km.  
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3. Mark Distribution 
 

No. Total 
Pt. 

Partial 
Pt. Contents 

0.5 Archimedes’ principle 

0.5 Ideal gas law applied correctly 

(a) 1.5 

0.5 Correct answer (partial credits 0.3 for subtracting He weight) 

0.8 Relation of pressure difference to air density 

0.5 Application of ideal gas law to convert the density into pressure 

0.5 Correct formula for γ  

(b) 2.0 

0.2 Correct number in answer  

0.7 Relation of mechanical work to elastic energy change 

0.3 Relation of pressure to force  

0.5 Correct answer in formula 

(c) 2.0 

0.5 Correct sketch of the curve 

0.3 Use of ideal gas law for the increased pressure inside 

0.4 Expression of inside pressure in terms of a  at the given conditions 

0.5 Formula or correct expression for a  

(d) 1.5 

0.3 Correct answer 

0.3 Use of force balance as one condition to determine unknowns 

0.3 Ideal gas law applied to the gas as an independent condition to determine 
unknowns 

0.5 The condition to determine fλ  numerically 

0.7 Correct answer for fλ  

0.5 The relation of fz  versus fλ  

(e) 3.0 

0.7 Correct answer for fz  

Total 10   
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Theoretical Question 3: Scanning Probe Microscope 
 

1. Answers 

(a) 
22222

0
2

0

)( ωωω bm

F
A

+−
=  and 

)(
tan 22

0

0

ωω
ω

φ
−

=
m
b .   At 0ωω = , 

0

0

ωb
F

A =  

and 
2
πφ = .  

 
(b) A non-vanishing dc component exists only when iωω = . 

In this case the amplitude of the dc signal will be iRi VV φcos
2
1

00 . 

 

(c) 
0

2
021

2 ωb
Vcc R  at the resonance frequency 0ω . 

 
(d) 18107.1 −×=∆m  kg. 
 

(e) 
2/1

2
0

3
00 1' 








−=

ω
ωω

m
c . 

 

(f) 
3/1

00
0 








∆

=
ωωm

qQkd e  

=0d 41 nm. 
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2. Solutions 
 

(a) [1.5 points] 

Substituting )sin()( φω −= tAtz  in the equation tFzm
dt
dzb

dt
zdm ωω sin0

2
02

2

=++  

yields, 

t
A
Ftmtbtm ωφωωφωωφωω sin)sin()cos()(sin 02

0
2 =−+−+−− .  (a1) 

Collecting terms proportional to tωsin  and tωcos , one obtains 

{ } 0coscossin)(sinsincos)( 22
0

022
0 =+−−+







 −+− tbmt

A
Fbm ωφωφωωωφωφωω  (a2) 

Zeroing the each curly square bracket produces  

)(
tan 22

0 ωω
ωφ
−

=
m

b ,       (a3) 

22222
0

2

0

)( ωωω bm

F
A

+−
= .    (a4) 

At 0ωω = ,  

0

0

ωb
F

A =  and .
2
πφ =        (a5) 

(b) [1 point] 
The multiplied signal is  

}])cos{(})[cos{(
2
1

)sin()sin(

00

00

iiiiRi

Riii

ttVV

tVtV

φωωφωω

ωφω

−+−−−=

−
  (b1) 

A non-vanishing dc component exists only when iωω = . In this case the amplitude of 

the dc signal will be  

iRi VV φcos
2
1

00 .     (b2) 

 
(c) [1.5 points] 
Since the lock-in amplifier measures the ac signal of the same frequency with its 
reference signal, the frequency of the piezoelectric tube oscillation, the frequency of the 
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cantilever, and the frequency of the photodiode detector should be same.  The 
magnitude of the input signal at the resonance is 

0

021

0

0
20 ωω b

Vcc
b
FcV R

i == .     (c1) 

Then, since the phase of the input signal is 0
22
=+−

ππ  at the resonance, 0=iφ  and 

the lock-in amplifier signal is  

0

2
021

00 2
0cos

2
1

ωb
VccVV R

Ri = .      (c2) 

 
(d) [2 points] 

The original resonance frequency 
m
k

=0ω  is shifted to 

 





 ∆
−=






 ∆
−≅






 ∆
+=

∆+

−

m
m

m
m

m
k

m
m

m
k

mm
k

2
11

2
111 0

2
1

ω .  (d1) 

Thus  

m
m∆

−=∆ 00 2
1ωω .       (d2) 

Near the resonance, by substituting φπφ ∆+→
2

 and 000 ωωω ∆+→  in Eq. (a3), the 

change of the phase due to the small change of 0ω  (not the change of ω ) is  

02tan
1

2
tan

ωφ
φπ

∆
=

∆
−=






 ∆+

m
b .      (d3) 

Therefore,  

b
m 02tan ωφφ ∆

−=∆≈∆ .      (d4)  

From Eqs. (d2) and (d4), 
1818

6

123

0

107.110
8.1180010

1010 −−
−

×==
⋅

=∆=∆
ππφ

ω
bm  kg.  (d5) 

 
(e) [1.5 points]  
In the presence of interaction, the equation of motion near the new equilibrium position 

0h  becomes 
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tFzczm
dt
dzb

dt
zdm ωω sin03

2
02

2

=−++    (e1) 

where we used zchfhf 30 )()( +≈  with 0hhz −=  being the displacement from the 
new equilibrium position 0h .  Note that the constant term )( 0hf  is cancelled at the 

new equilibrium position. 

Thus the original resonance frequency 
m
k

=0ω  will be shifted to 

2
0

3
0

3
2
03

0 1'
ω

ω
ω

ω
m
c

m
cm

m
ck

−=
−

=
−

= .      (e3) 

Hence the resonance frequency shift is given by 

 







−−=∆ 11 2

0

3
00 ω

ωω
m
c .     (e4) 

 
(f) [2.5 points] 
The maximum shift occurs when the cantilever is on top of the charge, where the 
interacting force is given by  

2)(
h
qQkhf e= .       (f1) 

From this,  

3
0

3 2
0

d
qQk

dh
dfc e

dh

−==
=

.       (f2) 

Since 00 ωω <<∆ , we can approximate Eq. (e4) as 

0

3
0 2 ω

ω
m
c

−≈∆ .     (f3) 

From Eqs. (f2) and (f3), we have 

3
00

3
00

0 2
2

1
dm

qQk
d
qQk

m ee ωω
ω =








−−=∆ .   (f4) 

Here 19106.1 −×−== eq  Coulomb and 19106.96 −×−== eQ  Coulomb. Using the 

values provided, 
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 8
3/1

00
0 101.4 −×=








∆

=
ωωm

qQkd e  m = 41 nm.     (f5) 

Thus the trapped electron is 41 nm from the cantilever.  
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3. Mark Distribution 
 

No. 
Total 

Pt. 

Partial 

Pt. 
Contents 

0.7 Equations for A  and φ  (substitution and manipulation) 

0.4 Correct answers for A  and φ  
(a) 1.5 

0.4 A  and φ  at 0ω  

0.4 Equation for the multiplied signal 

0.3 Condition for the non-vanishing dc output 

(b) 1.0 

0.3 Correct answer for the dc output 

0.6 Relation between iV  and RV  

0.4 Condition for the maximum dc output 

(c) 1.5 

0.5 Correct answer for the magnitude of dc output 

0.5 Relation between m∆  and 0ω∆  

1.0 Relations between 0ω∆  (or m∆ ) and φ∆  
(d) 2.0 

0.5 Correct answer (Partial credit of 0.2 for the wrong sign.) 

1.0 
Modification of the equation with )(hf  and use of a proper 

approximation for the equation 
(e) 1.5 

0.5 Correct answer  

0.5 Use of a correct formula of Coulomb force 

0.3 Evaluation of 3c  

0.6 Use of the result in (e) for either 0ω∆  or 2
0

2
0' ωω −  

0.6 Expression for 0d  

(f) 2.5 

0.5 Correct answer 

Total 10   
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Solutions 
 
PART-A  Product of the mass and the position of the ball (m×l )  

(4.0 points) 
 

1. Suggest and justify, by using equations, a method allowing to obtain m× l. (2.0 
points) 

 
m×l = (M + m)×lcm 

 

(Explanation)  The lever rule is applied to the Mechanical “Black Box”, shown in Fig. 
A-1, once the position of the center of mass of the whole system is found. 
 

 
 

Fig. A-1 Experimental setup 
 

2. Experimentally determine the value of m×l. (2.0 points) 
 
            m×l = 2.96×10-3kg⋅m  
 
(Explanation)  The measured quantities are 
 
          M + m = (1.411±0.0005)×10-1kg 
and 
          lcm = (2.1±0.06)×10-2m   or   21±0.6 mm. 
Therefore 
          m×l = (M + m)×lcm  

= (1.411±0.0005)×10-1kg×(2.1±0.06)×10-2m  
= (2.96±0.08)×10-3kg⋅m 
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PART-B  The mass m of the ball  (10.0 points) 
 

1. Measure v for various values of h. Plot the data on a graph paper in a form that 
is suitable to find the value of m. Identify the slow rotation region and the fast 
rotation region on the graph. (4.0 points) 

 
2. Show from your measurements that h = C v2 in the slow rotation region, and h = 

Av2+B in the fast rotation region. (1.0 points) 

0 200 400 600 800
0

10

20

30

40

50

h 
(c

m
)

v2 (cm2/s2)

 
Fig. B-1 Experimental data 

 

(Explanation)  The measured data are 
 

 h1 (×10- 2 m) a) ∆t (ms) h (×10- 2 m) b) v (×10- 2 m/s) c) v2 (×10- 4 m2/s2) 
1 25.5±0.1 269.4±0.05 1.8±0.1 8.75±0.02 76.6±0.2 
2 26.5±0.1 235.7±0.05 2.8±0.1 11.12±0.02 123.7±0.3 
3 27.5±0.1 197.9±0.05 3.8±0.1 13.24±0.03 175.3±0.6 
4 28.5±0.1 176.0±0.05 4.8±0.1 14.89±0.03 221.7±0.6 
5 29.5±0.1 161.8±0.05 5.8±0.1 16.19±0.03 262.1±0.7 
6 30.5±0.1 151.4±0.05 6.8±0.1 17.31±0.03 299.6±0.7 
7 31.5±0.1 141.8±0.05 7.8±0.1 18.48±0.04 342±1 
8 32.5±0.1 142.9±0.05 8.8±0.1 18.33±0.04 336±1 

fast 

 

( ×10- 4 m2/s2 )

h ( × 10
-2 m

 ) 
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9 33.5±0.1 141.4±0.05 9.8±0.1 18.53±0.04 343±1 
10 34.5±0.1 142.2±0.05 10.8±0.1 18.42±0.04 339±1 
11 35.5±0.1 145.4±0.05 11.8±0.1 18.02±0.04 325±1 
12 36.5±0.1 147.8±0.05 12.8±0.1 17.73±0.04 314±1 
13 37.5±0.1 148.3±0.05 13.8±0.1 17.67±0.04 312±1 
14 38.5±0.1 148.0±0.05 14.8±0.1 17.70±0.04 313±1 
15 39.5±0.1 143.9±0.05 15.8±0.1 18.21±0.04 332±1 
16 40.5±0.1 141.9±0.05 16.8±0.1 18.46±0.04 341±1 
17 41.5±0.1 142.9±0.05 17.8±0.1 18.33±0.04 336±1 
18 42.5±0.1 141.9±0.05 18.8±0.1 18.46±0.04 341±1 
19 43.5±0.1 142.8±0.05 19.8±0.1 18.35±0.04 337±1 
20 44.5±0.1 144.3±0.05 20.8±0.1 18.16±0.04 330±1 
21 45.5±0.1 142.2±0.05 21.8±0.1 18.42±0.04 339±1 
22 46.5±0.1 139.8±0.05 22.8±0.1 18.74±0.04 351±1 
23 47.5±0.1 136.7±0.05 23.8±0.1 19.17±0.04 368±1 
24 48.5±0.1 133.0±0.05 24.8±0.1 19.70±0.04 388±1 
25 49.5±0.1 129.5±0.05 25.8±0.1 20.23±0.04 409±1 
26 50.5±0.1 125.7±0.05 26.8±0.1 20.84±0.04 434±1 
27 51.5±0.1 124.3±0.05 27.8±0.1 21.08±0.04 444±1 
28 52.5±0.1 123.4±0.05 28.8±0.1 21.23±0.04 451±1 
29 53.5±0.1 120.9±0.05 29.8±0.1 21.67±0.04 470±1 
30 54.5±0.1 117.5±0.05 30.8±0.1 22.30±0.04 497±1 
31 55.5±0.1 114.0±0.05 31.8±0.1 22.98±0.04 528±1 
32 56.5±0.1 111.2±0.05 32.8±0.1 23.56±0.05 555±2 
33 57.5±0.1 110.5±0.05 33.8±0.1 23.71±0.05 562±2 
34 58.5±0.1 108.1±0.05 34.8±0.1 24.24±0.05 588±2 
35 59.5±0.1 107.1±0.05 35.8±0.1 24.46±0.05 598±2 
36 60.5±0.1 104.6±0.05 36.8±0.1 25.05±0.05 628±2 
37 61.5±0.1 102.1±0.05 37.8±0.1 25.66±0.05 658±2 
38 62.5±0.1 100.1±0.05 38.8±0.1 26.17±0.05 685±2 
39 63.5±0.1 99.6±0.05 39.8±0.1 26.31±0.05 692±2 
40 64.5±0.1 97.3±0.05 40.8±0.1 26.93±0.05 725±2 
41 65.5±0.1 95.8±0.05 41.8±0.1 27.35±0.05 748±2 
42 66.5±0.1 94.7±0.05 42.8±0.1 27.67±0.05 766±2 
43 67.5±0.1 94.0±0.05 43.8±0.1 27.87±0.06 777±2 
44 68.5±0.1 92.9±0.05 44.8±0.1 28.20±0.06 795±2 
45 69.5±0.1 91.1±0.05 45.8±0.1 28.76±0.06 827±2 
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where  a) h1 is the reading of the top position of the weight before it starts to fall, 
      b) h is the distance of fall of the weight which is obtained by h = h1 – h2 + d/2, 
          h2 (= (25±0.05)×10-2 m) is the top position of the weight at the start of 

blocking of the photogate,  
d (= (2.62±0.005) ×10-2 m) is the length of the weight, and 

  c) v is obtained from v = d/∆t. 
 

3. Relate the coefficient C to the parameters of the MBB. (1.0 points) 

 
h = C v2, where C = {mo + I/R2 + m(l2 + 2/5 r2)/R2}/2mog  
 

(Explanation)  The ball is at static equilibrium (x = l). When the speed of the weight is 
v, the increase in kinetic energy of the whole system is given by 
 

∆K = 1/2 mov2 + 1/2 Iω2 + 1/2 m(l2 + 2/5 r2)ω2 
           = 1/2 {mo + I/R2 + m(l2 + 2/5 r2)/R2}v2, 
 
where ω (= v/R) is the angular velocity of the Mechanical “Black Box” and I is the 
effective moment of inertia of the whole system except the ball. Since the decrease in 
gravitational potential energy of the weight is 
 

∆U = - mogh , 
 
the energy conservation (∆K + ∆U = 0) gives 
 

h = 1/2 {mo + I/R2 + m(l2 + 2/5 r2)/R2}v2/mog 
= C v2,  where C = {mo + I/R2 + m(l2 + 2/5 r2)/R2}/2mog 

 
4. Relate the coefficients A and B to the parameters of the MBB. (1.0 points) 

 

h = A v2 + B, where A = [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]/2mog  
     and B = [ – k1( L/2 – l – δ – r)2  

+ k2{(L – 2δ – 2r)2 – (L/2 + l – δ – r)2}] /2mog  
 

(Explanation)  The ball stays at the end cap of the tube (x = L/2 − δ − r). When the 
speed of the weight is v, the increase in kinetic energy of the whole system is given by  
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K = 1/2 [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]v2. 
 

Since the increase in elastic potential energy of the springs is 
∆Ue = 1/2 [ – k1( L/2 – l – δ – r)2  

+ k2{(L – 2δ – 2r)2 – (L/2 + l – δ – r)2}] ,  
   
the energy conservation (K + ∆U + ∆Ue = 0) gives 
 
              h = 1/2 [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]v2/mog + ∆Ue/mog  

       = A v2 + B,  
where  

A = [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]/2mog  
and  

B = [ – k1( L/2 – l – δ – r)2  
+ k2{(L – 2δ – 2r)2 – (L/2 + l – δ – r)2}] /2mog. 

 
 

5. Determine the value of m from your measurements and the results obtained in 
PART-A. (3.0 points) 

 
m = 6.2×10-2 kg 

 
 (Explanation)  From the results obtained in PART-B 3 and 4 we get 
 

A – C { }.)2(
2

22
2 lrL

Rgm
m

o

−−−= δ   

 
The measured values are  L = (40.0±0.05)×10-2 m 
       mo = (100.4±0.05)×10-3 kg 
       2R = (3.91±0.005)×10-2 m 
Therefore,  
 

(L/2 - δ - r)2 = {(20.0±0.03) – 0.5 – 1.1}2 ×10-4 m2 = (338.6±0.8)×10-4 m2 

 
and 

2gmoR2 = 2×980×(100.4±0.05)×(1.955±0.003)2 ×10-6kg⋅m3/s2 
= (752±2)×10-6kg⋅m3/s2.  
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The slopes of the two straight lines in the graph (Fig. B-1) of PART-B 1 are  
  

A = 5.0±0.1s2/m  and  C = 2.4±0.1s2/m,  
 

respectively, and 
 
    A - C = 2.6±0.1s2/m.  
 
Since we already obtained m×l = (M + m)×lcm = 2.96×10-3kg⋅m from PART-A, 
the equation  
 

(338.6±0.8)m2 – (752±2)×103×(0.026±0.001)m – (296±8)2 = 0 
or 

(338.6±0.8)m2 – (19600±800)m – (88000±3000) = 0 
 
is resulted, where m is expressed in the unit of g.  
The roots of this equation are 
 

( ) ( ) ( ) ( )
( ) .

8.06.338
3000880008.06.33840098004009800 2

±
±×±+±±±

=m  

 
The physically meaningful positive root is 
 

( ) ( )
( )8.06.338

60000001260000004009800
±

±+±
=m ( )262 ±= g ( ) 26.2 0.2 10−= ± × kg. 

 
 
 
 
PART-C  The spring constants k1 and k2  (6.0 points) 
 
 

1. Measure the periods T1 and T2 of small oscillation shown in Figs. 3 (1) and (2) 
and write down their values, respectively. (1.0 points) 

 
            T1 = 1.1090s   and   T2 = 1.0193s 
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(Explanation)   

 
(1) (2) 

 
Fig. C-1  Small oscillation experimental set up 

 
The measured periods are 
 

 T1 (s)  T2 (s) 
1 1.1085±0.00005 1 1.0194±0.00005 
2 1.1092±0.00005 2 1.0194±0.00005 
3 1.1089±0.00005 3 1.0193±0.00005 
4 1.1085±0.00005 4 1.0191±0.00005 
5 1.1094±0.00005 5 1.0192±0.00005 
6 1.1090±0.00005 6 1.0194±0.00005 
7 1.1088±0.00005 7 1.0194±0.00005 
8 1.1090±0.00005 8 1.0191±0.00005 
9 1.1092±0.00005 9 1.0192±0.00005 
10 1.1094±0.00005 10 1.0193±0.00005 

 
By averaging the10 measurements for each configuration, respectively, we get 
 
       T1 = 1.1090±0.0003s   and   T2 = 1.0193±0.0001s. 
 
 

 
2. Explain, by using equations, why the angular frequencies ω1 and ω2 of small 

oscillation of the configurations are different. (1.0 points) 
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( )
( )
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5
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5
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(Explanation)  The moment of inertia of the Mechanical “Black Box” with respect to 
the pivot at the top of the tube is  
 

( )






 +∆+++= 22

1 5
2

2 rllLmII o   or  ( )






 +∆+−+= 22

2 5
2

2 rllLmII o  

 
depending on the orientation of the MBB as shown in Figs. C-1(1) and (2), 
respectively. 
When the MBB is slightly tilted by an angle θ from vertical, the torque applied by the 
gravity is 
 

( ) ( ) ( ) ( ){ }θθθτ llLmgLMgllLmgLMg ∆+++≈∆+++= 22sin2sin21  

or 
 

( ) ( ) ( ) ( ){ }θθθτ llLmgLMgllLmgLMg ∆+−+≈∆+−+= 22sin2sin22  

depending on the orientation.   
Therefore, the angular frequencies of oscillation become  
 

( )
( )







 +∆+++

∆+++
==

22
1

1

1

5
2

2

22

rllLmI

llLmgLMg

I
o

θ
τ

ω  

and 

( )
( )

.

5
2

2

22
22

2

2

2







 +∆+−+

∆+−+
==

rllLmI

llLmgLMg

I
o

θ
τ

ω  
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3. Evaluate ∆l by eliminating Io from the previous results. (1.0 points) 
 

 

( )7.2 0.9l∆ = ± cm ( ) 27.2 0.9 10−= ± × m 

 
(Explanation)  By rewriting the two expressions for the angular frequencies ω1 and ω2 
as 

( ) ( )






 +∆+++=∆+++ 222

1
2
1 5

2
222 rllLmIllLmgLMg o ωω  

and 

( ) ( )






 +∆+−+=∆+−+ 222

2
2
2 5

2
222 rllLmIllLmgLMg o ωω  

 
one can eliminate the unknown moment of inertia Io of the MBB without the ball. 
By eliminating the Io one gets the equation for ∆l 
 

( ) ( ) ( ) ( )( ).22
2

2
2

2
1

2
2

2
1

2
1

2
2 llLmmgllmggLmM

∆+=++






 ∆+

+
− ωωωωωω  

 
From the measured or given values we get,    
 

( )




















−








=−

2

1

2

2

2
1

2
2

22
TT
ππωω

22

0003.01090.1
2832.6

0001.00193.1
2832.6









±
−








±
=  

= 5.90±0.01s-2 
 

( ) ( ) ( ) ( ) 2141.1 0.05 980 40.0 0.05
27.66 0.04 10

2 2
M m gL −+ ± × × ±

= = ± × kg⋅m2/s2 

 

( ) ( ) glmM
TT

mgl cm+
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2
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2
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2
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22 ππωω  

( ) 9808296
0001.00193.1

2832.6
0003.01090.1

2832.6 22

×±×




















±
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±
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( ) 2203 5 10−= ± × kg⋅m2/s4 

 

( ) cmlmM
TT

ml +















=

2

2

2

1

2
2

2
1

22 ππωω  

 

 

( )3.6 0.1= ± kg⋅m/s4. 

 
Therefore, the equation we obtained in PART-C 3 becomes 
 

( ) ( ) ( ){ } ( ) 55 1052039802621004.066.2701.090.5 ×±+∆××±+×±± l   
 

( ) ( ){ },205.00.40102.02.7 5 l∆+±××±=
 
where ∆l is expressed in the unit of cm. By solving the equation we get  
 

( )7.2 0.9l∆ = ± cm ( ) 27.2 0.9 10−= ± × m 

 
4. Write down the value of the effective total spring constant k of the two-spring 

system. (2.0 points) 
 

k = 9 N/m  
 
(Explanation)  The effective total spring constant is 
 

( ) 10009000
9.02.7
980262

±=
±
×±

=
∆

≡
l

mgk dyne/cm   or   9±1N/m. 

 
5. Obtain the respective values of k1 and k2. Write down their values. (1.0 point) 

 
k1 = 5.7 N/m 
k2 = 3 N/m 

 

( )8296
0001.00193.1

2832.6
0003.01090.1

2832.6 22

±×







±








±
=
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(Explanation)  When the MBB is in equilibrium on a horizontal plane the force 
balance condition for the ball is that 
 

 .
2

2
1

2

2

1

k
k

N
N

rlL
rlL

==
−−+

−−−

δ

δ
    

 
Since 21 kkk += , we get 
 

 k
rL

rlL

rlL
rlL

kk
22

2

1
2

2
1 −−

−−+
=

+
−−+

−−−
=

δ

δ

δ

δ
 

and 

.
22

2
12 k

rL

rlL
kkk

−−

−−−
=−=

δ

δ
 

 
From the measured or given values  
 

( )

( ) .005.063.0
2.20.105.00.40

1.15.0
262
829603.00.20

22
2 ±=

−−±

−−







±
±

+±
=

−−

−−+

rL

rlL

δ

δ
 

 
Therefore, 
 

( ) ( ) 600570010009000005.063.01 ±=±×±=k dyne/cm   or   5.7±0.6N/m, 
and 
 

( ) ( ) 100030006005700100090002 ±=±−±=k dyne/cm   or   3±1N/m. 
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Th 1     AN ILL FATED SATELLITE 
 
 

The most frequent orbital manoeuvres performed by spacecraft 
consist of velocity variations along the direction of flight, namely 
accelerations to reach higher orbits or brakings done to initiate re-entering in 
the atmosphere. In this problem we will study the orbital variations when the 
engine thrust is applied in a radial direction.  

To obtain numerical values use: Earth radius m10376 6⋅= .RT , 
Earth surface gravity 2m/s819.g = , and take the length of the sidereal day 
to be h0240 .T = . 

We consider a geosynchronous1 communications satellite of mass m 
placed in an equatorial circular orbit of radius 0r . These satellites have an 
“apogee engine” which provides the tangential thrusts needed to reach the 
final orbit. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

Question 1 

1.1 (0.3) Compute the numerical value of 0r . 

1.2 (0.3+0.1) Give the analytical expression of the velocity 0v  of the satellite as a function of g, TR , and 0r , and 
calculate its numerical value. 

1.3 (0.4+0.4) Obtain the expressions of its angular momentum 0L  and mechanical energy 0E , as functions of 0v , m, g 
and TR . 

Once this geosynchronous circular orbit has been reached (see Figure F-1), the satellite 
has been stabilised in the desired location, and is being readied to do its work, an error by the 
ground controllers causes the apogee engine to be fired again. The thrust happens to be 
directed towards the Earth and, despite the quick reaction of the ground crew to shut the 
engine off, an unwanted velocity variation v∆  is imparted on the satellite. We characterize 
this boost by the parameter 0v/v∆β = . The duration of the engine burn is always negligible 
with respect to any other orbital times, so that it can be considered as instantaneous.  

 
Question 2 

Suppose 1<β . 

2.1 (0.4+0.5) Determine the parameters of the new orbit2, semi-latus-rectum l  and eccentricity ε , in terms of 0r  and β.  

2.2 (1.0) Calculate the angle α between the major axis of the new orbit and the position vector at the accidental misfire. 

2.3 (1.0+0.2) Give the analytical expressions of the perigee minr  and apogee maxr  distances to the Earth centre, as 
functions of 0r  and β , and calculate their numerical values for 4/1=β . 

2.4 (0.5+0.2) Determine the period of the new orbit, T, as a function of 0T  and β, and calculate its numerical value for 
4/1=β . 

                                                           
1 Its revolution period is 0T . 
2 See the “hint”. 

Image: ESA 
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Question 3 

3.1 (0.5) Calculate the minimum boost parameter, escβ , needed for the satellite to escape Earth gravity. 

3.2 (1.0) Determine in this case the closest approach of the satellite to the Earth centre in the new trajectory, minr ′ , as a 
function of 0r . 

 

Question 4 

Suppose escββ > . 

4.1 (1.0) Determine the residual velocity at the infinity, ∞v , as a function of 0v  
and β. 

4.2 (1.0) Obtain the “impact parameter” b of the asymptotic escape direction in 
terms of 0r and β. (See Figure F-2). 

4.3 (1.0+0.2) Determine the angle φ  of the asymptotic escape direction in terms of 

β. Calculate its numerical value for escββ
2
3

=  . 

 

 

 

 

HINT 

 

Under the action of central forces obeying the inverse-square law, bodies follow 

trajectories described by ellipses, parabolas or hyperbolas. In the approximation m << M 

the gravitating mass M is at one of the focuses. Taking the origin at this focus, the general 

polar equation of these curves can be written as (see Figure F-3) 

  ( )
θε

θ
cos
l

r
−

=
1

     

where l is a positive constant named the semi-latus-rectum and ε  is the eccentricity of the 

curve. In terms of constants of motion: 

  
2

2

mMG

L
l =    and 

2/1

322

22
1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

mMG

LE
ε  

where G is the Newton constant, L is the modulus of the angular momentum of the orbiting mass, with respect to the origin, and E is its  

mechanical energy, with zero potential energy at infinity. 

 
We may have the following cases: 

 
i) If 10 <≤ ε , the  curve is an ellipse (circumference for 0=ε ).  

ii) If 1=ε , the curve is a parabola. 

iii) If 1>ε , the curve is a hyperbola.  

m 

M 

θ 

r 

F-3 

φ  

v∆

0v  

∞v
b

0r  

F-2 
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Question Basic formulas and 
ideas used 

Analytical results Numerical results Marking 
guideline 

1.1   =0r  0.3 

1.2  =0v  =0v  0.4 

1.3 
 =0L  

 
=0E  

 
0.4 
 

0.4 

2.1 

 

 =l  

=ε  

 0.4 

0.5 

2.2   =α  1.0 

2.3 
 

=

=

min

max

r

r
 

=

=

min

max

r

r
 1.2 

 

2.4  =T  =T  0.7 

3.1   =escβ  0.5 

3.2  =′minr   1.0 

4.1  =∞v   1.0 

4.2  =b   1.0 

4.3  =φ  =φ  1.2 
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Th 2     ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES 

 
The technological and scientific transformations underwent during the XIX century produced a compelling need of 

universally accepted standards for the electrical quantities. It was thought the new absolute units should only rely on the 
standards of length, mass and time established after the French Revolution. An intensive experimental work to settle the 
values of these units was developed from 1861 until 1912. We propose here three case studies. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 
  
Determination of the ohm (Kelvin) 

A closed circular coil of N turns, radius a and total resistance R is rotated with 
uniform angular velocity ω about a vertical diameter in a horizontal magnetic 

field iBB
rr

00 = . 

1. (0.5+1.0) Compute the electromotive force ε induced in the coil, and also the 

mean power1 P  required for maintaining the coil in motion. Neglect the coil 

self inductance. 

A small magnetic needle is placed at the center of the coil, as shown in Figure F-1. It 
is free to turn slowly around the Z axis in a horizontal plane, but it cannot follow the rapid 
rotation of the coil. 

2. (2.0) Once the stationary regime is reached, the needle will set at a direction making a small angle θ with 0B
r

. 
Compute the resistance R of the coil in terms of this angle and the other parameters of the system. 

Lord Kelvin used this method in the 1860s to set the absolute standard for the ohm. To avoid the rotating coil, 
Lorenz devised an alternative method used by Lord Rayleigh and Ms. Sidgwick, that we analyze in the next paragraphs. 

 

Determination of the ohm (Rayleigh, Sidgwick). 

The experimental setup is shown in Figure   
F-2. It consists of two identical metal disks D and D' 
of radius b mounted on the conducting shaft SS'. A 
motor rotates the set at an angular velocity ω , which 
can be adjusted for measuring R. Two identical coils 
C and C' (of radius a and with N turns each) 
surround the disks. They are connected in such a 
form that the current I flows through them in 
opposite directions. The whole apparatus serves to 
measure the resistance R.  

 

                                                 
1 The mean value X  of a quantity ( )tX  in a periodic system of period T is  ( )∫=

T
dttX

T
X

0

1
 

You may need one or more of these integrals: 

 0
2

0

2

0

2

0
cossincossin === ∫∫∫

πππ
dxxxdxxdxx ,   π

ππ
== ∫∫

2
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2
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0
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1
nn

n
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=∫  

 

G 

D

4 

C

C' S'

S

F-2 

D'

1 

2 

ω  
R 

I 

3 

X 

Z 

F-1

0B
r

 θ

ω 



36th International Physics Olympiad. Salamanca (España) 2005 
 

Th 2   Page 2 of 3 
 

R.S.E.F. 

3.  (2.0) Assume that the current I flowing through the coils C and C' creates a uniform magnetic field B around D 
and D', equal to the one at the centre of the coil. Compute1 the electromotive force ε induced between the rims 1 
and 4, assuming that the distance between the coils is much larger than the radius of the coils and that a >> b. 

The disks are connected to the circuit by brush contacts at their rims 1 and 4. The galvanometer G detects the flow 
of current through the circuit 1-2-3-4. 

4.  (0.5) The resistance R is measured when G reads zero. Give R in terms of the physical parameters of the system.  

Determination of the ampere 

Passing a current through two conductors and measuring the force between them provides an absolute determination 
of the current itself. The “Current Balance” designed by Lord Kelvin in 1882 exploits this method. It consists of six 
identical single turn coils C1… C6 of radius a, connected in series. As shown in Figure F-3, the fixed coils C1, C3, C4, and 
C6 are on two horizontal planes separated by a small distance 2h. The coils C2 and C5 are carried on balance arms of length 
d, and they are, in equilibrium, equidistant from both planes.  

The current I flows through the various coils in such a direction that the magnetic force on C2 is upwards while that 
on C5 is downwards. A mass m at a distance x from the fulcrum O is required to restore the balance to the equilibrium 
position described above when the current flows through the circuit. 

5. (1.0) Compute the force F on C2 due to the magnetic interaction with C1. For simplicity assume that the force per 
unit length is the one corresponding to two long, straight wires carrying parallel currents.  

6. (1.0) The current I is measured when the balance is in equilibrium. Give the value of I in terms of the physical 
parameters of the system. The dimensions of the apparatus are such that we can neglect the mutual effects of the 
coils on the left and on the right. 

Let M   be the mass of the balance (except for m and the hanging parts), G its centre of mass and l the distance .OG  

7. (2.0) The balance equilibrium is stable against deviations producing small changes zδ  in the height of C2 and 
zδ−  in C5. Compute2 the maximum value maxzδ  so that the balance still returns towards the equilibrium 

position when it is released. 
 

                                                 
2 Consider that the coils centres remain approximately aligned.  

Use the approximations  21
1

1
ββ

β
+≈

±
m   or 2

2
1

1

1
β

β
m≈

±
  for  1<<β , and θθ tansin ≈  for small θ. 

x 
m 

d 

C1 
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Th 3     NEUTRONS IN A GRAVITATIONAL FIELD 

 
In the familiar classical world, an elastic bouncing ball on the Earth’s surface is an ideal example for perpetual 

motion. The ball is trapped: it can not go below the surface or above its turning point. It will remain bounded in this state, 
turning down and bouncing up once and again, forever. Only air drag or inelastic bounces could stop the process and will 
be ignored in the following. 

A group of physicists from the Institute Laue - Langevin in Grenoble reported1 in 2002 experimental evidence on 
the behaviour of neutrons in the gravitational field of the Earth. In the experiment, neutrons moving to the right were 
allowed to fall towards a horizontal crystal surface acting as a neutron mirror, where they bounced back elastically up to the 
initial height once and again.  

The setup of the experiment is sketched in Figure F-1. It consists of the opening W, the neutron mirror M (at height 
z = 0), the neutron absorber A (at height z = H and with length L) and the neutron detector D. The beam of neutrons flies 
with constant horizontal velocity component vx from W to D through the cavity between A and M. All the neutrons that 
reach the surface of A are absorbed and disappear from the experiment. Those that reach the surface of M are reflected 
elastically. The detector D counts the transmission rate N(H), that is, the total number of neutrons that reach D per unit 
time. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

The neutrons enter the cavity with a wide range of positive and negative vertical velocities, vz. Once in the cavity, 
they fly between the mirror below and the absorber above.  

1. (1.5) Compute classically the range of vertical velocities vz(z) of the neutrons that, entering at a height z, can 
arrive at the detector D. Assume that L is much larger than any other length in the problem. 

2. (1.5) Calculate classically the minimum length Lc of the cavity to ensure that all neutrons outside the 
previous velocity range, regardless of the values of z, are absorbed by A. Use vx = 10 m s-1 and H = 50 µm. 

The neutron transmission rate N(H) is measured at D. We expect that it increases monotonically with H.       

3. (2.5) Compute the classical rate Nc(H) assuming that neutrons arrive at the cavity with vertical velocity vz 
and at height z, being all the values of vz and z equally probable. Give the answer in terms of ρ, the constant 
number of neutrons per unit time, per unit vertical velocity, per unit height, that enter the cavity with vertical 
velocity vz and at height z. 

 

                                                 
1  V. V. Nesvizhevsky et al.  “Quantum states of neutrons in the Earth’s gravitational field.” Nature,  415 (2002) 297. Phys Rev D 67, 

102002 (2003). 
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The experimental results obtained by the Grenoble group 

disagree with the above classical predictions, showing instead that the 
value of N(H) experiences sharp increases when H crosses some 
critical heights H1, H2 … (Figure F-2 shows a sketch). In other words, 
the experiment showed that the vertical motion of neutrons bouncing 
on the mirror is quantized. In the language that Bohr and Sommerfeld 
used to obtain the energy levels of the hydrogen atom, this can be 
written as: “The action S of these neutrons along the vertical direction 
is an integer multiple of the Planck action constant h”. Here S is given 
by 

∫ === ...3,2,1,)( nhndzzpS z             (Bohr-Sommerfeld quantization rule) 

where pz is the vertical component of the classical momentum, and the integral covers a whole bouncing cycle. Only 
neutrons with these values of S are allowed in the cavity. 

4. (2.5) Compute the turning heights Hn and energy levels En (associated to the vertical motion) using the 
Bohr-Sommerfeld quantization condition. Give the numerical result for H1 in µm and for E1 in eV.  

The uniform initial distribution ρ of neutrons at the entrance changes, during the flight through a long cavity, into 
the step-like distribution detected at D (see Figure F-2).  From now on, we consider for simplicity the case of a long cavity 
with H < H2. Classically, all neutrons with energies in the range considered in question 1 were allowed through it, while 
quantum mechanically only neutrons in the energy level E1 are permitted. According to the time-energy Heisenberg 
uncertainty principle, this reshuffling requires a minimum time of flight. The uncertainty of the vertical motion energy will 
be significant if the cavity length is small. This phenomenon will give rise to the widening of the energy levels. 

5. (2.0) Estimate the minimum time of flight tq and the minimum length Lq of the cavity needed to observe the 
first sharp increase in the number of neutrons at D. Use vx = 10 m s-1. 

 

Data: 

Planck action constant      s J 10 6.63  -34⋅=h  
Speed of light in vacuum  -18 s m 10  3.00  ⋅=c  
Elementary charge  C 10  1.60 -19⋅=e  
Neutron mass   kg 10  1.67  -27⋅=M  
Acceleration of gravity on Earth g = 9.81 m s-2 

  If necessary, use the expression: ( ) ( )
3

121
2/32/1 xdxx −

−=−∫  
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1  ≤≤ )(zvz   1.5 

2  Lc = Lc = 1.5 

3  Nc(H)=  2.5 

 

4 

 

Hn = 

En = 

H1=             µm 

E1 =              eV 

 

2.5 

 

5 

 

 

tq = 

Lq = 

tq = 

Lq = 

 

2.0 
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PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP 

 
In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta of energy hν. In 1905 

Einstein extended this idea proposing that once emitted, the energy quantum remains intact as a quantum of light (that later 
received the name photon). Ordinary light is composed of an enormous number of photons on each wave front. They 
remain masked in the wave, just as individual atoms are in bulk matter, but h – the Planck’s constant – reveals their 
presence. The purpose of this experiment is to measure Planck's constant. 
  

A body not only emits, it can also absorb radiation arriving from outside. 
Black body is the name given to a body that can absorb all radiation incident upon it, 
for any wavelength. It is a full radiator. Referring to electromagnetic radiation, black 
bodies absorb everything, reflect nothing, and emit everything. Real bodies are not 
completely black; the ratio between the energy emitted by a body and the one that 
would be emitted by a black body at the same temperature, is called emissivity, ε, 
usually depending on the wavelength. 
 

Planck found that the power density radiated by a body at absolute 
temperature T in the form of electromagnetic radiation of wavelength λ can be 
written as  
 

  
( )1/5

1

2 −
=

Tce

c
u

λ
λ

λ
ε    (1) 

 
where c1 and c2 are constants. In this question we ask you to determine c2 experimentally, which is proportional to h. 
 

For emission at small λ, far at left of the maxima in Figure F-1, it is permissible to drop the -1 from the denominator 
of Eq. (1), that reduces to  
 

 
/5

1

2 Tce

c
u

λ
λ

λ
ε=    (2) 

 
The basic elements of this experimental question are sketched in Fig.   

F-2.  
 

• The emitter body is the tungsten filament of an incandescent lamp A that 
emits a wide range of λ’s, and whose luminosity can be varied. 

• The test tube B contains a liquid filter that only transmits a thin band of 
the visible spectrum around a value λ0 (see Fig. F-3). More information 
on the filter properties will be found in page 5. 

• Finally, the transmitted radiation falls upon a photo resistor C (also 
known as LDR, the acronym of Light Dependent Resistor). Some 
properties of the LDR will be described in page 6. 

 
The LDR resistance R depends on its illumination, E, which is 

proportional to the filament power energy density 
  

  0

0

E u
R u

R E

λ γ
λγ
−

−

∝ ⎫⎪ ⇒ ∝⎬
∝ ⎪⎭

 

 
where the dimensionless parameter γ is a property of the LDR that will be determined in the experiment. For this setup we 
finally obtain a relation between the LDR resistance R and the filament temperature T  
 
              TcecR 02 /

3
λγ=      (3) 

 
that we will use in page 6. In this relation c3 is an unknown proportionality constant. By measuring R as a function on T one 
can obtain c2, the objective of this experimental question. 
 
 

F-2 

A 

B 

C 

F-3 

uλ 

 λ  λ0 

F-1 

uλ 

 λ 

T3 

T2 

T1 
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DESCRIPTION OF THE APPARATUS 
 

The components of the apparatus are shown in Fig. F-4, which also includes some indications for its setup. Check 
now that all the components are available, but refrain for making any manipulation on them until reading the instructions in 
the next page. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EQUIPMENT: 
 

1. Platform. It  has a disk on the top that holds a support  for the LDR, a support for the tube and a support for an 
electric lamp of 12 V, 0.1 A. 

2. Protecting cover. 
3. 10 turns and 1 kΩ potentiometer. 
4. 12 V battery. 
5. Red and black wires with plugs at both ends to connect platform to potentiometer.  
6. Red and black wires with plugs at one end and sockets for the battery at the other end. 
7. Multimeter to work as ohmmeter.  
8. Multimeter to work as voltmeter.  
9. Multimeter to work as ammeter.  
10. Test tube with liquid filter. 
11. Stand for the test tube.  
12. Grey filter. 
13. Ruler. 
 

An abridged set of instructions for the use of multimeters, along with information on the least squares method, is 
provided in a separate page. 

F-4 

1 

2 

3 

6 

7 10 11 

4 

5 

8 9 13 12 

A V Ω 
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SETTING UP THE EQUIPMENT 
 
 
 

Follow these instructions: 
 

• Carefully make the electric connections as indicated in Fig. F-4, but do not plug the wires 6 to the 
potentiometer.  

• By looking at Fig. F-5, follow the steps indicated below: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Turn the potentiometer knob anticlockwise until reaching the end.  

2. Turn slowly the support for the test tube so that one of the lateral holes is in front of the lamp and the other in 
front of the LDR. 

3. Bring the LDR nearer to the test tube support until making a light touch with its lateral hole. It is advisable to 
orient the LDR surface as indicated in Fig. F-5. 

4. Insert the test tube into its support. 

5. Put the cover onto the platform to protect from the outside light. Be sure to keep the LDR in total darkness for 
at least 10 minutes before starting the measurements of its resistance. This is a cautionary step, as the 
resistance value at darkness is not reached instantaneously.  

 

F-5 

2 

3 

5 

1 

4 
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Task 1 
 

Draw in Answer Sheet 1 the complete electric circuits in the boxes and between the boxes, when the circuit is fully 
connected. Please, take into account the indications contained in Fig. F-4 to make the drawings. 
 
 
Measurement of the filament temperature 
 

The electric resistance RB of a conducting filament can be given as 
 

   
S
lRB ρ=        (4) 

 
where ρ  is the resistivity of the conductor, l is the length and S the cross section of the filament. 
 

This resistance depends on the temperature due to different causes such as: 
 

• Metal resistivity increases with temperature. For tungsten and for temperatures in the range 300 K to 3655 K, it 
can be given by the empirical expression, valid in SI units, 

 
83.081005.3 ρ⋅=T       (5) 

 
• Thermal dilatation modifies the filament’s length and section. However, its effects on the filament resistance will 

be negligible small in this experiment.  
 

From (4) and (5) and neglecting dilatations one gets  
 

 83.0
BRaT =        (6) 

 
• Therefore, to get T it is necessary to determine a. This can be achieved by measuring the filament resistance RB,0 at 

ambient temperature T0. 
 
 
Task 2 
 
a)  Measure with the multimeter the ambient temperature T0.  
 
b)  It is not a good idea to use the ohmmeter to measure the filament resistance RB,0 at T0 because it introduces a small 

unknown current that increases the filament temperature. Instead, to find RB,0 connect the battery to the potentiometer 
and make a sufficient number of current readings for voltages from the lowest values attainable up to 1 V. (It will prove 
useful to make at least 15 readings below 100 mV.) At the end, leave the potentiometer in the initial position and 
disconnect one of the cables from battery to potentiometer.  

 
Find RB for each pair of values of V and I, translate these values into the Table for Task 2,b) in the Answer Sheets. 
Indicate there the lowest voltage that you can experimentally attain. Draw a graph and represent RB in the vertical axis 
against I.  

 
c)  After inspecting the graphics obtained at b), select an appropriate range of values to make a linear fit to the data suitable 

for extrapolating to the ordinate at the origin, RB,0. Write the selected values in the Table for Task 2, c) in the Answer 
Sheets. Finally, obtain RB,0 and ∆RB,0. 

 
d)  Compute the numerical values of a and ∆a for RB,0 in Ω and T0 in K using (6). 
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OPTICAL PROPERTIES OF THE FILTER  
 
 
 

The liquid filter in the test tube is an aqueous solution of copper sulphate (II) and Orange (II) aniline dye. The 
purpose of the salt is to absorb the infrared radiation emitted by the filament. 

 
The filter transmittance (transmitted intensity/incident intensity) is shown in Figure F-6 versus the wavelength.  

 
 
 

0
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              F-6 
 
 
Task 3 
 
 

Determine λ 0  and ∆λ from Fig. F-6.  
 
Note:       2 ∆λ is the total width at half height and λ 0 the wavelength at the maximum. 
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PROPERTIES OF THE LDR 
 

The material which composes the LDR is non conducting in darkness 
conditions. By illuminating it some charge carriers are activated allowing some flow 
of electric current through it. In terms of the resistance of the LDR one can write the 
following relation 
 
   γ−= bER     (7) 
 
where b is a constant that depends on the composition and geometry of the LDR and 
γ is a dimensionless parameter that measures the variation of the resistance with the 
illumination E produced by the incident  radiation. Theoretically, an ideal LDR 
would have γ  = 1, however many factors intervene, so that in the real case γ  < 1.  
 

It is necessary to determine γ. This is achieved by measuring a pair R and E 
(Fig. F-7) and then introducing between the lamp and the tube the grey filter F (Fig. 
F-8) whose transmittance is known to be 51.2 %, and we consider free of error. This 
produces an illumination E’ = 0.51 E. After measuring the resistance R’ 
corresponding to this illumination, we have  

 
( ) γγ −− == EbRbER 251.0'           ;      

 
From this 

     512.0ln
'

ln γ=
R
R    (8)  

 
Do not carry out this procedure until arriving at part b) of task 4 below. 

 
 
 
Task 4 
 
a) Check that the LDR remained in complete darkness for at least 10 minutes before starting this part. Connect the battery 

to the potentiometer and, rotating the knob very slowly, increase the lamp voltage. Read the pairs of values of V and I 
for V in the range between 9.50 V and 11.50 V, and obtain the corresponding LDR resistances R. (It will be useful to 
make at least 12 readings). Translate all these values to a table in the Answer Sheet. To deal with the delay in the LDR 
response, we recommend the following procedure: Once arrived at V  > 9.5 V, wait 10 min approximately before 
making the first reading. Then wait 5 min for the second one, and so on. Before doing any further calculation go to next 
step. 

 
b) Once obtained the lowest value of the resistance R, open the protecting cover, put the 

grey filter as indicated in F-9,  cover again - as soon as possible - the platform and 
record the new LDR resistance R’. Using these data in (8) compute γ  and ∆γ. 

 
c) Modify Eq. (3) to display a linear dependence of ln R on 0.83

BR− . Write down that 
equation there and label it as (9). 

 
d) Using now the data from a), work out a table that will serve to plot Eq. (9). 
 
e) Make the graphics plot and, knowing that c2 = hc/k, compute h and ∆h by any method 

(you are allowed to use statistical functions of the calculators provided by the 
organization). 

 
(Speed of light, c = 2.998 ·108 m s-1 ; Boltzmann constant, k = 1.381·10-23 J K-1) 
 
 
 
 
 
 
 
 

F 

F-8 

F-9 

F-7 
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Answer sheet  1 
 

 
TASK 1 (2.0 points) 
Draw the electric connections in the boxes and between boxes below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pm 
B 

Ω 

V 

A 

P 

Photoresistor 

Incandescent Bulb 

Potentiometer 

 
 
 
 
 
 

Red socket 

Black socket 

 

 

Ohmmeter Ω 

Voltmeter V 

Ammeter A 

Platform P 

Potentiometer Pm 

Battery B 
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Answer sheet  2 
 

TASK 2 
a) (1.0 points) 
T0 =   
 

 
b) (2.0 points) 

V  I  RB  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Vmin =                             * 
 
* This is a characteristic of your apparatus. You can´t go below it. 
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TASK 2 
 
c) (2.5 points) 
 

V  I  RB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 

RB0  =   ∆ RB0  =  
 

 
 
 
d) (1.0 points)   
 

a =  ∆a =   
 

 
 

TASK 3 (1.0 points) 
 
 

λ0 =  ∆λ  =   
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TASK 4 
 
a) (2.0 points) 

V  I  R  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
b) (1.5 points) 
 

R =  
 

γ  =  

R’ =  
 

∆γ  =  

 
 
 
 

c) (1.0 points) 
 

 
                                Eq. (9) 
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TASK 4 
 
d) (3.0 points) 
 
V I  R  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
e) (3.0 points) 
 

h  =   
 

∆ h =  
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Th1     AN ILL FATED SATELLITE 

SOLUTION 
 

1.1 and 1.2 
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2.1  

 The value of the semi-latus-rectum l is obtained taking into account that the orbital angular momentum is the same 
in both orbits. That is 

  ⇒==== 02
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2

222
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 The eccentricity value is 
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2
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1
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T
+=ε  

where E is the new satellite mechanical energy 
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Combining both, one gets    βε =  

 This is an elliptical trajectory because 1<= βε . 
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2.2 

 The initial and final orbits cross at P, where the satellite engine fired instantaneously (see Figure 4). At this point 

  ( ) ⇒
−

===
αβ

αθ
cos1
0

0
r

rr
2
πα =  

2.3 

 From the trajectory expression one immediately obtains that 
the maximum and minimum values of r correspond to 0=θ  and  

πθ =  respectively (see Figure 4).  Hence, they are given by 

  
ε−

=
1

lrmax ε+
=

1
lrmin  

that is 

  β−
=

1
0

max
r

r     and β+
=

1
0

min
r

r  

 For 4/1=β , one gets 

  m10383m;10635 77 ⋅=⋅= .r.r minmax  

The distances maxr  and minr  can also be obtained from mechanical energy and angular momentum conservation, 

taking into account that r
r

 and v
r

 are orthogonal at apogee and at perigee  
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What remains of them, after eliminating v, is a second-degree equation whose solutions are maxr  and minr . 

2.4 

 By the Third Kepler Law, the period T in the new orbit satisfies that 
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where a, the semi-major axis of the ellipse, is given by 
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3.1 

 Only if the satellite follows an open trajectory it can escape from the Earth gravity attraction. Then, the orbit 
eccentricity has to be equal or larger than one. The minimum boost corresponds to a parabolic trajectory, with ε = 1 

  βε =  ⇒  1=escβ  

 This can also be obtained by using that the total satellite energy has to be zero to reach infinity (Ep = 0) without 
residual velocity (Ek = 0) 

  ( ) 01
2
1 22

0 =−= escmvE β  ⇒  1=escβ  

 This also arises from ∞=T  or from ∞=maxr . 

3.2 

 Due to 1== escβε , the polar parabola equation is  

  
θcos1−

=
lr  

where the semi-latus-rectum continues to be 0rl = . The minimum Earth - satellite distance corresponds to πθ = , where  

  
2
0rrmin =′   

 This also arises from energy conservation (for E = 0) and from the equality between the angular momenta (L0) at the 
initial point P and at maximum approximation, where  r

r
 and v

r
 are orthogonal. 

4.1 

 If the satellite escapes to infinity with residual velocity ∞v , by energy conservation 

  ( ) 222
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∞=−= mvmvE β  ⇒  

  ( ) 2/12
0 1−=∞ βvv  

4.2 

 As 1=>= escββε  the satellite trajectory will be a hyperbola. 

 The satellite angular momentum is the same at P than at the point 
where its residual velocity is ∞v  (Figure 5), thus 

  bvmrvm ∞=00  
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4.3  

 The angle between each asymptote and the hyperbola axis is that appearing in its polar equation in the limit ∞→r . 

This is the angle for which the equation denominator vanishes  

  ⇒=− 0cos1 asymθβ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

β
θ 1cos 1

asym  

 According to Figure 5  
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 For   
2
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2
3

== escββ ,  one gets    rad412138 .º ==φ  
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Hint on the conical curves 
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2.4 Third Kepler's Law ( ) 2/32
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Th 2     ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES  

SOLUTION 
 

1. After some time t, the normal to the coil plane makes an angle ω t with the magnetic field iBB
rr

00 = . Then, the 

magnetic flux through the coil is 

  SBN
rr

⋅= 0φ  

where the vector surface S
r

 is given by ( )jtitaS
rrr

ωωπ sincos2 +=  

Therefore tBaN ωπφ cos0
2=  

The induced electromotive force is  

   
dt
dφε −=  ⇒   tBaN ωωπε sin0

2=  

The instantaneous power is =P ε 2 /R , therefore 

  ( )
R
BaN

P
2

2
0

2 ωπ
=   

where we used  
2
1sin1sin

0
22 =>=< ∫

T
dtt

T
t ωω  

 
2. The total field at the center the coil at the instant t is  

  it BBB
rrr

+= 0  

where iB
r

 is the magnetic field due to the induced current ( )jtitBB ii
rrr

ωω sincos +=  

with  
a

IN
Bi 2

0µ
=  and I = ε / R 

Therefore t
R

BaN
Bi ω

ωπµ
sin

2
0

2
0=   

The mean values of its components are 

   

R
BaN

t
R

BaN
B

tt
R

BaN
B

iy

ix

4
sin

2

0cossin
2

0
2

020
2

0

0
2

0

ωπµ
ω

ωπµ

ωω
ωπµ

==

==
 

And the mean value of the total magnetic field is  

   j
R

BaN
iBBt

rrr

4
0

2
0

0
ωπµ

+=  

The needle orients along the mean field, therefore  

   
R

aN
4

tan
2

0 ωπµ
θ =  
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Finally, the resistance of the coil measured by this procedure, in terms of θ , is 

   θ
ωπµ

tan4

2
0 aN

R =  

3. The force on a unit positive charge in a disk is radial and its modulus is 

   BrBvBv ω==×
rr

  

where B is the magnetic field at the center of the coil 

   
a
I

NB
2
0µ

=  

Then, the electromotive force (e.m.f.) induced on each disk by the magnetic field B is 

   ∫ ===
b

DD bBdrrB
0

2
' 2

1 ωωεε    

Finally, the induced e.m.f. between 1 and 4 is ε = εD + ε D'  

   a
Ib

N
2

2
0 ωµε =  

 

4. When the reading of G vanishes, 0=GI  and Kirchoff laws give an immediate answer. Then we have  

   RI=ε   ⇒  
a

b
NR

2

2
0 ωµ

=  

 

5. The force per unit length f between two indefinite parallel straight wires separated by a distance h is.  

   
h
II

f 210

2π
µ

=  

 for  III == 21   and length aπ2 , the force F induced on C2 by the neighbor coils C1 is 

   20 I
h

a
F

µ
=  

 

6. In equilibrium 

   dFxgm 4=   

 Then 

   204
I

h
da

xgm
µ

=   (1) 

 so that 

    
21

04

/

da
xhgm

I ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

µ
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7. The balance comes back towards the equilibrium position for a little angular deviation δϕ  if the gravity torques with 
respect to the fulcrum O are greater than the magnetic torques.  

  δϕ
δδ

µδϕδϕ cos112cossin 2
0 d

zhzh
IaxgmlMg ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
−

>+  

Therefore, using the suggested approximation 

  δϕ
δµ

δϕδϕ cos1
4

cossin
2

22
0

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+>+

h
z

h
Ida

xgmlMg  

Taking into account the equilibrium condition (1), one obtains 

  δϕ
δ

δϕ cos
h
z

xgmsinlgM
2

2
>   

Finally, for 
d
zδ

ϕδϕδ =≈ sintan  

  
dxm
hlMz

2
<δ  ⇒ 

dxm
hlM

z
2

max =δ  

O 

l 

x 
δϕ 

δϕ 

δ z 

h + δ z 

h - δ z 

h + δ z 

h - δ z 
Mg

mg

d 

G 
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Th 2     ANSWER SHEET 
 

Question Basic formulas and ideas used Analytical results Marking 
guideline 

 

1  

R
P

dt
d

SBN

2

0

ε

ε Φ
Φ

=

−=

⋅=
rr

 ( )
R
BaN

P

tBaN

2

sin
2

0
2

0
2

ωπ

ωωπε

=

=
 

0.5 

1.0 

 

2  

x

y

i

i

B

B

I
a
N

B

BBB

=

=

+=

θ

µ

tan

2
0

0
rrr

 

 

θ
ωπµ

tan4

2
0 aN

R =  

 

2.0 

 

3 

 
rv

BvE
ω=

×=
rrr

 

a
I

NB
2
0µ

=  

∫=
b

rdE
0

rr
ε  

 

a
Ib

N
2

2
0 ωµε =  

 

2.0 

4  IR=ε   
a

b
NR

2

2
0 ωµ

=  0,5 

5  
h
II

f
′

=
π

µ
2

0   20 I
h

a
F

µ
=  1.0 

6 

 

dFxgm 4=    
21

04

/

da
xhgm

I ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

µ
 

 

1.0 

7  maggrav ΓΓ >    
dxm
hlMz

2

max =δ  
 

2.0 
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Th3     QUANTUM EFFECTS OF GRAVITY  
SOLUTION 

 

1. The only neutrons that will survive absorption at A are those that cannot cross H. Their turning points will be below H. 
So that, for a neutron entering to the cavity at height z with vertical velocity vz , conservation of energy implies 

HgMzgMvM z ≤+2
2
1   ⇒  ( ) ( )zHgzvzHg z −≤≤−− 2)(2  

 
2. The cavity should be long enough to ensure the absorption of all 

neutrons with velocities outside the allowed range. Therefore, 
neutrons have to reach its maximum height at least once within the 
cavity. The longest required length corresponds to neutrons that enter 
at z = H with vz = 0 (see the figure). Calling tf to their time of fall 

⇒
⎪
⎭

⎪
⎬

⎫

=

=

2
2
1

2

f

fxc

tgH

tvL

 g
HvL xc

22=   cm4.6=cL  

 
3. The rate of transmitted neutrons entering at a given height z, per unit height, is proportional to the range of allowed 

velocities at that height, ρ being the proportionality constant 

[ ] ( )zHgzvzv
dz

zdN
zz

c −=−= 22)()(
)(

min,max, ρρ  

The total number of transmitted neutrons is obtained by adding the neutrons entering at all possible heights. Calling 
H/zy =  

( ) ( ) ( ) ( )
1

0

2/32/31

0

2/12/3

00
1

3
22212222)( ⎥⎦

⎤
⎢⎣
⎡ −−=−=−== ∫∫∫ yHgdyyHgdzzHgzdNHN

HH
cc ρρρ       

⇒ 2/32
3
4)( HgHNc ρ=  

 
4. For a neutron falling from a height H, the action over a bouncing cycle is twice the action during the fall or the ascent  

( ) 2/3
1

0

2/12/3
0

2
3
41222 HgMdyyHgMdzpS

H

z =−== ∫∫  

Using the BS quantization condition 

   hnHgMS == 2/32
3
4   ⇒ 3/2

3/1

2

2

32
9 n

gM
hH n ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

The corresponding energy levels (associated to the vertical motion) are 

nn HgME =     ⇒  3/2
3/122

32
9 nhgMEn ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

 

Lc 

H 
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Numerical values for the first level: 

  m1065.1
32

9 5
3/1

2

2

1
−×=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

gM
hH  µm5.161 =H  

  eV1069.1J1071.2 1231
11

−− ×=×== HgME   peV1.691 =E  

Note that H1 is of the same order than the given cavity height, H = 50 µm. This opens up the possibility for observing 
the spatial quantization when varying H. 

 

5. The uncertainty principle says that the minimum time t∆  and the minimum energy E∆  satisfy the relation h≥∆∆ tE . 

During this time, the neutrons move to the right a distance 

  
E

vtvx xx ∆
≥∆=∆ h  

Now, the minimum neutron energy allowed in the cavity is E1, so that 1EE ≈∆ . Therefore, an estimation of the 

minimum time and the minimum length required is 

ms0.4s104.0 3

1
=⋅=≈ −

E
tq

h  mm4m104 3

1
=⋅=≈ −

E
vL xq

h
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Th 3     ANSWER SHEET 

 
 

Question Basic formulas used Analytical results Numerical results Marking 
guideline 

1 HgMzgMvM z ≤+2
2
1  ( ) ( )zHgzvzHg z −≤≤−− 2)(2   1.5 

2 

fxc tvL 2=  

2
2
1

ftgH =  
g
HvL xc

22=  cm4.6=cL  1.3 + 0.2 

 

3 
[ ]min,max, zz

c vv
dz

dN
−= ρ  

( ) ∫=
H

cc zdNHN
0

)(  

2/32
3
4)( HgHNc ρ=  

  

2.5 

 

4 

 

nhdzpS
H

z == ∫02  

3/2
3/1

2

2

32
9 n

gM
hH n ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

3/2
3/122

32
9 nhgMEn ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

µm5.161 =H  

peV1.691 =E  

1.6 + 0.2 

0.5 + 0.2 

 

5 

 

h≥∆∆ tE  

1EE ≈∆  

tvx x∆=∆  

1E
tq

h≈  

1E
vL xq

h≈  

ms0.4≈qt  

mm4≈qL  

1.3 + 0.2 

0.3 + 0.2 

 
 



36th International Physics Olympiad. Salamanca (España) 2005 
 
 

 Exp.   Page 1 of 9 

R.S.E.F. 

 
PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP 

SOLUTION 
 
 

TASK 1   
 
 Draw the electric connections in the boxes and between boxes below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Pm 
B 

Ω 

V 

A 

P 

Photoresistor 

Incandescent Bulb
 

Potentiometer 

 
 
 
 
 
 

Red socket 

Black socket 

 

 

OhmmeterΩ 

VoltmeterV 

AmmeterA 

PlatformP 

PotentiometerPm 

BatteryB 
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TASK 2 
a)  
t0 =  24 ºC 
 

T0 =  297 K 
 

∆T0 = 1 K 

 
b) 

V /mV I / mA RB /Ω 
21.9 
30.5 
34.9 
37.0 
40.1 
43.0 
47.6 
51.1 
55.3 
58.3 
61.3 
65.5 
67.5 
73.0 
80.9 
85.6 
89.0 
95.1 
111.9 
130.2 
181.8 
220 
307 
447 
590 
730 
860 
960 

1.87 
2.58 
2.95 
3.12 
3.37 
3.60 
3.97 
4.24 
4.56 
4.79 
5.02 
5.33 
5.47 
5.88 
6.42 
6.73 
6.96 
7.36 
8.38 
9.37 
11.67 
13.04 
15.29 
17.68 
19.8 
21.5 
23.2 
24.4 

11.7 
11.8 
11.8 
11.9 
11.9 
11.9 
12.0 
12.1 
12.1 
12.2 
12.2 
12.3 
12.3 
12.4 
12.6 
12.7 
12.8 
12.9 
13.4 
13.9 
15.6 
16.9 
20.1 
25.1 
29.8 
33.9 
37.1 
39.3 

 
 
 
 

Vmin =  9.2 mV                           * 
 
* This is a characteristic of your apparatus. You can t́ go below it. 

 
 
 
 
 
 
 

We represent RB in the vertical axis against I.  
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In order to work out RB0 , we choose the first ten readings. 
 
 
 
 
 

TASK 2 
 
c) 
 

V /mV I / mA RB /Ω 
21.9  ± 0.1 
30.5 ± 0.1 
34.9 ± 0.1 
37.0 ± 0.1 
40.1 ± 0.1 
43.0 ± 0.1 
47.6 ± 0.1 
51.1 ± 0.1 
55.3 ± 0.1 
58.3 ± 0.1 

 
 
 

1.87 ± 0.01 
2.58 ± 0.01 
2.95 ± 0.01 
3.12 ± 0.01 
3.37 ± 0.01 
3.60 ± 0.01 
3.97 ± 0.01 
4.24 ± 0.01 
4.56 ± 0.01 
4.79 ± 0.01 

 

11.7 ± 0.1 
11.8 ± 0.1 
11.8 ± 0.1 
11.9 ± 0.1 
11.9 ± 0.1 
11.9 ± 0.1 
12.0 ± 0.1 
12.1 ± 0.1 
12.1 ± 0.1 
12.2 ± 0.1 

 

 
 
 
 
 

0

10

20

30

40

50

0 5 10 15 20 25 30
I  /mA

R
 /o

hm
io

s
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Error for RB (We work out the error for first value, as example). 
 

1.0
87.1
01.0

9.21
1.071.11

2222
=






+






=






 ∆+






 ∆=∆

I
I

V
VRR BB  

 
We have worked out RB0 by the least squares. 
 

( )
13.0

05.3538.13010
38.1301.0

1.001.0167.01.0

047.0: axisFor 

01.0: axisFor 

10

05.35

38.130

167.0  slope
4.11

2

2

22

22

0

222222

2

2

2

0

=
−⋅

×=
−

=∆

=⋅+=+=

=
∆

=

=
∆

=

=

=

=

==
=

∑ ∑
∑

∑

∑

∑
∑

IIn

I
R

m

n

R
Y

n

I
X

n

I

I

m
R

B

IR

B
R

I

B

B

B

σ

σσσ

σ

σ

 

 
 

RB0  =  11,4 Ω ∆ RB0  = 0.1 Ω 
 

 
 

10

11

12

13

0 1 2 3 4 5
I  /mA

R
B
 /o

hm
io

s
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d)    40.39
4.11

297       ;      ;  
83.083.0

0

083.0 ==== a
R

T
aaRT  

 
Working out the error for two methods: 
 
Method A 

4.0419.0
40.11
1.083.0

297
140.39   ;  83.0    ;  ln83.0lnln

0

0

0

0
00 ==






 +=∆







 ∆
+

∆
=∆−= a

R
R

T
T

aaRTa
B

B
B  

Method B 
 

Higher value of a:   
( ) ( )

8255.39
1.04.11
1297

83.083.0
00

00
max =

−
+=

∆−

∆+
=

RR

TT
a  

Smaller value of a:        
( ) ( )

9863.38
1.04.11
1297

83.083.0
00

00
min =

+
−=

∆+

∆−
=

RR

TT
a  

 

4.0419.0
2

9863.388255.39
2

minmax ==−=
−

=∆
aa

a  

 
 

a = 39.4 ∆a =  0.4 
 

 
 

TASK 3 
 
Because of  2∆λ  =  620 – 565 ;  ∆λ  = 28 nm   
 

λ0 = 590 nm ∆λ  =  28 nm 
 

 
 

TASK 4 
a) 

V /V I / mA R /kΩ 
9.48 
9.73 
9.83 

100.1 
10.25 
10.41 
10.61 
10.72 
10.82 
10.97 
11.03 
11.27 
11.42 
11.50 

 

85.5 
86.8 
87.3 
88.2 
89.4 
90.2 
91.2 
91.8 
92.2 
93.0 
93.3 
94.5 
95.1 
95.5 

8.77 
8.11 
7.90 
7.49 
7.00 
6.67 
6.35 
6.16 
6.01 
5.77 
5.69 
5.35 
5.17 
5.07 
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b) 

 
 

Because of    702.0512.0ln
11.8
07.5ln251.0ln

'
ln     ;  512.0ln

'
ln ====

R
R

R
R γγ  

 
For working out ∆γ we know that: 

R ± ∆R = 5.07 ± 0.01 kΩ 
R� ± ∆R� = 8.11 ± 0.01 kΩ 
Transmittance, t  = 51.2  % 

Working out the error for two methods: 
 
Method A 

0.005  ;  00479.0
11.8
01.0

07.5
01.0

512.0ln
1

'
'

ln
1   ;  

ln
'ln =∆=






 +=






 ∆+∆== γγ

R
R

R
R

t
∆γ

t
RR  

 
Method B 

Higher value of γ :    70654.0512.0ln
01.011.8
01.007.5lnln

''
lnmax =

+
−=

∆+
∆−= γγ
RR
RR  

 

Smaller value of γ:   69696.0512.0ln
01.011.8
01.007.5lnln

''
lnmax =

−
+=

∆−
∆+= γγ
RR
RR  

 

0.005     ; 00479.0
2

69696.070654.0
2

minmax =∆=−=
−

=∆ γγγγ  

 
R = 5.07 kΩ 
 

γ  = 0.702 

R’ = 8.11 kΩ 
 

∆γ  = 0.005 

 
 
 
c) 

                                               

            lnln ly        consequent

  (6)                 of Because

lnln               then      

(3)       that    know  We

83.0

0

2
3

83.0
0

2
3

3
0

2

−+=

=

+=

=

B

B

T
c

R
a

ccR

aRT

T
ccR

ecR

λ
γ

λ
γ

λ
γ

 

  

                              (9) Eq.   lnln 83.0

0

2
3

−+= BR
a

ccR
λ

γ                     
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d) 
 
 

V /V I / mA RB / Ω T / K RB
-0.83   (S.I.) R / kΩ ln R 

9.48 ± 0.01 85.5 ± 0.1 110.9 ± 0.2 1962 ± 18 (2.008 ± 0.004)10-2 8.77 ± 0.01 2.171 ± 0.001 
9.73± 0.01 86.8 ± 0.1 112.1 ± 0.2 1980 ± 18 (1.990± 0.004)10-2 8.11 ± 0.01 2.093 ± 0.001 
9.83± 0.01 87.3 ± 0.1 112.6 ± 0.2 1987 ± 18 (1.983± 0.004)10-2 7.90 ± 0.01 2.067 ± 0.001 

10.01± 0.01 88.2 ± 0.1 113.5 ± 0.2 2000 ± 18 (1.970± 0.004)10-2 7.49 ± 0.01 2.014 ± 0.001 
10.25± 0.01 89.4 ± 0.1 114.7 ± 0.2 2018 ± 18 (1.952± 0.003)10-2 7.00 ± 0.01 1.946 ± 0.001 
10.41± 0.01 90.2 ± 0.1 115.4 ± 0.2 2028 ± 18 (1.943± 0.003)10-2 6.67 ± 0.01 1.894 ± 0.002 
10.61± 0.01 91.2 ± 0.1 116.3 ± 0.2 2041 ± 18 (1.930± 0.003)10-2 6.35 ± 0.01 1.849 ± 0.002 
10.72± 0.01 91.8 ± 0.1 116.8 ± 0.2 2049 ± 19 (1.923± 0.003)10-2 6.16 ± 0.01 1.818 ± 0.002 
10.82± 0.01 92.2 ± 0.1 117.4 ± 0.2 2057 ± 19 (1.915± 0.003)10-2 6.01 ± 0.01 1.793 ± 0.002 
10.97± 0.01 93.0 ± 0.1 118.0 ± 0.2 2066 ± 19 (1.907± 0.003)10-2 5.77 ± 0.01 1.753 ± 0.002 
11.03± 0.01 93.3 ± 0.1 118.2 ± 0.2 2069 ± 19 (1.904± 0.003)10-2 5.69 ± 0.01 1.739 ± 0.002 
11.27± 0.01 94.5 ± 0.1 119.3 ± 0.2 2085 ± 19 (1.890± 0.003)10-2 5.35 ± 0.01 1.677 ± 0.002 
11.42± 0.01 95.1 ± 0.1 120.1 ± 0.2 2096 ± 19 (1.880± 0.003)10-2 5.15 ± 0.01 1.639 ± 0.002 
11.50± 0.01 95.5 ± 0.1 120.4 ± 0.2 2101 ± 19 (1.875± 0.003)10-2 5.07 ± 0.01 1.623 ± 0.002 

 unnecessary  
 
 
We work out the errors for all the first row, as example. 
 

Error for RB:   Ω=





+






=






 ∆+






 ∆=∆   2.0

5.85
1.0

48.9
01.09.110

2222

I
I

V
VRR BB  

 

Error for T:   K 18
9.110

2.083.0
4.39
3.01962  ;  83.0 =






 +=∆







 ∆+∆=∆ T
R
R

a
aTT

B

B  

 
Error for RB

-0.83 :   

                            
( )

( ) 283.0

83.083.083.0

10004.0
9.110

2.0020077.0

  ;   83.0  ;  ln83.0ln  ;  

−−

−−−

×≈=∆

∆=∆∆⋅=∆−==

B

B

B
BB

B

B
BB

R

R
RRR

R
RxxRxRx

 

 

Error for lnR :   001.0
77.8
01.0ln     ;  ln ==∆∆=∆ R

R
RR  

 
e) 
 
We plot ln R versus RB
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Theory Question 1: Gravity in a Neutron Interferometer 
 
Enter all your answers into the Answer Script. 
 

a a 

a a 

2θ 2θ BS BS 

M 

M 

BS - Beam Splitters M - Mirror 

IN OUT2 

OUT1 

 
Figure 1a 

 
 
 

φ OUT1 
IN OUT2  

 
 
 
 
 

Figure 1b 
 
Physical situation   We consider the situation of the famous neutron-interferometer 
experiment by Collela, Overhauser and Werner, but idealize the set-up inasmuch as we 
shall assume perfect beam splitters and mirrors within the interferometer. The experiment 
studies the effect of the gravitational pull on the de Broglie waves of neutrons.  

The symbolic representation of this interferometer in analogy to an optical 
interferometer is shown in Figure 1a. The neutrons enter the interferometer through the 
IN port and follow the two paths shown. The neutrons are detected at either one of the 
two output ports, OUT1 or OUT2. The two paths enclose a diamond-shaped area, which 
is typically a few cm2 in size. 

The neutron de Broglie waves (of typical wavelength of 10−10
 m) interfere such 

that all neutrons emerge from the output port OUT1 if the interferometer plane is 
horizontal. But when the interferometer is tilted around the axis of the incoming neutron 
beam by angle φ  (Figure 1b), one observes a φ  dependent redistribution of the neutrons 
between the two output ports OUT1 and OUT2.  
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Geometry       For °= 0φ  the interferometer plane is horizontal; for °= 90φ  the plane is 
vertical with the output ports above the tilt axis.  
 
1.1 (1.0) How large is the diamond-shaped area A  enclosed by the two paths of the 

interferometer? 
 

1.2 (1.0) What is the height H  of output port OUT1 above the horizontal plane of the 
tilt axis? 
 

Express A  and H  in terms of , a θ , and φ . 
 
 
Optical path length      The optical path length Nopt (a number) is the ratio of the 
geometrical path length (a distance) and the wavelength λ . If λ  changes along the path, 
Nopt is obtained by integrating  along the path. 1−λ
 
1.3 (3.0) What is the difference ΔNopt in the optical path lengths of the two paths 

when the interferometer has been tilted by angle φ ? Express your answer in terms 
of , a θ , and φ  as well as the neutron mass M, the de Broglie wavelength 0λ  of 
the incoming neutrons, the gravitational acceleration g, and Planck’s constant . h
 

1.4  
 
 

(1.0) Introduce the volume parameter 

2

2

gM
hV =  

and express ΔNopt solely in terms of A , V , 0λ , and φ . State the value of V  for 
M = 1.675×10−27

 kg, g = 9.800 m s−2, and h = 6.626 × 10−34
 J s. 

 
1.5 (2.0) How many cycles — from high intensity to low intensity and back to high 

intensity — are completed by output port OUT1 when φ  is increased from 
°−= 90φ  to °= 90φ ? 

  
Experimental data       The interferometer of an actual experiment was characterized by 
a = 3.600 cm and °= 10.22θ , and 19.00 full cycles were observed. 
 
1.6 (1.0) How large was 0λ  in this experiment? 

 
1.7 (1.0) If one observed 30.00 full cycles in another experiment of the same kind that 

uses neutrons with 0λ  = 0.2000 nm, how large would be the area A ? 
 

Hint: If 1<<xα , it is permissible to replace by ( )αx+1 xα+1 . 
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Geometry 
 

  
1.1 The area is 

 
   =A
 
 
 
 
 
 
 
 
 

 
1.2 

 
The height is 
 
  =H  
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1.3 In terms of , a θ , φ , M , 0λ , g , and : h

 
  ΔNopt = 
 
 
 
 
 

  
1.4 
 
 

 
In terms of A , V , 0λ , and φ : 
 
  ΔNopt = 
 
 
 
 
 
 
The numerical value of V  is 
 
   =V
 
 
 
 
 
 

 
1.5 

 
The number of cycles is 
 
  # of cycles = 
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1.6 The de Broglie wavelength was 

 
  =0λ  
 
 
 
 
 
 
 
 

 
1.7 

 
The area is 
 
   =A
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Theory Question 2: Watching a Rod in Motion 
 
Enter all your answers into the Answer Script. 

pinhole camera 

D

rod x
v 0

 
Physical situation   A pinhole camera, with the pinhole at 0=x  and at distance  from 
the

D
x axis, takes pictures of a rod, by opening the pinhole for a very short time. There are 

equidistant marks along the x axis by which the apparent length of the rod, as it is seen 
on the picture, can be determined from the pictures taken by the pinhole camera. On a 
picture of the rod at rest, its length is . However, the rod is not at rest, but is moving 
with constant velocity 

L
υ  along the x  axis. 

 
Basic relations    A picture taken by the pinhole camera shows a tiny segment of the rod 
at position . x~
 

2.1     (0.6) What is the actual position x  of this segment at the time when the picture is 
taken? State your answer in terms of x~ , , , D L υ , and the speed of light 

=3.00×10c 8 m s-1. Employ the quantities  

c
υβ =  and 

21
1
β

γ
−

=  

if they help to simplify your result. 
 

2.2     (0.9) Find also the corresponding inverse relation, that is: express x~ in terms of x , 
, D L , υ , and . c

Note: The actual position is the position in the frame in which the camera is at rest 
 
Apparent length of the rod     The pinhole camera takes a picture at the instant when the 
actual position of the center of the rod is at some point . 0x
 

2.3     (1.5) In terms of the given variables, determine the apparent length of the rod on 
this picture. 
 

2.4 (1.5) Check one of the boxes in the Answer Script to indicate how the apparent 
length changes with time. 
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Symmetric picture    One pinhole-camera picture shows both ends of the rod at the same 
distance from the pinhole. 
 
2.5     (0.8) Determine the apparent length of the rod on this picture. 

 
2.6     (1.0) What is the actual position of the middle of the rod at the time when this 

picture is taken? 
 

2.7     (1.2) Where does the picture show the image of the middle of the rod? 
 
Very early and very late pictures    The pinhole camera took one picture very early, 
when the rod was very far away and approaching, and takes another picture very late, 
when the rod is very far away and receding. On one of the pictures the apparent length is 
1.00 m, on the other picture it is 3.00 m. 
 
2.8 (0.5) Check the box in the Answer Script to indicate which length is seen on 

which picture. 
 

2.9     (1.0) Determine the velocity υ . 
 

2.10   (0.6) Determine the length L  of the rod at rest. 
 

2.11   (0.4) Infer the apparent length on the symmetric picture. 
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Basic Relations 
 
2.1   

 
x  value for given  value: x~
 
  x  = 
 
 
 

 
2.2   

 
x~  value for given x  value: 
 
  x~  = 
 
 
 
 
 
 
 

 
Apparent length of the rod 

 

 
2.3   

 
The apparent length is 
 
  )(~

0xL  = 
 
 
 
 
 
 

 
2.4   

 
Check one: The apparent length 

 increases first, reaches a maximum value, then decreases. 
 decreases first, reaches a minimum value, then increases. 
 decreases all the time. 
 increases all the time. 
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Symmetric picture 
 

 
2.5   

 
The apparent length is 
 
  L~ = 
 
 
 
 
 
 
 
 
 

 
2.6   

 
The actual position of the middle of the rod is 
 
   = 0x
 
 
 
 
 
 
 
 
 

 
2.7   

 
The picture shows the middle of the rod at a distance 
 
   = l
 
 
 
 
 
 
 
 
 
from the image of the front end of the rod. 
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Very early and very late pictures 

 

 
2.8    

 
Check one: 

 The apparent length is 1 m on the early picture and 3 m on the 
late picture. 

 The apparent length is 3 m on the early picture and 1 m on the 
late picture. 

 
2.9 

 
The velocity is 
 
  υ  = 
 
 
 
 
 
 
 
 

 
2.10  

 
The rod has length 
 
  L = 
 
 
 
 
 
 
 
at rest. 

 
2.11 

 
The apparent length on the symmetric picture is 
 
  L~ = 
 
 
 
 
 
 

 



Theory Question 3 
Page 1 of 8 

 
 
Theory Question 3 
 
This question consists of five independent parts. Each of them asks for an estimate of an 
order of magnitude only, not for a precise answer. Enter all your answers into the 
Answer Script. 
 
Digital Camera    Consider a digital camera with a square CCD chip with linear 
dimension L  = 35 mm having Np = 5 Mpix (1 Mpix = 106 pixels). The lens of this 
camera has a focal length of = 38 mm. The well known sequence of numbers (2, 2.8, 4, 
5.6, 8, 11, 16, 22) that appear on the lens refer to the so called F-number, which is 
denoted by  and defined as the ratio of the focal length and the diameter D  of the 
aperture of the lens, .  

f

#F
DfF /#=

 
3.1 (1.0) Find the best possible spatial resolution minxΔ , at the chip, of the camera as 

limited by the lens. Express your result in terms of the wavelength λ  and the F-
number  and give the numerical value for #F λ = 500 nm. 
 

3.2 (0.5) Find the necessary number N  of Mpix that the CCD chip should possess in 
order to match this optimal resolution. 
 

3.3 (0.5) Sometimes, photographers try to use a camera at the smallest practical 
aperture. Suppose that we now have a camera of = 16 Mpix, with the chip size 
and focal length as given above. Which value is to be chosen for  such that the 
image quality is not limited by the optics? 

0N
#F

 
3.4 (0.5) Knowing that the human eye has an approximate angular resolution of 

φ  = 2 arcmin and that a typical photo printer will print a minimum of 300 dpi 
(dots per inch), at what minimal distance  should you hold the printed page from 
your eyes so that you do not see the individual dots? 

z

 
Data 1 inch = 25.4 mm 
 1 arcmin = 2.91 × 10−4 rad 
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Hard-boiled egg       An egg, taken directly from the fridge at temperature = 4°C, is 
dropped into a pot with water that is kept boiling at temperature . 

0T

1T
 

3.5 (0.5) How large is the amount of energy U  that is needed to get the egg 
coagulated? 
 

3.6 (0.5) How large is the heat flow  that is flowing into the egg? J
 

3.7 (0.5) How large is the heat power  transferred to the egg? P
 

3.8 (0.5) For how long do you need to cook the egg so that it is hard-boiled? 
 
Hint You may use the simplified form of Fourier’s Law rTJ ΔΔ= /κ , where  is the 

temperature difference associated with 
TΔ

rΔ , the typical length scale of the problem. 
The heat flow  is in units of W mJ −2. 
 

Data Mass density of the egg: μ = 103
 kg m−3

Specific heat capacity of the egg: C = 4.2 J K−1
 g−1

Radius of the egg: R = 2.5 cm 
Coagulation temperature of albumen (egg protein): = 65°C  cT
Heat transport coefficient: κ  = 0.64 W K−1 m−1 (assumed to be the same for liquid 
and solid albumen) 

  
Lightning      An oversimplified model of lightning is presented. Lightning is caused by 
the build-up of electrostatic charge in clouds. As a consequence, the bottom of the cloud 
usually gets positively charged and the top gets negatively charged, and the ground below 
the cloud gets negatively charged. When the corresponding electric field exceeds the 
breakdown strength value of air, a disruptive discharge occurs: this is lightning. 
 

time.



.
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0 τ = 0.1ms  
 

Idealized current pulse flowing between the cloud and the ground during 
lightning. 
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Answer the following questions with the aid of this simplified curve for the current as a 
function of time and these data: 

Distance between the bottom of the cloud and the ground: h = 1 km; 
Breakdown electric field of humid air:  = 300 kV m0E -1; 
Total number of lightning striking Earth per year: 32 × 106; 
Total human population: 6.5 × 109 people. 

 
3.9 (0.5) What is the total charge Q  released by lightning? 

 
3.10 (0.5) What is the average current I  flowing between the bottom of the cloud and 

the ground during lightning? 
 

3.11 (1.0) Imagine that the energy of all storms of one year is collected and equally 
shared among all people. For how long could you continuously light up a 100 W 
light bulb for your share? 
 

 
   
Capillary Vessels      Let us regard blood as an incompressible viscous fluid with mass 
density μ similar to that of water and dynamic viscosity η  = 4.5 g m−1 s−1. We model 
blood vessels as circular straight pipes with radius r and length L and describe the blood 
flow by Poiseuille’s law,  
 

DRp =Δ , 
 
the Fluid Dynamics analog of Ohm’s law in Electricity. Here pΔ  is the pressure 
difference between the entrance and the exit of the blood vessel, υSD =  is the volume 
flow through the cross-sectional area S of the blood vessel and υ  is the blood velocity. 
The hydraulic resistance R is given by 
 

4
8

r
LR

π
η

= . 

 
For the systemic blood circulation (the one flowing from the left ventricle to the right 
auricle of the heart), the blood flow is D ≈  100 cm3s−1 for a man at rest. Answer the 
following questions under the assumption that all capillary vessels are connected in 
parallel and that each of them has radius r = 4 μm and length L = 1 mm and operates 
under a pressure difference = 1 kPa. pΔ
 

3.12 (1.0) How many capillary vessels are in the human body? 
 

3.13 (0.5) How large is the velocity υ  with which blood is flowing through a capillary 
vessel? 
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Skyscraper      At the bottom of a 1000 m high skyscraper, the outside temperature is 
Tbot= 30°C. The objective is to estimate the outside temperature Ttop at the top. Consider a 
thin slab of air (ideal nitrogen gas with adiabatic coefficient γ  = 7/5) rising slowly to 
height z where the pressure is lower, and assume that this slab expands adiabatically so 
that its temperature drops to the temperature of the surrounding air. 
 
3.14 (0.5) How is the fractional change in temperature  related to , the 

fractional change in pressure? 
TdT / pdp /

 
3.15 (0.5) Express the pressure difference  in terms of , the change in height. dp dz

 
3.16 (1.0) What is the resulting temperature at the top of the building? 

 
Data Boltzmann constant: k = 1.38 × 10−23

 J K−1

Mass of a nitrogen molecule: m = 4.65 × 10−26
 kg 

Gravitational acceleration: g = 9.80 m s−2
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Digital Camera 
 

 
3.1 

 
The best spatial resolution is 
 

  (formula:)  =Δ minx
 
 
 
 
which gives 
  (numerical:)  =Δ minx
 
 
 
 
for λ  = 500 nm. 

 
3.2 

 
The number of Mpix is 
 

  N = 
 
 
 
 

 
3.3 

 
The best F-number value is 
 

   = #F
 
 
 
 
 

 
3.4  

 
The minimal distance is 
 

  z = 
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The required energy is 
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The heat flow is 
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The heat power transferred is 
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3.8 

 
The time needed to hard-boil the egg is 
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3.9 

 
The total charge is 
 
   =Q
 
 
 
 

 
3.10 

 
The average current is 
 
  =I  
 
 
 
 

 
3.11 

 
The light bulb would burn for the duration 
 
   =t
 
 
 
 

 
Capillary Vessels 

 

 
3.12 

 
There are 
 
   =N
 
 
 
capillary vessels in a human body. 

 
3.13 

 
The blood flows with velocity 
 
  =υ  
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List of apparatus and materials 

Label  Component  Quantity  Label  Component  Quantity 

○ A  Microwave transmitter  1  ○ I  Lattice structure in a 
black box 

1 

○ B  Microwave receiver  1  ○ J  Goniometer  1 

○ C  Transmitter/receiver 
holder 

2  ○ K  Prism holder  1 

○ D  Digital multimeter  1  ○ L  Rotating table  1 

○ E  DC power supply for 
transmitter 

1  ○ M  Lens/reflector holder  1 

○ F  Slab as a “Thin film” 
sample 

1  ○ N  Planocylindrical lens  1 

○ G  Reflector (silver metal 
sheet) 

1  ○ O  Wax prism  2 

○ H  Beam splitter (blue 
Perspex) 

1  BluTack  1 pack 

Vernier caliper 
(provided separately) 

30 cm ruler (provided 
separately)
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Caution: 

•  The output power of the microwave transmitter is well within standard safety 

levels. Nevertheless, one should never look directly into the microwave horn at 

close range when the transmitter is on. 

•  Do not open the box containing the lattice ○ I  . 

•  The wax prisms ○ O  are fragile (used in Part 3). 

Note: 

•  It is important to note that the microwave receiver output (CURRENT) is 

proportional to the AMPLITUDE of the microwave. 

•  Always use LO gain setting of the microwave receiver. 

•  Do not change the range of the multimeter during the data collection. 

•  Place the unused components away from the experiment to minimize 

interference. 

•  Always use the component labels (○ A  , ○ B  , ○ C  ,…) to indicate the components 
in all your drawings.



Experimental Competition  Page 4 

The  digital  multimeter  should  be  used  with  the  two  leads  connected  as  shown  in  the 
diagram. You should use the “2m” current setting in this experiment. 

Red lead Black lead
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Part 1:  Michelson interferometer 

1.1. Introduction 

In a Michelson  interferometer, a beam splitter sends an  incoming electromagnetic (EM) 

wave  along two separate paths, and then brings the constituent waves back together after 

reflection so that they superpose, forming an interference pattern. Figure 1.1 illustrates the 

setup for a Michelson interferometer. An incident wave travels from the transmitter to the 

receiver along two different paths. These two waves superpose and interfere at the receiver. 

The strength of  signal at  the  receiver depends on  the phase difference  between  the  two 

waves, which can be varied by changing the optical path difference. 

Reflectors 

Beam 
splitter 

Transmitter 

Receiver 

Reflectors 

Beam 
splitter 

Transmitter 

Receiver 

1.2. List of components 

1)  Microwave transmitter ○ A with holder ○ C 

2)  Microwave receiver ○ B with holder○ C 

3)  Goniometer ○ J 

4)  2 reflectors: reflector ○ G with holder ○ M  and thin film ○ F  acting as a reflector. 

5)  Beam splitter ○ H with rotating table ○ L  acting as a holder 

6)  Digital multimeter ○ D 

Figure 1.1: Schematic diagram of a Michelson interferometer.
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1.3. Task: Determination of wavelength of the microwave  [2 marks] 

Using  only  the  experimental  components  listed  in  Section  1.2,  set  up  a  Michelson 

interferometer experiment to determine the wavelength λ of the microwave in air. Record 

your data and determine λ in such a way that the uncertainty is ≤ 0.02 cm. 

Note that the “thin film” is partially transmissive, so make sure you do not stand or move 

behind it as this might affect your results. 

Part 2:  “Thin film” interference 

2.1. Introduction 

A beam of EM wave incident on a dielectric thin film splits into two beams, as shown in 

Figure  2.1.  Beam  A  is  reflected  from  the  top  surface  of  the  film  whereas  beam  B  is 

reflected from the bottom surface of the film. The superposition of beams A and B results 

in the so called thin film interference. 

A 

B 
θ 1 θ 1 

θ 2 

t n 

A 

B 
θ 1 θ 1 

θ 2 

t n 

Figure 2.1: Schematic of thin film interference. 

The  difference  in  the  optical  path  lengths  of  beam  A  and  B  leads  to  constructive  or 

destructive interference. The resultant EM wave intensity I depends on the path difference 

of  the two interfering beams which  in turn depends on the angle of  incidence, θ1, of the
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incident beam, wavelength λ of the radiation, and the thickness t and refractive index n of 

the thin film. Thus, the refractive index n of the thin film can be determined from Iθ1 plot, 

using values of t and λ. 

2.2.  List of components 

1)  Microwave transmitter ○ A with holder ○ C 

2)  Microwave receiver ○ B with holder○ C 

3)  Planocylindrical lens ○ N  with holder ○ M 

4)  Goniometer ○ J 

5)  Rotating table ○ L 

6)  Digital multimeter ○ D 

7)  Polymer slab acting as a “thin film” sample ○ F 
8)  Vernier caliper 

2.3. Tasks: Determination of refractive index of polymer slab  [6 marks] 

1) Derive expressions for the conditions of constructive and destructive interferences 

in terms of θ1, t, λ and n. 

[1 mark] 

2) Using only the experimental components listed in Section 2.2, set up an experiment 

to measure the receiver output S as a function of  the angle of  incidence θ1  in  the 

range from 40 o  to 75 o . Sketch your experimental setup, clearly showing the angles 

of incidence and reflection and the position of the film on the rotating table. Mark 

all  components  using  the  labels  given  on  page  2.  Tabulate  your  data.  Plot  the 

receiver output S versus the angle of incidence θ1. Determine accurately the angles 

corresponding to constructive and destructive interferences. 

[3 marks] 

3) Assuming that the refractive index of air is 1.00, determine the order of interference 

m and the refractive index of the polymer slab n. Write the values ofm and n on the 

answer sheet.
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[1.5 marks] 

4) Carry out error analysis for your results and estimate the uncertainty of n. Write the 

value of the uncertainty Δn on the answer sheet. 

[0.5 marks] 

Note: 

•  The  lens  should  be  placed  in  front  of  the  microwave  transmitter  with  the  planar 

surface  facing  the  transmitter  to  obtain  a  quasiparallel  microwave  beam.  The 

distance between the planar surface of the lens and the aperture of transmitter horn 

should be 3 cm. 

•  For best results, maximize the distance between the transmitter and receiver. 

•  Deviations  of  the microwave  emitted  by  transmitter  from  a  plane  wave may  cause 

extra peaks in the observed pattern. In the prescribed range from 40 o to 75 o , only one 

maximum and one minimum exist due to interference. 

Part 3:  Frustrated Total Internal Reflection 

3.1. Introduction 

The phenomenon of total internal reflection (TIR) may occur when the plane wave travels 

from an optically dense medium  to  less dense medium. However,  instead of TIR at  the 

interface as predicted by geometrical optics, the incoming wave in reality penetrates into 

the less dense medium and travels for some distance parallel to the interface before being 

scattered back to the denser medium (see Figure 3.1). This effect can be described by a 

shift D of the reflected beam, known as the GoosHänchen shift. 

Prism 

Air 

n 1 

n 2 

θ 1  D 

Figure 3.1: A sketch illustrating an EM wave undergoing total internal reflection in a 
prism. The shift D parallel to the surface in air represents the GoosHänchen shift
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d 

n 1 

θ 1  D 

n 1 

n 2 

Prism 

Prism 

Air 

Transmitter 

Receiver 

z 

If another medium of refractive index n1 (i.e. made of the same material as the first medium) 

is placed at a small distance d to the first medium as shown in Figure 3.2, tunneling of the 

EM wave through the second medium occurs. This intriguing phenomenon is known as the 

frustrated  total  internal  reflection  (FTIR).  The  intensity  of  the  transmitted  wave,  It, 

decreases exponentially with the distance d: 

( ) 0 exp 2 t I I d γ = −  (3.1) 

where I0  is the intensity of the incident wave and γ is: 

2 
2 1 

1 2 
2 

2  sin 1 n 
n 

π γ θ 
λ 

= −  (3.2) 

where λ  is  the wavelength  of EM wave  in  medium  2  and  n2  is  the  refractive  index  of 

medium 2 (assume that the refractive index of medium 2, air, is 1.00). 

3.2. List of components 

1)  Microwave transmitter ○ A  with holder ○ C 

Figure 1.2: A sketch of the experimental setup showing the prisms and the air gap of 
distance d. The shift D parallel to the surface in air represents the GoosHänchen shift. 
z is the distance from the tip of the prism to the central axis of the transmitter.
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2)  Microwave receiver ○ B  with holder ○ C 

3)  Planocylindrical lens ○ N  with holder ○ M 

4)  2 equilateral wax prisms ○ O  with holder ○ K  and rotating table ○ L  acting as a 
holder 

5)  Digital multimeter ○ D 

6)  Goniometer○ J 
7)  Ruler 

3.3. Description of the Experiment 

Using  only  the  list  of  components  described  in  Section  3.2,  set  up  an  experiment  to 

investigate the variation of the intensity It as a function of the air gap separation d in FTIR. 

For consistent results, please take note of the following: 

•  Use one arm of the goniometer for this experiment. 

•  Choose the prism surfaces carefully so that they are parallel to each other. 

•  The distance from the centre of the curved surface of the lens should be 2 cm from 

the surface of the prism. 

•  Place the detector such that its horn is in contact with the face of the prism. 

•  For each value of d, adjust the position of the microwave receiver along the prism 

surface to obtain the maximum signal. 

•  Make sure that  the digital multimeter  is on the 2mA range. Collect data starting 

from d = 0.6 cm. Discontinue the measurements when the reading of the multimeter 

falls below 0.20 mA. 

3.4. Tasks: Determination of refractive index of prism material  [6 marks] 

Task 1 

Sketch  your  final  experimental  setup  and mark  all  components  using  the  labels 

given at page 2. In your sketch, record the value of the distance z (see Figure 3.2), 

the distance from the tip of the prism to the central axis of the transmitter. 

[1 Mark] 

Task 2 

Perform your experiment and tabulate your data. Perform this task twice. 

[2.1 Marks]
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Task 3 

(a)  By plotting appropriate graphs, determine the refractive index, n1, of the prism 

with error analysis. 

(b)  Write the refractive index n1, and its uncertainty ∆n1, of the prism in the answer 

sheet provided. 

[2.9 Marks] 

Part 4: Microwave diffraction of a metalrod lattice: Bragg reflection 

4.1. Introduction 

Bragg’s Law 

The lattice structure of a real crystal can be examined using Bragg’s Law,

             λ θ  m d = sin 2     (4.1) 

where  d  refers  to  the  distance  between  a  set of  parallel  crystal  planes  that  “reflect”  the 

Xray; m is the order of diffraction and θ is the angle between the incident Xray beam and 

the crystal planes.  Bragg’s law is also commonly known as Bragg’s reflection or Xray 

diffraction.
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Metalrod lattice 

Because the wavelength of the Xray is comparable to the lattice constant of the crystal, 

traditional  Bragg’s  diffraction  experiment  is  performed  using  Xray.  For  microwave, 

however, diffraction occurs in  lattice structures with much  larger  lattice constant, which 

can be measured easily with a ruler. 

a 

d 

b 

x 

y 

Figure 4.1: A metalrod lattice of  lattice constants a and b, and interplanar 
spacing d. 

Figure  4.2: Topview of  the metalrod  lattice  shown  in  Fig.  4.1  (not  to 
scale). The lines denote diagonal planes of the lattice. 

x 

y 

z 

a 

d 
b
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In this experiment, the Bragg law is used to measure the lattice constant of a lattice made of 

metal rods. An example of such metalrod lattice is shown in Fig. 4.1, where the metal rods 

are  shown  as  thick vertical  lines. The  lattice  planes  along  the  diagonal  direction  of  the 

xyplane are shown as shaded planes. Fig. 4.2 shows the topview (looking down along the 

zaxis) of the metalrod lattice, where the points represent the rods and the lines denote the 

diagonal lattice planes. 

4.2. List of components 

1)  Microwave transmitter ○ A  with holder ○ C 

2)  Microwave receiver ○ B  with holder ○ C 

3)  Planocylindrical lens ○ N  with holder ○ M 

4)  Sealed box containing a metalrod lattice ○ I 

5)  Rotating table ○ L 

6)  Digital multimeter ○ D 

7)  Goniometer○ J 

Figure 4.3: A simple square lattice. 

In this experiment, you are given a simple square lattice made of metal rods, as illustrated 

in Fig. 4.3. The lattice is sealed in a box. You are asked to derive the lattice constant a of 

x 

y 

z 

a 

a
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the  lattice  from  the experiment. DO NOT open  the  box. No marks will  be given  to the 

experimental results if the seal is found broken after the experiment. 

4.3. Tasks: Determination of lattice constant of given simple square lattice [6 Marks] 

Task 1 

Draw a topview diagram of the simple square lattice shown in Fig. 4.3. In the diagram, 

indicate  the  lattice  constant  a  of  the  given  lattice  and  the  interplanar  spacing  d  of  the 

diagonal planes. With the help of this diagram, derive Bragg’s Law. 

[1 Mark] 

Task 2 

Using Bragg’s law and the apparatus provided, design an experiment to perform Bragg 

diffraction experiment to determine the lattice constant a of the lattice. 

(a)  Sketch the experimental set up. Mark all components using the labels in page 2 and 

indicate clearly the angle between the axis of the transmitter and lattice planes, θ, 

and the angle between the axis of the transmitter and the axis of the receiver, ζ. In 

your experiment, measure  the diffraction on  the diagonal planes  the direction of 

which is indicated by the red line on the box. 

[1.5 Marks] 

(b) Carry out the diffraction experiment for 20° ≤ θ ≤ 50°. In this range, you will only 

observe  the  first order diffraction.  In  the answer  sheet,  tabulate  your  results and 

record both the θ and ζ. 

[1.4 Marks] 

(c)  Plot the quantity proportional to the intensity of diffracted wave as a function of θ. 

[1.3 Marks] 

(d) Determine  the  lattice  constant  a  using  the  graph  and  estimate  the  experimental 

error. 

[0.8 Marks]
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Note: 

1.  For best results, the transmitter should remain fixed during the experiment. The 

separation between the transmitter and the lattice, as well as that between lattice 

and receiver should be about 50 cm. 

2.  Use only the diagonal planes in this experiment. Your result will not be correct if 

you try to use any other planes. 

3.  The face of the lattice box with the red diagonal line must be at the top. 

4.  To  determine  the  position  of  the  diffraction  peak  with  better  accuracy,  use  a 

number of data points around the peak position.



SOLUTIONS to Theory Question 1

Geometry Each side of the diamond has length L =
a

cos θ
and the dis-

tance between parallel sides is D =
a

cos θ
sin(2θ) = 2a sin θ. The area is the

product thereof, A = LD, giving

1.1 A = 2a2 tan θ .

The height H by which a tilt of φ lifts OUT1 above IN is H = D sin φ or

1.2 H = 2a sin θ sin φ .

Optical path length Only the two parallel lines for IN and OUT1 matter,
each having length L. With the de Broglie wavelength λ0 on the IN side and
λ1 on the OUT1 side, we have

∆Nopt =
L

λ0

− L

λ1

=
a

λ0 cos θ

(
1− λ0

λ1

)
.

The momentum is h/λ0 or h/λ1, respectively, and the statement of energy
conservation reads

1

2M

(
h

λ0

)2

=
1

2M

(
h

λ1

)2

+ MgH ,

which implies

λ0

λ1

=

√
1− 2

gM2

h2
λ2

0H .

Upon recognizing that (gM2/h2)λ2
0H is of the order of 10−7, this simplifies

to
λ0

λ1

= 1− gM2

h2
λ2

0H ,

and we get

∆Nopt =
a

λ0 cos θ

gM2

h2
λ2

0H

or

1



1.3 ∆Nopt = 2
gM2

h2
a2λ0 tan θ sin φ .

A more compact way of writing this is

1.4 ∆Nopt =
λ0A

V
sin φ ,

where

1.4 V = 0.1597× 10−13 m3 = 0.1597 nm cm2

is the numerical value for the volume parameter V .
There is constructive interference (high intensity in OUT1) when the optical

path lengths of the two paths differ by an integer, ∆Nopt = 0,±1,±2, . . ., and
we have destructive interference (low intensity in OUT1) when they differ by
an integer plus half, ∆Nopt = ±1

2
,±3

2
,±5

2
, . . . . Changing φ from φ = −90◦

to φ = 90◦ gives

∆Nopt

∣∣∣∣φ=90◦

φ=−90◦
=

2λ0A

V
,

which tell us that

1.5 ] of cycles =
2λ0A

V
.

Experimental data For a = 3.6 cm and θ = 22.1◦ we have A = 10.53 cm2,
so that

1.6 λ0 =
19× 0.1597

2× 10.53
nm = 0.1441 nm .

And 30 full cycles for λ0 = 0.2 nm correspond to an area

1.7 A =
30× 0.1597

2× 0.2
cm2 = 11.98 cm2 .

2



SOLUTIONS to Theory Question 2

Basic relations Position x̃ shows up on the picture if light was emitted
from there at an instant that is earlier than the instant of the picture taking
by the light travel time T that is given by

T =
√

D
2 + x̃

2
/

c .

During the lapse of T the respective segment of the rod has moved the dis-
tance vT , so that its actual position x at the time of the picture taking
is

2.1
x = x̃ + β

√
D

2 + x̃
2
.

Upon solving for x̃ we find

2.2 x̃ = γ
2
x − βγ

√

D
2 + (γx)2

.

Apparent length of the rod Owing to the Lorentz contraction, the
actual length of the moving rod is L/γ, so that the actual positions of the
two ends of the rod are

x± = x0 ±
L

2γ
for the

{

front end
rear end

}

of the rod.

The picture taken by the pinhole camera shows the images of the rod ends
at

x̃± = γ

(

γx0 ±
L

2

)

− βγ

√

D
2 +

(

γx0 ±
L

2

)2

.

The apparent length L̃(x0) = x̃+ − x̃− is therefore

2.3 L̃(x0) = γL + βγ

√

D
2 +

(

γx0 −
L

2

)2

− βγ

√

D
2 +

(

γx0 +
L

2

)2

.

Since the rod moves with the constant speed v, we have
dx0

dt

= v and therefore

the question is whether L̃(x0) increases or decreases when x0 increases. We
sketch the two square root terms:

1
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√

D
2 +

(

γx0 ± L/2
)2

0
.
.........

L/2
.
.........

−L/2

“−”

“+”

“+”

“−”

The difference of the square roots with “−” and “+” appears in the expression
for L̃(x0), and this difference clearly decreases when x0 increases.

2.4 The apparent length decreases all the time.

Symmetric picture For symmetry reasons, the apparent length on the
symmetric picture is the actual length of the moving rod, because the light
from the two ends was emitted simultaneously to reach the pinhole at the
same time, that is:

2.5 L̃ =
L

γ

.

The apparent endpoint positions are such that x̃− = −x̃+, or

0 = x̃+ + x̃− = 2γ2
x0 − βγ

√

D
2 +

(

γx0 +
L

2

)2

− βγ

√

D
2 +

(

γx0 −
L

2

)2

.

2



In conjunction with

L

γ

= x̃+ − x̃− = γL − βγ

√

D
2 +

(

γx0 +
L

2

)2

+ βγ

√

D
2 +

(

γx0 −
L

2

)2

this tells us that
√

D
2 +

(

γx0 ±
L

2

)2

=
2γ2

x0 ± (γL − L/γ)

2βγ

=
γx0

β

±
βL

2
.

As they should, both the version with the upper signs and the version with
the lower signs give the same answer for x0, namely

2.6 x0 = β

√

D
2 +

(

L

2γ

)2

.

The image of the middle of the rod on the symmetric picture is, therefore,
located at

x̃0 = γ
2
x0 − βγ

√

D
2 + (γx0)2

= βγ





√

(γD)2 +
(

L

2

)2

−
√

(γD)2 +
(

βL

2

)2


 ,

which is at a distance ℓ = x̃+ − x̃0 =
L

2γ
− x̃0 from the image of the front

end, that is

2.7

ℓ =
L

2γ
− βγ

√

(γD)2 +
(

L

2

)2

+ βγ

√

(γD)2 +
(

βL

2

)2

or

ℓ =
L

2γ













1 −

βL

2
√

(γD)2 +
(

L

2

)2

+

√

(γD)2 +
(

βL

2

)2













.

Very early and very late pictures At the very early time, we have a
very large negative value for x0, so that the apparent length on the very early
picture is

L̃early = L̃(x0 → −∞) = (1 + β)γL =

√

1 + β

1 − β

L .

3



Likewise, at the very late time, we have a very large positive value for x0, so
that the apparent length on the very late picture is

L̃late = L̃(x0 → ∞) = (1 − β)γL =

√

1 − β

1 + β

L .

It follows that L̃early > L̃late, that is:

2.8
The apparent length is 3 m on the early picture
and 1 m on the late picture.

Further, we have

β =
L̃early − L̃late

L̃early + L̃late

,

so that β =
1

2
and the velocity is

2.9 v =
c

2
.

It follows that γ =
L̃early + L̃late

2
√

L̃earlyL̃late

=
2√
3

= 1.1547. Combined with

2.10 L =
√

L̃earlyL̃late = 1.73 m ,

this gives the length on the symmetric picture as

2.11 L̃ =
2L̃earlyL̃late

L̃early + L̃late

= 1.50 m .

4



SOLUTIONS to Theory Question 3

Digital Camera Two factors limit the resolution of the camera as a pho-
tographic tool: the diffraction by the aperture and the pixel size. For diffrac-
tion, the inherent angular resolution θR is the ratio of the wavelength λ of
the light and the aperture D of the camera,

θR = 1.22
λ

D
,

where the standard factor of 1.22 reflects the circular shape of the aperture.
When taking a picture, the object is generally sufficiently far away from the
photographer for the image to form in the focal plane of the camera where
the CCD chip should thus be placed. The Rayleigh diffraction criterion then
states that two image points can be resolved if they are separated by more
than

3.1
∆x = fθR = 1.22λ F] ,

which gives
∆x = 1.22 µm

if we choose the largest possible aperture (or smallest value F] = 2) and
assume λ = 500 nm for the typical wavelength of daylight

The digital resolution is given by the distance ` between the center of two
neighboring pixels. For our 5Mpix camera this distance is roughly

` =
L√
Np

= 15.65 µm .

Ideally we should match the optical and the digital resolution so that neither
aspect is overspecified. Taking the given optical resolution in the expression
for the digital resolution, we obtain

3.2 N =
(

L

∆x

)2

≈ 823 Mpix .

Now looking for the unknown optimal aperture, we note that we should
have ` ≥ ∆x, that is: F] ≤ F0 with

F0 =
L

1.22λ
√

N0

= 2

√
N

N0

= 14.34 .

1



Since this F] value is not available, we choose the nearest value that has a
higher optical resolution,

3.3 F0 = 11 .

When looking at a picture at distance z from the eye, the (small) sub-
tended angle between two neighboring dots is φ = `/z where, as above, ` is
the distance between neighboring dots. Accordingly,

3.4 z =
`

φ
=

2.54× 10−2/300 dpi

5.82× 10−4 rad
= 14.55 cm ≈ 15 cm .

Hard-boiled egg All of the egg has to reach coagulation temperature.
This means that the increase in temperature is

∆T = Tc − T0 = 65 ◦C− 4 ◦C = 61 ◦C .

Thus the minimum amount of energy that we need to get into the egg such
that all of it has coagulated is given by U = µV C∆T where V = 4πR3/3 is
the egg volume. We thus find

3.5 U = µ
4πR3

3
C(Tc − T0) = 16768 J .

The simplified equation for heat flow then allows us to calculate how much
energy has flown into the egg through the surface per unit time. To get an
approximate value for the time we assume that the center of the egg is at the
initial temperature T = 4 ◦C. The typical length scale is ∆r = R, and the
temperature difference associated with it is ∆T = T1−T0 where T1 = 100 ◦C
(boiling water). We thus get

3.6 J = κ(T1 − T0)/R = 2458 W m−2 .

Heat is transferred from the boiling water to the egg through the surface of
the egg. This gives

2



3.7 P = 4πR2J = 4πκR(T1 − T0) ≈ 19.3 W

for the amount of energy transferred to the egg per unit time. From this we
get an estimate for the time τ required for the necessary amount of heat to
flow into the egg all the way to the center:

3.8 τ =
U

P
=

µCR2

3κ

Tc − T0

T1 − T0

=
16768

19.3
= 869 s ≈ 14.5 min .

Lightning The total charge Q is just the area under the curve of the
figure. Because of the triangular shape, we immediately get

3.9 Q =
I0τ

2
= 5 C .

The average current is

3.10 I = Q/τ =
I0

2
= 50 kA ,

simply half the maximal value.
Since the bottom of the cloud gets negatively charged and the ground

positively charged, the situation is essentially that of a giant parallel-plate ca-
pacitor. The amount of energy stored just before lightning occurs is QE0h/2
where E0h is the voltage difference between the bottom of the cloud and the
ground, and lightning releases this energy. Altogether we thus get for one
lightning the energy QE0h/2 = 7.5 × 108 J. It follows that you could light
up the 100 W bulb for the duration

3.11 t =
32× 106

6.5× 109
× 7.5× 108 J

100 W
≈ 10 h .

Capillary Vessels Considering all capillaries, one has

Rall =
∆p

D
= 107 Pa m−3 s .
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All capillaries are assumed to be connected in parallel. The analogy between
Poiseuille’s and Ohm’s laws then gives the hydraulic resistance R of one
capillary as

1

Rall

=
N

R
.

We thus get

N =
R

Rall

for the number of capillary vessels in the human body. Now calculate R using
Poiseuille’s law,

R =
8ηL

πr4
≈ 4.5× 1016 kg m−4 s−1 ,

and arrive at

3.12 N ≈ 4.5× 1016

107
= 4.5× 109 .

The volume flow is D = Sallv where Sall = Nπr2 is the total cross-sectional
area associated with all capillary vessels. We then get

3.13 v =
D

Nπr2
=

r2∆p

8ηL
= 0.44 mm s−1 ,

where the second expression is found by alternatively considering one capil-
lary vessel by itself.

Skyscraper When the slab is at height z above the ground, the air in
the slab has pressure p(z) and temperature T (z) and the slab has volume
V (z) = Ah(z) where A is the cross-sectional area and h(z) is the thickness
of the slab. At any given height z, we combine the ideal gas law

pV = NkT (N is the number of molecules in the slab)

with the adiabatic law

pV γ = const or (pV )γ ∝ pγ−1

to conclude that pγ−1 ∝ T γ. Upon differentiation this gives (γ−1)
dp

p
= γ

dT

T
,

so that

4



3.14
dT

T
= (1− 1/γ)

dp

p
.

Since the slab is not accelerated, the weight must be balanced by the force
that results from the difference in pressure at the top and bottom of the slab.
Taking downward forces as positive, we have the net force

0 = Nmg + A[p(z + h)− p(z)] =
pV

kT
mg +

V

h

dp

dz
h ,

so that
dp

dz
= −mg

k

p

T
or

3.15 dp = −mg

k

p

T
dz .

Taken together, the two expressions say that

dT = −(1− 1/γ)
mg

k
dz

and therefore we have

Ttop = Tbot − (1− 1/γ)
mgH

k

for a building of height H, which gives

3.16 Ttop = 20.6 ◦C

for H = 1 km and Tbot = 30 ◦C.
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Part 1 
a. A sketch of the experimental setup (not required) 

Transmitter 

Receiver 

Rotating table 

Goniometer 
Movable arm Goniometer 

Fixed arm 

Reflector 

Holder 

Beam 
splitter 

Transmitter 

Receiver 

Rotating table 

Goniometer 
Movable arm Goniometer 

Fixed arm 

Reflector 

Holder 

Beam 
splitter 

b. Data sheet (not required) 

Position 

(cm) 

Meter 

reading 

(mA) 

Position 

(cm) 

Meter 

reading 

(mA) 

Position 

(cm) 

Meter 

reading 

(mA) 

Position 

(cm) 

Meter 

reading 

(mA) 

104.0  0.609  100.9  1.016  96.0  0.514  91.0  0.925 
103.9  0.817  100.85  1.060  95.8  0.098  90.9  1.094 
103.8  0.933  100.8  1.090  95.6  0.192  90.8  1.245 
103.7  1.016  100.7  0.994  95.4  0.669  90.7  1.291 
103.6  1.030  100.6  0.940  95.3  0.870  90.6  1.253 
103.5  0.977  100.4  0.673  95.2  1.009  90.4  0.978 
103.4  0.890  100.2  0.249  95.1  1.119  90.2  0.462 
103.3  0.738  100.0  0.074  95.0  1.138  90.0  0.045 
103.2  0.548  99.8  0.457  94.9  1.080  89.8  0.278 
103.1  0.310  99.6  0.883  94.7  0.781  89.6  0.809 
103.0  0.145  99.4  1.095  94.5  0.403  89.5  1.031 
102.9  0.076  99.3  1.111  94.3  0.044  89.4  1.235 
102.8  0.179  99.2  1.022  94.1  0.364  89.3  1.277 
102.7  0.392  99.0  0.787  93.9  0.860  89.2  1.298 
102.6  0.623  98.8  0.359  93.7  1.103  89.1  1.252 
102.5  0.786  98.6  0.079  93.6  1.160  89.0  1.133 
102.4  0.918  98.4  0.414  93.5  1.159  88.8  0.684 
102.3  0.988  98.2  0.864  93.4  1.083  88.6  0.123 
102.2  1.026  98..0  1.128  93.2  0.753  88.5  0.020 
102.1  1.006  97.9  1.183  93.0  0.331  88.4  0.123 
102.0  0.945  97.8  1.132  92.8  0.073  88.2  0.679 
101.9  0.747  97.7  1.015  92.6  0.515  88.0  1.116 
101.8  0.597  97.5  0.713  92.4  0.968  87.9  1.265 
101.7  0.363  97.2  0.090  92.2  1.217  87.8  1.339 
101.6  0.161  97.0  0.342  92.15  1.234  87.7  1.313 
101.5  0.055  96.8  0.714  92.1  1.230  87.6  1.190 
101.4  0.139  96.6  1.007  92.0  1.165  87.4  0.867 
101.3  0.357  96.5  1.087  91.8  0.871  87.2  0.316
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101.2  0.589  96.4  1.070  91.6  0.353  87.1  0.034 
101.1  0.781  96.3  1.018  91.4  0.018  87.0  0.018 
101.0  0.954  96.2  0.865  91.2  0.394  86.9  0.178 
104.0  0.609  100.9  1.016  96.0  0.514  91.0  0.925 
103.9  0.817  100.8  1.060  95.8  0.098  90.9  1.094 
103.8  0.933  100.8  1.090  95.6  0.192  90.8  1.245 
103.7  1.016  100.7  0.994  95.4  0.669  90.7  1.291 
103.6  1.030  100.6  0.940  95.3  0.870  90.6  1.253 
103.5  0.977  100.4  0.673  95.2  1.009  90.4  0.978 
103.4  0.890  100.2  0.249  95.1  1.119  90.2  0.462 
103.3  0.738  100.0  0.074  95.0  1.138  90.0  0.045 
103.2  0.548  99.8  0.457  94.9  1.080  89.8  0.278 
103.1  0.310  99.6  0.883  94.7  0.781  89.6  0.809 
103.0  0.145  99.4  1.095  94.5  0.403  89.5  1.031 
102.9  0.076  99.3  1.111  94.3  0.044  89.4  1.235 
102.8  0.179  99.2  1.022  94.1  0.364  89.3  1.277 
102.7  0.392  99.0  0.787  93.9  0.860  89.2  1.298 
102.6  0.623  98.8  0.359  93.7  1.103  89.1  1.252 
102.5  0.786  98.6  0.079  93.6  1.160  89.0  1.133 
102.4  0.918  98.4  0.414  93.5  1.159  88.8  0.684 
102.3  0.988  98.2  0.864  93.4  1.083  88.6  0.123 
102.2  1.026  98.0  1.128  93.2  0.753  88.5  0.020 
102.1  1.006  97.9  1.183  93.0  0.331  88.4  0.123 
102.0  0.945  97.8  1.132  92.8  0.073  88.2  0.679 
101.9  0.747  97.7  1.015  92.6  0.515  88.0  1.116 
101.8  0.597  97.5  0.713  92.4  0.968  87.9  1.265 
101.7  0.363  97.2  0.090  92.2  1.217  87.8  1.339 
101.6  0.161  97.0  0.342  92.15  1.234  87.7  1.313 
101.5  0.055  96.8  0.714  92.1  1.230  87.6  1.190 
101.4  0.139  96.6  1.007  92.0  1.165  87.4  0.867 
101.3  0.357  96.5  1.087  91.8  0.871  87.2  0.316 
101.2  0.589  96.4  1.070  91.6  0.353  87.1  0.034 
101.1  0.781  96.3  1.018  91.4  0.018  87.0  0.018 
101.0  0.954  96.2  0.865  91.2  0.394  86.9  0.178 

88  90  92  94  96  98  100  102  104 
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From the graph (not required) or otherwise, the positions of the first maximum point and 

12 th maximum point are measured at 87.8 cm and 103.6 cm. 

The wavelength is calculated by 

11 
8 . 87 6 . 103 

2 
− 

= λ  cm 

Thus, λ = 2.87 cm. 

Error analysis 

d 
11 
2 

= λ  , ∆d = 0.05 x2 cm =  0.1 cm. 

cm cm d  02 . 0 018 . 0 10 . 0 
11 
2 

11 
2 

< = × = ∆ = ∆λ 

1.8 marks 

0.2 marks
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Part 2 
(a)  Deduction of interference conditions 

A 

B 
θ 1 θ 1 

θ 2 

t n 

A 

B 
θ 1 θ 1 

θ 2 

t n 

Assume that  the thickness of the film is t and refractive index n. Let  1 θ  be the incident 

angle and  2 θ  the refracted angle.  The difference of the optical paths  L ∆  is: 

) sin tan cos / ( 2  1 2 2 θ θ θ  t nt L − = ∆ 

Law of refraction: 

2 1  sin sin θ θ  n = 

Thus 

1 
2 2  sin 2 θ − = ∆  n t L 

Considering  the  180  deg  (π)  phase  shift  at  the  air  thin  film  interface  for  the  reflected 

beam, we have interference conditions: 

,...) 3 , 2 , 1 ( sin 2  min 
2 2 = = −  m m n t λ θ  for the destructive peak 

and λ θ  )
2 
1 ( sin 2  max 

2 2 ± = −  m n t  for the constructive peak 

If thickness t and wave length λ are known, one can determine the refractive index of the 

thin film from I  θ 1spectrum (I is the intensity of the interfered beam). 

1 mark
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(b)  A sketch of the experimental setup 

θ 

Transmitter 

Receiver 

Thin film 

Planoconvex 
cylinder lens 

Rotating table 

Goniometer 
Movable arm 

Goniometer 
Fixed arm 

θ 

θ 

Transmitter 

Receiver 

Thin film 

Planoconvex 
cylinder lens 

Rotating table 

Goniometer 
Movable arm 

Goniometer 
Fixed arm 

θ 

Students should use the labeling on Page 2. 

(c)  Data Set 

X: θ1 / degree  Y: Meter reading S/mA 

40.0  0.309 
41.0  0.270 
42.0  0.226 
43.0  0.196 
44.0  0.164 
45.0  0.114 
46.0  0.063 
47.0  0.036 
48.0  0.022 
49.0  0.039 
50.0  0.066 
51.0  0.135 
52.0  0.215 
53.0  0.262 
54.0  0.321 
55.0  0.391 
56.0  0.454 
57.0  0.511 

1 mark
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58.0  0.566 
59.0  0.622 
60.0  0.664 
61.0  0.691 
62.0  0.722 
63.0  0.754 
64.0  0.796 
65.0  0.831 
66.0  0.836 
67.0  0.860 
68.0  0.904 
69.0  0.970 
70.0  1.022 
71.0  1.018 
72.0  0.926 
73.0  0.800 
74.0  0.770 
75.0  0.915 

Uncertainty: angle  o 5 . 0 1 ± = ∆θ  , current: ±0.001 mA 

35  40  45  50  55  60  65  70  75  80 

0.0 

0.2 
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θ ( o  ) 

From the data,  min θ  and  max θ  can be found at 48 o and 70.5 o respectively. 

To calculate the refractive index, the following equations are used: 

0.9 marks 

0.6 marks 

0.5 marks
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,...) 3 , 2 , 1 ( 48 sin 2  2 2 = = −  m m n t  o λ  (1) 

and λ )
2 
1 ( 5 . 70 sin 2  2 2 − = −  m n t  o  (2) 

In this experiment, t = 5.28 cm, λ = 2.85cm (measured using other method). 

Solving the simultaneous equations (1) and (2), we get 

25 . 0 
) 

2 
( 

48 sin 5 . 70 sin 
2 

2 2 

+ 
− 

= 

t 

m 
o o 

λ 

m = 4.83  m = 5 

Substituting m = 5 in (1), we get n = 1.54 

Substituting m = 5 in (2), we also get n = 1.54 

Error analysis: 

2 2  ) 
2 

( sin 
t 

m n λ θ + = 

) 
2 2 

2 (sin 1 

) 
2 2 

2 (sin 
) 

2 
( sin 

1 

3 

2 2 

2 

2 

3 

2 2 

2 

2 

2 2 

t 
t 

m 
t 

m 
n 

t 
t 

m 
t 

m 

t 
m 

n 

∆ − ∆ + ∆ • = 

∆ − ∆ + ∆ • 
+ 

= ∆ 

λ λ λ θ θ 

λ 
λ 

λ 
θ θ 

λ θ 

If we take ∆θ = ±0.5 o = ±0.0087 rad, ∆t = ±0.05 cm, ∆λ = ±0.02 cm, and θ = 48 o 

02 . 0 ) 05 . 0 
28 . 5 2 
85 . 2 5 01 . 0 

28 . 5 2 
85 . 2 5 96 sin 0087 . 0 ( 

54 . 1 
1 

3 

2 2 

2 

2 

≈ × 
× 
× 

+ × 
× 
× 

+ = ∆  o n 

Thus,  n + ∆n = 1.54 ±0.02 

1 mark 

0.5 marks 

0.5 marks
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Part 3 

Sample Solution 

Task 1 
Sketch your final experimental setup and mark all components using the labels given at 
page 2. In your sketch, write down the distance z (see Figure 3.2), where z is the distance 
from the tip of the prism to the central axis of the transmitter. 

Lens 

Prism 

Prism 

Receiver 

Transmitter 

d 

z 

(Students should use labels on page 2.) 

Task 2 
Tabulate your data. Perform the experiment twice. 

Data Set 
X: d(cm) ∆X(cm)  Set 1 

S1  (mA) 
Set 2 
S2(mA) 

Saverage 
(mA) ∆S(mA) #  It (mA) 2* ∆(It) $  Y: ln(It (mA) 2 ) ∆Y & 

0.60  0.05  0.78  0.78  0.780  0.01  0.6080  0.016  0.50  0.03 
0.70  0.05  0.68  0.69  0.685  0.01  0.4690  0.014  0.76  0.03 
0.80  0.05  0.58  0.59  0.585  0.01  0.3420  0.012  1.07  0.03 
0.90  0.05  0.50  0.51  0.505  0.01  0.2550  0.010  1.37  0.04 
1.00  0.05  0.42  0.42  0.420  0.01  0.1760  0.008  1.74  0.05 
1.10  0.05  0.36  0.35  0.355  0.01  0.1260  0.007  2.07  0.06 
1.20  0.05  0.31  0.31  0.310  0.01  0.0961  0.006  2.34  0.06 
1.30  0.05  0.26  0.25  0.255  0.01  0.0650  0.005  2.73  0.08 
1.40  0.05  0.21  0.22  0.215  0.01  0.0462  0.004  3.07  0.09 

# ∆S = 0.01 mA (for each set of current measurements) 
* S 2  proportional to the intensity, It 
$ ∆(S 2 ) = ∆It = 2 S × ∆S 
& ∆Y = ∆(lnIt) = ∆(It)/It
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Task 3 
By plotting appropriate graphs, determine the refractive index, n1, of the prism with error 
analysis. Write the refractive index n1, and its uncertainty ∆n1, of the prism in the answer 
sheet provided. 

Least Square Fitting 

X = d(cm) ∆X(cm) Y = ln(It) ∆Y ∆Y 2 XY  X 2  Y 2 

0.60  0.05  0.50  0.03  0.001  0.298  0.360  0.247 
0.70  0.05  0.76  0.03  0.001  0.530  0.490  0.573 
0.80  0.05  1.07  0.03  0.001  0.858  0.640  1.150 
0.90  0.05  1.37  0.04  0.002  1.230  0.810  1.867 
1.00  0.05  1.74  0.05  0.002  1.735  1.000  3.010 
1.10  0.05  2.07  0.06  0.003  2.278  1.210  4.290 
1.20  0.05  2.34  0.06  0.004  2.811  1.440  5.487 
1.30  0.05  2.73  0.08  0.006  3.553  1.690  7.469 
1.40  0.05  3.07  0.09  0.009  4.304  1.960  9.451 

ΣX = ΣY = Σ∆Y = Σ(∆Y) 2 = ΣXY = ΣX 2 = ΣY 2 = 
9.00  15.648  0.469  0.029  17.596  9.600  33.544
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From ( ) 0 exp 2 t I I d γ = −  , taking natural log on both sides, we obtain: 

0 ln( ) 2 ln( ) t I d I γ = − + 

which is of the form y = mx + c. 

To calculate the gradient, the following equation was used, where N is the number of data 
points: 

( ) ( )( ) 
( ) 2 2 

3.247 
N XY X Y 

m 
N X X 

− 
= = − 

− 

∑ ∑ ∑ 
∑ ∑ 

To  calculate  the  standard  deviation σY  of  the  individual  Y  data  values,  the  following 
equation was used: 

( ) 2 
0.064 

2 Y 

Y 
N 

σ 
∆ 

= = 
− 

∑ 

Hence the standard deviation in the slope can be calculated: 

( ) 2 2 
0.082 m Y 

N 
N X X 

σ σ = = 
− ∑ ∑ 

From the gradient: 
2 3.247 0.082 

3.25 0.08 
γ = ± 

≈ ± 

Using: 
2 2 
2 

1 
2 1 sin 
k 

n 
k 

γ 
θ 

+ 
= 

where θ1  =  60 o ,  k2  =  2π/λ ≈  2.20  (using  the  wavelength  determined  from  earlier  part 
(using λ = (2.85 ± 0.02)cm), we obtain: 

1 1  1.434 0.016 
1.43 0.02 

n n ± ∆ = ± 

≈ ±
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Error Analysis for refractive index of n1 

( ) ( ) 2 2 

1 1 
2 2 2 2 2 2 

1 2 
2 2 1 2 1 sin sin 

k k d d n k 
dk k d k 

γ γ 
γ 

θ γ θ 

    + +     ∆ = ∆ + ∆     
        

( ) ( ) ( ) 1 1 1 
2 2 2 2 2 2 2 2 2 
2 2 2 

1 2 2 
1 2 1 2 1 sin sin sin 

0.016 
0.02 

k k k 
n k 

k k 
γ γ γ γ 

γ 
θ θ θ 

− −     + + +     ∆ = − ∆ + ∆ 
    
        

= 
≈ 

where: 

2  2 

2  0.015 k π λ 
λ 

∆ = − ∆ = − 

Note: Other methods of error analysis are also accepted.
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Part 4 

Task 1 

Topview of a simple square lattice. 

Figure 4.1: Schematic diagram of a simple square lattice with lattice constant a and 
interplaner d of the diagonal planes indicated. 

Deriving Bragg's Law 

Conditions necessary for the observation of diffraction peaks: 

1.  The angle of incidence = angle of scattering. 
2.  The pathlength difference is equal to an integer number of wavelengths. 

a 

d 

0.5 marks
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Figure 4.2: Schematic diagram for deriving Bragg's law. 

h = d sinθ      (1). 

The path length difference is given by, 

2h = 2d sinθ      (2). 

For diffraction to occur, the path difference must satisfy, 

2 d sinθ = mλ,  m = 1, 2, 3...  (3). 

a 

d 

Figure 4.3 Illustration of the lattice used in the experiment (this Figure 
is not required) 

0.5 marks
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Fig. 4.4 Actual lattice used for the 
experiment (this Figure is not required) 

Fig. 4.4 The actual lattice used in the experiment (not required) 

Task 2 (a) 

Fig. 4.5 Sketch of the experimental set up 

ζ = 180°  2θ 

θ 

Planocylindrical 
Lens on Holder 

Microwave 
Transmitter on 
Holder 

Lattice Box  on 
Rotating Table 

Microware 
Receiver 
on Holder 

J 
A 

N 
I 

B 

D 

Digital 
Multimeter 

I 
L 

1.5 marks
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Task 2(b) & 2(c) 

Data Set 

Task 2(d) 

From eq 3 and let m = 1, 

λ θ = max sin 2d  (4) 

From Fig. 4.3, 

θ/° 
 

ζ/° 
 

Output 
current 
S (mA) 

Intensity 
I=S 2 

(mA) 2 

20.0  140.0  0.023  0.000529 
21.0  138.0  0.038  0.001444 
22.0  136.0  0.070  0.0049 
23.0  134.0  0.109  0.011881 
24.0  132.0  0.163  0.026569 
25.0  130.0  0.201  0.040401 
26.0  128.0  0.233  0.054289 
27.0  126.0  0.275  0.075625 
28.0  124.0  0.320  0.1024 
29.0  122.0  0.350  0.1225 
30.0  120.0  0.353  0.124609 
31.0  118.0  0.358  0.128164 
32.0  116.0  0.354  0.125316 
33.0  114.0  0.342  0.116964 
34.0  112.0  0.321  0.103041 
35.0  110.0  0.303  0.091809 
36.0  108.0  0.280  0.0784 
37.0  106.0  0.241  0.058081 
38.0  104.0  0.200  0.04 
39.0  102.0  0.183  0.033489 
40.0  100.0  0.162  0.026244 
41.0  98.0  0.139  0.019321 
42.0  96.0  0.120  0.0144 
43.0  94.0  0.109  0.011881 
44.0  92.0  0.086  0.007396 
45.0  90.0  0.066  0.004356 
46.0  88.0  0.067  0.004489 
47.0  86.0  0.066  0.004356 
48.0  84.0  0.070  0.0049 
49.0  82.0  0.084  0.007056 
50.0  80.0  0.080  0.0064 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 
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2.7 marks
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d a  2 =  (5) 

Combine eqs (4) and (5), we obtain, 

max sin 2 θ 
λ 

= a 

From the symmetry of the data, the peak position is determined to be: 

θmax = 31°  (The theoretical value is θmax = 32°) 

cm cm a 
o 

913 . 3 
31 sin 2 

85 . 2 
sin 2  max 

= = = 
θ 

λ 

(Actual value a = 3.80 cm) 

[The value 3.55 in the marking scheme is derived from: 

cm cm a 
o 

58 . 3 
34 sin 2 

83 . 2 
sin 2  max 

= = = 
θ 

λ 

where 2.83 cm and 34 deg are the min and max allowed values for wavelength and 
peak position. 

Similarly: 

The value 4.10 is derived from:  cm cm a 
o 

06 . 4 
30 sin 2 

87 . 2 
sin 2  max 

= = = 
θ 

λ 

The value 3.55 is derived from:  cm cm a 
o 

58 . 3 
34 sin 2 

83 . 2 
sin 2  max 

= = = 
θ 

λ 

The value 3.40 is derived from:  cm cm a 
o 

49 . 3 
35 sin 2 

83 . 2 
sin 2  max 

= = = 
θ 

λ 

The value 4.20 is derived from:  cm cm a 
o 

18 . 4 
29 sin 2 

87 . 2 
sin 2  max 

= = = 
θ 

λ  ] 

Error analysis: 

Known uncertainties: 
∆λ = 0.02 cm; 

∆θ = 0.5 deg = 0.014 rad.  (uncertainty in determining θ from graph).
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From: 
max sin 2 θ 

λ 
= a 

1 . 0 112 . 0 

)) 014 . 0 ( ) 32 cot( 
85 . 2 
02 . 0( 80 . 3 

) cot ( 

) ) (sin 
sin 

1 ( 

) (sin 
) (sin 2 sin 2 

max 

max 
max 

max 2 
max max 

≈ = 

− × ° − = 

∆ − 
∆ 

= 

∆ − 
∆ 

= 

∆ − 
∆ 

= ∆ 

cm 

cm 

a 

d 
d a 

d 
d a 

θ θ 
λ 
λ 

θ θ 
θ θ λ 

λ 

θ θ 
θ θ 

λ 
θ 

λ 

Hence: 
a ± ∆a = 3.913 ± 0.112 

≈ 3.9 ± 0.1 cm 

0.8 marks



 
 

 

 1 

In this problem we deal with a simplified model of accelerometers designed to activate the safety 

air bags of automobiles during a collision. We would like to build an electromechanical system in 

such a way that when the acceleration exceeds a certain limit, one of the electrical parameters of 

the system such as the voltage at a certain point of the circuit will exceed a threshold and the air 

bag will be activated as a result. 

 

Note: Ignore gravity in this problem. 

 

1 Consider a capacitor with parallel plates as in Figure 1. The area of each plate in the capacitor 

is A and the distance between the two plates is d . The distance between the two plates is 

much smaller than the dimensions of the plates. One of these plates is in contact with a wall 

through a spring with a spring constant k , and the other plate is fixed. When the distance 

between the plates is d  the spring is neither compressed nor stretched, in other words no 

force is exerted on the spring in this state. Assume that the permittivity of the air between the 

plates is that of free vacuum 
0ε . The capacitance corresponding to this distance between the 

plates of the capacitor is dAC 00 ε= . We put charges Q+  and Q−  on the plates and let 

the system achieve mechanical equilibrium.  

 

 
Figure 1 

 

1.1 Calculate the electrical force, 
EF , exerted by the plates on each other. 0.8 

 

1.2 Let x  be the displacement of the plate connected to the spring. Find x .  0.6 
 

1.3 
In this state, what is the electrical potential difference V between the plates of the 

capacitor in terms of Q , A , d , k ? 
0.4 

 

1.4 
Let C  be the capacitance of the capacitor, defined as the ratio of charge to potential 

difference. Find 
0CC  as a function of Q , A , d   and k .  

0.3 

 

1.5 What is the total energy, U , stored in the system in terms of Q , A , d  and k ? 0.6 

 

Figure 2, shows a mass M which is attached to a conducting plate with negligible mass and also 

to two springs having identical spring constants k .  The conducting plate can move back and 

forth in the space between two fixed conducting plates. All these plates are similar and have the 

same area A . Thus these three plates constitute two capacitors. As shown in Figure 2, the fixed 

plates are connected to the given potentials V  and V− , and the middle plate is connected 

k  

d  



 
 

 

 2 

through a two-state switch to the ground. The wire connected to the movable plate does not 

disturb the motion of the plate and the three plates will always remain parallel. When the whole 

complex is not being accelerated, the distance from each fixed plate to the movable plate is 

d which is much smaller than the dimensions of the plates. The thickness of the movable plate 

can be ignored.  
 

 
Figure 2 

 

The switch can be in either one of the two states α  and β . Assume that the capacitor complex is 

being accelerated along with the automobile, and the acceleration is constant. Assume that during 

this constant acceleration the spring does not oscillate and all components of this complex 

capacitor are in their equilibrium positions, i.e. they do not move with respect to each other, and 

hence with respect to the automobile.  

Due to the acceleration, the movable plate will be displaced a certain amount x  from the middle 

of the two fixed plates.  

 

2 Consider the case where the switch is in state α  i.e. the movable plate is connected to the 

ground through a wire, then 

 

2.1 Find the charge on each capacitor as a function of  x . 0.4 
 

2.2 Find the net electrical force on the movable plate, 
EF , as a function of x .  0.4 

    

2.3 
Assume xd >>  and terms of order 

2
x can be ignored compared to terms of order 

2
d . Simplify the answer to the previous part.  

0.2 

 

2.4 
Write the total force on the movable plate (the sum of the electrical and the spring 

forces) as xkeff−  and give the form of 
effk .  

0.7 

 

2.5 Express the constant acceleration a  as a function of x . 0.4 

Movable 

plate 

a  

Fixed Plate 
Fixed Plate 

V  

α  β
 

SC  

V  

M  

k  k  
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3 Now assume that the switch is in state β  i.e. the movable plate is connected to the ground 

through a capacitor, the capacitance of which is 
SC  (there is no initial charge on the 

capacitors). If the movable plate is displaced by an amount x  from its central position,  

 

3.1 
Find 

SV  the electrical potential difference across the capacitor 
SC  as a function of 

x . 
1.5 

 

3.2 
Again assume that xd >>  and ignore terms of order 2

x  compared to terms of 

order 2
d . Simplify your answer to the previous part. 

0.2 

 

4 We would like to adjust the parameters in the problem such that the air bag will not be 

activated in normal braking but opens fast enough during a collision to prevent the driver’s 

head from colliding with the windshield or the steering wheel. As you have seen in Part 2, the 

force exerted on the movable plate by the springs and the electrical charges can be 

represented as that of a spring with an effective spring constant 
effk . The whole capacitor 

complex is similar to a mass and spring system of mass M and spring constant 
effk  under the 

influence of a constant acceleration a , which in this problem is the acceleration of the 

automobile.  
 

Note: In this part of the problem, the assumption that the mass and spring are in equilibrium under 

a constant acceleration and hence are fixed relative to the automobile, no longer holds.  
 

Ignore friction and consider the following numerical values for the parameters of the problem: 
 

cm0.1=d , 22 m105.2 −×=A , N/m102.4 3×=k , 2212

0 /NmC1085.8 −×=ε , 

V12=V , kg15.0=M . 
 

4.1 

Using this data, find the ratio of the electrical force you calculated in section 2.3 to 

the force of the springs and show that one can ignore the electrical forces compared 

to the spring forces. 

0.6 

 

Although we did not calculate the electrical forces for the case when the switch is in the state β , 

it can be shown that in this situation, quite similarly, the electrical forces are as small and can be 

ignored.  
 

4.2 

If the automobile while traveling with a constant velocity, suddenly brakes with a 

constant acceleration a , what is the maximum displacement of the movable plate? 

Give your answer in parameter.  

0.6 

 

Assume that the switch is in state β  and the system has been designed such that when the 

electrical voltage across the capacitor reaches V15.0=SV , the air bag is activated. We would 

like the air bag not to be activated during normal braking when the automobile’s acceleration is 

less than the acceleration of gravity 28.9 smg = , but be activated otherwise.  
 

4.3 How much should 
SC  be for this purpose?   0.6 
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We would like to find out if the air bag will be activated fast enough to prevent the driver’s head 

from hitting the windshield or the steering wheel. Assume that as a result of collision, the 

automobile experiences a deceleration equal to g  but the driver’s head keeps moving at a 

constant speed. 
 

4.4 
By estimating the distance between the driver’s head and the steering wheel, find 

the time 
1t  it takes before the driver’s head hits the steering wheel.  

0.8 

 

4.5 
Find the time 

2t  before the air bag is activated and compare it to
1t . Is the air bag 

activated in time? Assume that airbag opens instantaneously. 
0.9 
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In physics, whenever we have an equality relation, both sides of the equation should be 

of the same type i.e. they must have the same dimensions. For example you cannot have a 

situation where the quantity on the right-hand side of the equation represents a length and 

the quantity on the left-hand side represents a time interval. Using this fact, sometimes one 

can nearly deduce the form of a physical relation without solving the problem analytically. 

For example if we were asked to find the time it takes for an object to fall from a height of 

h under the influence of a constant gravitational acceleration g , we could argue that one 

only needs to build a quantity representing a time interval, using the quantities g and h and 

the only possible way of doing this is 
2/1)/( ghaT = . Notice that this solution includes an 

as yet undetermined coefficient a which is dimensionless and thus cannot be determined, 

using this method. This coefficient can be a number such as 1, 21 , 3 , π , or any other 

real number. This method of deducing physical relations is called dimensional analysis. In 

dimensional analysis the dimensionless coefficients are not important and we do not need 

to write them. Fortunately in most physical problems these coefficients are of the order of 1 

and eliminating them does not change the order of magnitude of the physical quantities. 

Therefore, by applying the dimensional analysis to the above problem, one 

obtains
2/1)/( ghT = .  

 

Generally, the dimensions of a physical quantity are written in terms of the dimensions 

of four fundamental quantities: M  (mass), L  (length), T (time), and K  (temperature). 

The dimensions of an arbitrary quantity, x  is denoted by ][x . As an example, to express 

the dimensions of velocity v , kinetic energy kE , and heat capacity VC  we 

write:
1][ −= LTv , 

22][ −= TMLEk , 
122][ −−= KTMLCV . 

1 Fundamental Constants and Dimensional Analysis  

1.1 

Find the dimensions of the fundamental constants, i.e. the Planck's 

constant, h , the speed of light, c , the universal constant of gravitation,G , 

and the Boltzmann constant, Bk , in terms of the dimensions of length, mass, 

time, and temperature.  

0.8 

 

The Stefan-Boltzmann law states that the black body emissive power which is the total 

energy radiated per unit surface area of a black body in unit time is equal to 
4

σθ  where 

σ  is the Stefan-Boltzmann's constant and θ  is the absolute temperature of the black body. 

 

1.2 
Determine the dimensions of the Stefan-Boltzmann's constant in terms of the 

dimensions of length, mass, time, and temperature.  
0.5 

 

The Stefan-Boltzmann's constant is not a fundamental constant and one can write it in 

terms of fundamental constants i.e. one can write 
δγβασ BkGcha= . In this relation a  is a 

dimensionless parameter of the order of 1. As mentioned before, the exact value of a  is not 

significant from our viewpoint, so we will set it equal to 1. 
 

1.3 Findα , β ,γ , and δ  using dimensional analysis. 1.0 



 
 

 

 2 

2 Physics of Black Holes  

In this part of the problem, we would like to find out some properties of black holes 

using dimensional analysis. According to a certain theorem in physics known as the no hair 

theorem, all the characteristics of the black hole which we are considering in this problem 

depend only on the mass of the black hole. One characteristic of a black hole is the area of 

its event horizon. Roughly speaking, the event horizon is the boundary of the black hole. 

Inside this boundary, the gravity is so strong that even light cannot emerge from the region 

enclosed by the boundary. 
 

We would like to find a relation between the mass of a black hole, m , and the area of 

its event horizon, A . This area depends on the mass of the black hole, the speed of light, 

and the universal constant of gravitation. As in 1.3 we shall write
γβα

mcGA = . 
 

2.1 Use dimensional analysis to findα , β , and γ . 0.8 
 

 From the result of 2.1 it becomes clear that the area of the event horizon of a black 

hole increases with its mass. From a classical point of view, nothing comes out of a 

black hole and therefore in all physical processes the area of the event horizon can only 

increase. In analogy with the second law of thermodynamics, Bekenstein proposed to 

assign entropy, S , to a black hole, proportional to the area of its event horizon i.e. 

AS η= . This conjecture has been made more plausible using other arguments.  

 

2.2 

Use the thermodynamic definition of entropy θdQdS =  to find the dimensions 

of entropy. 

dQ is the exchanged heat and θ  is the absolute temperature of the system. 

0.2 

 

2.3 
As in 1.3, express the dimensioned constant η  as a function of the fundamental 

constants h , c , G , and Bk . 
1.1 

 

Do not use dimensional analysis for the rest of problem, but you may use the results you 

have obtained in previous sections. 

  

3 Hawking Radiation 

 

With a semi-quantum mechanical approach, Hawking argued that contrary to the 

classical point of view, black holes emit radiation similar to the radiation of a black body at 

a temperature which is called the Hawking temperature. 
 

3.1 

Use 
2

mcE = , which gives the energy of the black hole in terms of its mass, 

and the laws of thermodynamics to express the Hawking temperature Hθ  of 

a black hole in terms of its mass and the fundamental constants. Assume that 

the black hole does no work on its surroundings.  

0.8 

 

3.2 

The mass of an isolated black hole will thus change because of the Hawking 

radiation. Use Stefan-Boltzmann's law to find the dependence of this rate of 

change on the Hawking temperature of the black hole, Hθ and express it in 

terms of mass of the black hole and the fundamental constants. 

0.7 
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3.3 
Find the time 

*
t , that it takes an isolated black hole of mass m  to evaporate 

completely i.e. to lose all its mass.  
1.1 

 

From the viewpoint of thermodynamics, black holes exhibit certain exotic behaviors. 

For example the heat capacity of a black hole is negative. 
 

3.4 Find the heat capacity of a black hole of mass m . 0.6 

 

 

4 Black Holes and the Cosmic Background Radiation 

 

Consider a black hole exposed to the cosmic background radiation. The cosmic 

background radiation is a black body radiation with a temperature Bθ  which fills the entire 

universe. An object with a total area A  will thus receive an energy equal to AB ×
4

θσ  per 

unit time. A black hole, therefore, loses energy through Hawking radiation and gains 

energy from the cosmic background radiation. 
 

4.1 

Find the rate of change of a black hole's mass, in terms of the mass of the 

black hole, the temperature of the cosmic background radiation, and the 

fundamental constants.  

0.8 

 

4.2 
At a certain mass, 

*
m , this rate of change will vanish. Find 

*
m and express it 

in terms of Bθ and the fundamental constants. 
0.4 

 

4.3 

Use your answer to 4.2 to substitute for Bθ  in your answer to part 4.1 and 

express the rate of change of the mass of a black hole in terms of m , 
*

m , 

and the fundamental constants. 

0.2 

 

4.4 
Find the Hawking temperature of a black hole at thermal equilibrium with 

cosmic background radiation. 
0.4 

 

4.5 
Is the equilibrium stable or unstable? Why? (Express your answer 

mathematically) 
0.6 
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Two stars rotating around their center of mass form a binary star system. Almost half of the stars 

in our galaxy are binary star systems. It is not easy to realize the binary nature of most of these 

star systems from Earth, since the distance between the two stars is much less than their distance 

from us and thus the stars cannot be resolved with telescopes. Therefore, we have to use either 

photometry or spectrometry to observe the variations in the intensity or the spectrum of a 

particular star to find out whether it is a binary system or not. 

 

Photometry of Binary Stars 
 

If we are exactly on the plane of motion of the two stars, then one star will occult (pass in front 

of) the other star at certain times and the intensity of the whole system will vary with time from 

our observation point. These binary systems are called ecliptic binaries. 

 

1 Assume that two stars are moving on circular orbits around their common center of mass with 

a constant angular speed ω  and we are exactly on the plane of motion of the binary system. 

Also assume that the surface temperatures of the stars are 1T  and 2T  )( 21 TT > , and the 

corresponding radii are 1R and 2R  ( )21 RR > , respectively. The total intensity of light, 

measured on Earth, is plotted in Figure 1 as a function of time. Careful measurements 

indicate that the intensities of the incident light from the stars corresponding to the minima 

are respectively 90 and 63 percent of the maximum intensity, 0I , received from both stars 

( )  W/m104.8 2-9

0 ×=I . The vertical axis in Figure 1 shows the ratio 0II  and the 

horizontal axis is marked in days. 

 

 

 
Figure 1. The relative intensity received from the binary star system as a 

function of time. The vertical axis has been scaled by 
2-9

0  W/m104.8×=I . 

Time is given in days.  

 

1.1 

Find the period of the orbital motion. Give your answer in seconds up to two 

significant digits.  

What is the angular frequency of the system in rad/sec? 

0.8 

 

I/I0  

0II
 = 0.63 

0II
 = 0.90 

1.0 

0.8 

0.6 

0.4 

0.2 

Time (days) 1.0 2.0 3.0 4.0 5.0 6.0 
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To a good approximation, the receiving radiation from a star is a uniform black body radiation 

from a flat disc with a radius equal to the radius of the star. Therefore, the power received from 

the star is proportional to 
4AT  where A  is area of the disc and   T  is the surface temperature of 

the star.  

 
 

1.2 Use the diagram in Figure 1 to find the ratios 21 TT and 21 RR . 1.6 

 

Spectrometry of Binary Systems 
 

In this section, we are going to calculate the astronomical properties of a binary star by using 

experimental spectrometric data of the binary system. 
 

Atoms absorb or emit radiation at their certain characteristic wavelengths. Consequently, the 

observed spectrum of a star contains absorption lines due to the atoms in the star’s atmosphere.  

Sodium has a characteristic yellow line spectrum (D1 line) with a wavelength 5895.9Ǻ (10 Ǻ = 1 

nm). We examine the absorption spectrum of atomic Sodium at this wavelength for the binary 

system of the previous section. The spectrum of the light that we receive from the binary star is 

Doppler-shifted, because the stars are moving with respect to us. Each star has a different speed. 

Accordingly the absorption wavelength for each star will be shifted by a different amount. Highly 

accurate wavelength measurements are required to observe the Doppler shift since the speed of 

the stars is much less than the speed of light. The speed of the center of mass of the binary system 

we consider in this problem is much smaller than the orbital velocities of the stars. Hence all the 

Doppler shifts can be attributed to the orbital velocity of the stars.  Table 1 shows the measured 

spectrum of the stars in the binary system we have observed. 

 

 

Table 1: Absorption spectrum of the binary star system for the Sodium D1  line 

 

 

      

2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 t/days 

5894.6 5894.1 5894.3 5895.1 5896.2 5897.2 5897.7 5897.5 
1λ  (Å) 

5898.1 5899.0 5898.7 5897.3 5896.2 5893.7 5892.8 5893.1 
2λ  (Å) 

4.8 4.5 4.2 3.9 3.6 3.3 3.0 2.7 t/days 

5894.3 5895.0 5896.2 5897.2 5897.7 5897.3 5896.7 5895.6 
1λ  (Å) 

5898.7 5897.4 5896.2 5893.7 5892.8 5893.1 5894.5 5896.4 
2λ  (Å) 

(Note: There is no need to make a graph of the data in this table) 

2 Using Table 1,  

 

2.1 
Let 1v and 2v be the orbital velocity of each star. Find 1v and 2v . 

The speed of light m/s100.3 8×=c . Ignore all relativistic effects. 
1.8 

 

2.2 Find the mass ratio of the stars ( )21 mm . 0.7 

 

2.3 
Let 1r  and 2r  be the distances of each star from their center of mass.  

Find 1r  and 2r . 
0.8 

 



 

 

 3 

2.4 Let r  be the distance between the stars. Find r . 0.2 

 

3  The gravitational force is the only force acting between the stars.  
 

3.1 
Find the mass of each star up to one significant digit.  

The universal gravitational constant  
21311 skgm107.6 −−−×=G . 

1.2 

 

General Characteristics of Stars 

 
4 Most of the stars generate energy through the same mechanism. Because of this, there is an 

empirical relation between their mass, M , and their luminosity, L  , which is the total 

radiant power of the star. This relation could be written in the form ( )α

SunSun MMLL = . 

Here, kg100.2 30×=SunM  is the solar mass and, W109.3 26×=SunL  is the solar 

luminosity. This relation is shown in a log-log diagram in Figure 2.  

 

 
Figure 2. The luminosity of a star versus its mass varies as a power law. The diagram is log-

log. The star-symbol represents Sun with a mass of g100.2 30 k×  and luminosity of 

W109.3 26× . 

 

 

 

 
4.1 Find α  up to one significant digit. 0.6 

 

4.2 
Let 1L  and 2L  be the luminosity of the stars in the binary system studied in the 

previous sections. Find 1L  and 2L . 
0.6 

 

4.3 
What is the distance, d , of the star system from us in light years?  

To find the distance you can use the diagram of Figure 1. One light year is the 

distance light travels in one year. 

0.9 



 

 

 4 

 

4.4 
What is the maximum angular distance,θ , between the stars from our observation 

point? 
0.4 

 

4.5 
What is the smallest aperture size for an optical telescope, D , that can resolve these 

two stars? 
0.4 
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Experimental Problem

  
Determination of energy band gap of semiconductor thin films  

I. Introduction 
Semiconductors can be roughly characterized as materials whose electronic properties 
fall somewhere between those of conductors and insulators. To understand 
semiconductor electronic properties, one can start with the photoelectric effect as a 
well-known phenomenon. The photoelectric effect is a quantum electronic 
phenomenon, in which photoelectrons are emitted from the matter through the 
absorption of sufficient energy from electromagnetic radiation (i.e. photons). The 
minimum energy which is required for the emission of an electron from a metal by 
light irradiation (photoelectron) is defined as "work function". Thus, only photons 
with a frequency 

 

higher than a characteristic threshold, i.e. with an energy h ( h 
is the Planck s constant) more than the material s work function, are able to knock 
out the photoelectrons.       

Figure 1. An illustration of photoelectron emission from a metal plate: The incoming photon 
should have an energy which is more than the work function of the material.  

In fact, the concept of work function in the photoelectric process is similar to the 
concept of the energy band gap of a semiconducting material. In solid state physics, 
the band gap gE is the energy difference between the top of the valence band and the 

bottom of the conduction band of insulators and semiconductors. The valence band is 
completely filled with electrons, while the conduction  band is empty however 
electrons can go from the valence band to the conduction band if they acquire 
sufficient energy (at least equal to the band gap energy).The semiconductor's 
conductivity strongly depends on its energy band gap.              

Figure 2. Energy band scheme for a semiconductor. 
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Band gap engineering is the process of controlling or altering the band gap of a 
material by controlling the composition of certain semiconductor alloys. Recently, it 
has been shown that by changing the nanostructure of a semiconductor it is possible 
to manipulate its band gap.  

In this experiment, we are going to obtain the energy band gap of a thin-film 
semiconductor containing nano-particle chains of iron oxide (Fe2O3) by using an 
optical method. To measure the band gap, we study the optical absorption properties 
of the transparent film using its optical transmission spectrum. As a rough statement, 
the absorption spectra shows a sharp increase when the energy of the incident photons 
equals to the energy band gap.  

II. Experimental Setup 
You will find the following items on your desk: 
1. A large white box containing a spectrometer with a halogen lamp. 
2. A small box containing a sample, a glass substrate, a sample-holder, a grating, 

and a photoresistor. 
3. A multimeter. 
4. A calculator. 
5. A ruler.  
6. A card with a hole punched in its center. 
7. A set of blank labels.  

The spectrometer contains a goniometer with a precision of 5 . The Halogen lamp 
acts as the source of radiation and is installed onto the fixed arm of the spectrometer 
(for detailed information see the enclosed "Description of Apparatus").     

The small box contains the following items: 
1. A sample-holder with two windows: a glass substrate coated with Fe2O3 film 

mounted on one window and an uncoated glass substrate mounted on the other. 
2. A photoresistor mounted on its holder, which acts as a light detector. 
3. A transparent diffraction grating (600 line/mm).     

A schematic diagram of the setup is shown in Figure 3:             

Figure 3. Schematic diagram of the experimental setup. 

Note: Avoid touching the surface of any component in the small box! 
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III. Methods 
To obtain the transmission of a film at each wavelength, filmT , one can use the 

following formula: 
)(/)()( glassfilmfilm IIT

 
   (1) 

where filmI and glassI are respectively the intensity of the light transmitted from the 

coated glass substrate, and the intensity of the light transmitted from the uncoated 
glass slide. The value of I can be measured using a light detector such as a 
photoresistor. In a photoresistor, the electrical resistance decreases when the intensity 
of the incident light increases.  Here, the value of I can be determined from the 
following relation: 

1)()( RCI

  

(2) 
where R

 

is the electrical resistance of the photoresistor, C is a -dependent 
coefficient.  

The transparent grating on the spectrometer diffracts different wavelengths of 
light into different angles. Therefore, to study the variations of T

 

as a function of , 
it is enough to change the angle of the photoresistor ( ) with respect to the optical 
axis (defined as the direction of the incident light beam on the grating), as shown in 
Figure 4.  
From the principal equation of a diffraction grating: 

]sin)[sin( 00dn  (3) 

one can obtain the angle 

 

corresponding to a particular : n

 

is an integer number 
representing the order of diffraction, d is the period of the grating, and o  is the angle 

the normal vector to the surface of grating makes with the optical axis (see Fig. 4). (In 
this experiment we shall try to place the grating perpendicular to the optical axis 
making 0o , but since this cannot be achieved with perfect precision the error 

associated with this adjustment will be measured in task 1-e.)          

Figure 4. Definition of the angles involved in Equation 3. 

Experimentally it has been shown that for photon energies slightly larger than 
the band gap energy, the following relation holds: 

)( gEhAh

 

(4) 

where 

 

is the absorption coefficient of the film, A  is a constant that depends on the 
film s material, and is the constant determined by the absorption mechanism of the 
film s material and structure. Transmission is related to the value of 

 

through the 
well-known absorption relation:  

o 

Grating 

o 

'

 

Optical axis
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t)(-expfilmT  (5) 

where t  is thickness of the film.  

IV. Tasks:  

0. Your apparatus and sample box (small box containing the sample holder) are 
marked with numbers. Write down the Apparatus number and Sample number in 
their appropriate boxes, in the answer sheet.  

1. Adjustments and Measurements:

   

1-a 

 

Check the vernier scale and report the maximum precision 
( ). 

0.1 pt 

 

Note: Magnifying glasses are available on request.  

Step1: 
To start the experiment, turn on the Halogen lamp to warm up. It would be better not 
to turn off the lamp during the experiment. Since the halogen lamp heats up during 
the experiment, please be careful not to touch it.  

Place the lamp as far from the lens as possible, this will give you a parallel light 
beam.   

We are going to make a rough zero-adjustment of the goniometer without utilizing 
the photoresistor. Unlock the rotatable arm with screw 18 (underneath the arm), and 
visually align the rotatable arm with the optical axis. Now, firmly lock the rotatable 
arm with screw 18. Unlock the vernier with screw 9 and rotate the stage to 0 on the 
vernier scale. Now firmly lock the vernier with screw 9 and use the vernier fine-
adjustment  screw (screw 10) to set the zero of the vernier scale. Place the grating 
inside its holder. Rotate the grating's stage until the diffraction grating is roughly 
perpendicular to the optical axis. Place the card with a hole in front of the light source 
and position the hole such that a beam of light is incident on the grating. Carefully 
rotate the grating so that the spot of reflected light falls onto the hole. Then the 
reflected light beam coincides with the incident beam. Now lock the grating's stage 
by tightening screw 12.  

 

By measuring the distance between the hole and the grating, 
estimate the precision of this adjustment ( o ). 0.3 pt 

1-b 

 

Now, by rotating the rotatable arm, determine and report the 
range of angles for which the first-order diffraction of visible light 
(from blue to red) is observed. 

0.2 pt 

 

Step 2: 
Now, install the photoresistor at the end of the rotatable arm. To align the system 
optically, by using the photoresistor, loosen the screw 18, and slightly turn the 
rotatable arm so that the photoresistor shows a minimum resistance. For fine 
positioning, firmly lock screw 18, and use the fine adjustment screw of the rotatable 
arm. 
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Use the vernier fine-adjustment screw to set the zero of the vernier scale.   

 
Report the measured minimum resistance value ( )0(

minR ).  0.1 pt 

1-c 

 
Your zero-adjustment is more accurate now, report the 

precision of this new adjustment ( o ) .  

Note: o

 

is the error in this alignment i.e. it is a measure of 

misalignment of the rotatable arm and the optical axis. 

0.1 pt 

  

Hint: After this task you should tighten the fixing screws of the vernier. 
Moreover, tighten the screw of the photoresistor holder to fix it and do not remove it 
during the experiment.   

Step 3: 
Move the rotatable arm to the region of the first-order diffraction. Find the angle at 
which the resistance of the photoresistor is minimum (maximum light intensity). 
Using the balancing screws, you can slightly change the tilt of the grating s stage, to 
achieve an even lower resistance value.   

1-c 

 

Report the minimum value of the observed resistance ( )1(
minR ) in 

its appropriate box. 
0.1 pt 

  

It is now necessary to check the perpendicularity of the grating for zero adjustment, 
again. For this you must use the reflection-coincidence method of Step 1.   

Important: From here onwards carry out the experiment in dark (close the cover).  

Measurements: Screw the sample-holder onto the rotatable arm. Before you start the 
measurements, examine the appearance of your semiconductor film (sample). Place 
the sample in front of the entrance hole 1S on the rotatable arm such that a uniformly 
coated part of the sample covers the hole. To make sure that every time you will be 
working with the same part of the sample make proper markings on the sample holder 
and the rotatable arm with blank labels.  

Attention: At higher resistance measurements it is necessary to allow the 
photoresistor to relax, therefore for each measurement in this range wait 3 to 4 
minutes before recording your measurement.  

 

Measure the resistance of the photoresistor for the uncoated 
glass substrate and the glass substrate coated with semiconductor 
layer as a function of the angle 

 

(the value read by the 
goniometer for the angle between the photoresistor and your 
specified optical axis). Then fill in Table 1d. Note that you need 
at least 20 data points in the range you found in Step 1b. Carry 
out your measurement using the appropriate range of your 
ohmmeter. 

2.0 pt 
1-d 

 

Consider the error associated with each data point. Base your 1.0 pt 
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answer only on your direct readings of the ohmmeter.   

 
Step 4: 
The precision obtained so far is still limited since it is impossible to align the 
rotatable arm with the optical axis and/or position the grating perpendicular to the 
optical axis with 100% precision. So we still need to find the asymmetry of the 
measured transmission at both sides of the optical axis (resulting from the deviation 
of the normal to the grating surface from the optical axis ( o )). 

To measure this asymmetry, follow these steps:   

 

First, measure filmT at 20 . Then, obtain values for filmT 

at some other angles around 20 . Complete Table 1e (you can 
use the values obtained in Table 1d).  

0.6 pt 
1-e 

 

Draw filmT  versus 

 

and visually draw a curve. 0.6 pt 

On your curve find the angle 

 

for which the value of filmT is equal to the filmT that 

you measured at o20 (
)20(

|
filmfilm

TT
). Denote the difference of this angle 

with 20  as , in other words: 
20             (6)  

1-e 

 

Report the value of 

 

in the specified box. 0.2 pt 

 

Then for the first-order diffraction, Eq. (3) can be simplified as follows: 
)2/sin(d , (7) 

where  is the angle read on the goniometer.   

2. Calculations:

  

2-a 

 

Use Eq. (7) to express 

 

in terms of the errors of the other 
parameters (assume d is exact and there is no error is associated 
with it). Also using Eqs. (1), (2), and (5), express filmT

 

in terms 

of R  and R . 

0.6 pt 

 

2-b 

 

Report the range of  values of  over the region of first-order 
diffraction.  

0.3 pt 

 

2-c 

 

Based on the measured parameters in Task 1, complete Table 
2c for each . Note that the wavelength should be calculated using 
Eq. (7).  

2.4 pt 

  

Plot 1
glassR and 1

filmR as a function of wavelength together on 

the same diagram. Note that on the basis of Eq. (2) behaviors of 
1

glassR and 1
filmR can reasonably give us an indication of the way 

glassI  and filmI  behave, respectively. 

1.5 pt 
2-d  

 

In Table 2d, report the wavelengths at which glassR and 

filmR attain their minimum values.   
0.4 pt 
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2-e 

 
For the semiconductor layer (sample) plot filmT as a function of 

wavelength. This quantity also represents the variation of the film 
transmission in terms of wavelength. 

1.0 pt 

 
3. Data analysis:

 
By substituting 21

 

and 071.0A ((eV)1/2/nm) in Eq. (4) one can find values for 

gE  and t  in units of eV and nm, respectively. This will be accomplished by plotting a 

suitable diagram in an yx

 

coordinate system and doing an extrapolation in the 
region satisfying this equation.    

3-a 

 

By assuming hx

 

and 2)( hty

 

and by using your 
measurements in Task 1, fill in Table 3a for wavelengths around 
530 nm and higher. Express your results ( x

 

and y ) with the 
correct number of significant figures (digits), based on the 
estimation of the error on one single data point. 
Note that h

 

should be calculated in units of eV and wavelength 

in units of nm. Write the unit of each variable between the 
parentheses in the top row of the table.  

2.4 pt 

  

Plot y  versus x .  

 

Note that the y

 

parameter corresponds to the absorption of the 
film. Fit a line to the points in the linear region around 530 nm. 3-b 

 

Specify the region where Eq. (4) is satisfied, by reporting the 
values of the smallest and the largest x-coordinates for the data 
points to which you fit the line.  

2.6 
pt 

 

3-c 

 

Call the slope of this line m , and find an expression for the 
film thickness ( t ) and its error ( t ) in terms of m and A (consider 
A  to have no error).  

0.5 pt 

 

3-d 

 

Obtain the values of gE and t and their associated errors in 

units of eV and nm, respectively. Fill in Table 3d.  
3.0 pt 

  

Some useful physical constants required for your analysis:  

 

Speed of the light:  81000.3c  m/s 

 

Plank s constant:  341063.6h  J.s 

 

Electron charge:     191060.1e  C    
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Description of the Apparatus   

In Fig.1 you can see the general view of the apparatus set up on your desk, which 

will be used in the experiment. The instrument is a spectroscope to be equipped with a 

detector to act as a simple spectrometer.    

To start adjusting the apparatus, you should first pull up the white cover of the 

box (Fig.1). The cover pivots on one side of the base of the apparatus. In order to 

establish a dark environment for the detector, the cover should be returned to its initial 

position and kept tightly closed during the measurement of the spectra. The power cord 

has a switch that turns the halogen lamp on and off. There are four screws to level the 

apparatus (a magnified view of which you can see in right inset of Fig.1)           

Figure 1. Apparatus of the experiment. One of the level adjusting screws is enlarged in the right inset.          

Warning 1: Avoid touching the halogen lamp and its 

holder which will be hot after the lamp is turned on!

 

Warning 2: Do not manipulate the adaptor and its 

connections. Power is supplied to the apparatus through 

220 V outlets! 
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The top view of the apparatus is shown in Fig.2 . The details are introduced in the 

figure.                                 

Figure 2.  

1. Power cord 
2. Halogen lamp and its cooling fan 
3. On/Off switch 
4. Arm of adjustable length 
5. Adjusting screw 
6. Adaptor: 220V  less than 12 V 
7. Lens 
8. Vernier 
9. Vernier s lock 
10. Fine adjustment screw for the vernier 
11. Grating s stage 
12. Grating s stage s fixing screw  
13. Adjustment screw for leveling the 

grating s stage (shown in Fig. 4)  

14. Grating holder 
15. Sample holder 
16. Fixing and adjusting screw for 

the  sample and glass holder 
(Fig. 6) 

17. Rotatable arm 
18. Rotatable arm s lock (Fig.4 ) 
19. Fine adjustment for the rotatable 

arm 
20. Detector position 
21. Fixing screw for the detector 
22. Connecting socket for the 

detector 
23. Connection to the multimeter 
24. Fixing screw to the base  

The number mentioned on the top-left corner, is the apparatus number. 

 

1

 

2 

3 

4

 

5 

6

 

7

 

9

 

11 

12 14 

15

 

16

 

17

 

19

 

20 

21

 

22 
23 

24

 

8

 

10 
312 
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The angle, which the rotatable arm makes with the direction of the fixed arm of 

the apparatus, could be measured by a protractor equipped by a vernier.  In this vernier 

resolution scale is 30' (minutes of arc). This instrument is able to measure an angle with 

accuracy of 5'.  

In addition to the apparatus you should find a box (Figure 3), containing the 

following elements: 

1: a detector in its holder; 2: a 600 line/mm grating; 3: the sample and a glass substrate 

mounted in a frame.      

Figure 3. The small box, containing the glass and sample holder, a diffraction grating and a photoresistor.   

First, you should take the grating out of its cover and put it into its frame (the grating 

holder, Fig. 4), carefully.       

There are three adjustment screws (Fig. 4) for making the grating stand vertically 

in its position.          

Figure 4. Locking, fixing and adjusting screws of the apparatus. A1: Fixing screw for the grating; 
 A2: The grating. 7, 9, 10, 12-14, 18 and 19 are explained in Figure 2. 

1
A1 

13

 

12

 

7

 

A2 

1

18

 

1

9

 

10

 

CAUTION: Touching the surface of the grating could reduce 

its diffraction efficiency seriously, or even damage it!  

3 2 1 
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The detector should be tight to its position, in the end of the rotatable arm, (Figure 5):            

Figure 5 . The detector and its holder. D1: The photoresistor; D2: connecting wire. D3: The detector 
holder. 17 and 21 are explained in Fig. 2.    

The sample and the glass substrate are fixed to a frame (holder) (Fig. 6c), which 

would be attached to the instrument by a fixing screw (Fig. 6a, item 16). This frame is 

rotatable and one can put the sample or the glass substrate in front of the entrance hole, 

by turning the frame around the fixing screw (Fig. 6a).         

Figure 6 . The Sample and the glass holder. S1: Entrance hole; S2: Sample; S3: Glass substrate. 15 and 16 
are explained in Fig. 2.      

21 

17 D1 

D2 

D3 

S1 

16 

A2 15

 

S1 
15 
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S3 
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b
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The Multimeter which you should use for recording the signal detected by the 

photoresistor is shown in the Fig. 7. This multimeter can measure up to 200 M . The red 

and black probe wires should be connected to the instrument as is shown in the Fig. 7. 

The on/off button is placed on the left hand side of the multimeter (Fig. 7, item M1).                  

Figure 7. The Multimeter for measuring the resistance of the photoresistor. M1: on/off switch; M2: probe 
wires; M3: Hold button; M4: connections to the apparatus.          

M2

 

M1

 

M3

 

M4 

Note: The multimeter has auto-off feature. In the case of auto-
off, you should push on/off button (M1) twice, successively.   

 

 Hold button should not be active during the experiment. 

 



Question “Orange” 
 

1.1) 

First of all, we use the Gauss’s law for a single plate to obtain the electric field,  

0ε

σ
=E .               (0.2) 

The density of surface charge for a plate with charge, Q  and area, A  is 

A

Q
=σ .                (0.2) 

Note that the electric field is resulted by two equivalent parallel plates. Hence the 

contribution of each plate to the electric field is E
2

1
. Force is defined by the electric filed 

times the charge, then we have 

Force = QE
2

1
= 

A

Q

0

2

2ε
   (0.2)+ (0.2) ( The ½  coefficient + the final result) 

 

1.2) 

The Hook’s law for a spring is 

xkFm −= .   (0.2) 

In 1.2 we derived the electric force between two plates is  

A

Q
Fe

0

2

2ε
= . 

The system is stable. The equilibrium condition yields 

 em FF = ,    (0.2) 

kA

Q
x

0

2

2ε
=⇒    (0.2) 

 

1.3) 

The electric field is constant thus the potential difference, V  is given by  

)( xdEV −=     (0.2) 

(Other reasonable approaches are acceptable. For example one may use the definition of 

capacity to obtainV .)   

By substituting the electric field obtained from previous section to the above equation, we 

get, 







−=

dkA

Q

A

dQ
V

0

2

0 2
1

εε
                   (0.2) 

 

1.4)  

C is defined by the ratio of charge to potential difference, then  

V

Q
C =  .            (0.1)        



Using the answer to 1.3, we get 

1

0

2

0 2
1

−









−=

dkA

Q

C

C

ε
          (0.2) 

 

1.5) 

Note that we have both the mechanical energy due to the spring  

2

2

1
kxUm = ,           (0.2)          

and the electrical energy stored in the capacitor.  

C

Q
U E

2

2

=  .              (0.2) 

Therefore the total energy stored in the system is 
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2.1) 

For the given value of x , the amount of charge on each capacitor is 

 

xd

VA
CVQ

−
== 0

11

ε
 ,                (0.2) 

xd

VA
CVQ

+
== 0

22

ε
 .               (0.2) 

 

2.2) 

Note that we have two capacitors. By using the answer to 1.1 for each capacitor, we get 

A

Q
F

0

2

1
1

2ε
= , 

A

Q
F

0

2

2
2

2ε
= . 

As these two forces are in the opposite directions, the net electric force is  

21 FFFE −= ,   (0.2)     
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2.3) 

Ignoring terms of order 2
x  in the answer to 2.2., we get

    
 

x
d

VA
FE 3

2

02ε
=           (0.2) 

  

2.4) 

There are two springs placed in series with the same spring constant, k , then the 

mechanical force is 



xkFm 2−= .     (The coefficient (2) has (0.2)) 

Combining this result with the answer to 2.4 and noticing that these two forces are in the 

opposite directions, we get 

Em FFF += ,                  x
d

VA
kF 








−−=⇒

3

2

02
ε

, (Opposite signs of the 

two forces have (0.3)) 
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2
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2.5) 

By using the Newtown’s second law, 

maF =            (0.2) 

and the answer to 2.4, we get 

x
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m
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3.1) 

Starting with Kirchhoff’s laws, for two electrical circuits, we have 
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  (Each has (0.3), Note: the sings may depend on the specific choice made) 

 

Noting that sV = 
S

S

C

Q
  one obtains  

22

0

22

0

2

2

xd

dA
C

xd
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VV

S

S
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−=⇒
ε

ε

 .    ((0.4) + (0.2): (0.4) for solving the above equations and (0.2) 

for final result) 

 



Note: Students may simplify the above relation using the approximation 22
xd >> . It does 

not matter in this section. 

 

3.2) 

Ignoring terms of order 2
x  in the answer to 3.1., we get
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4.1) 

The ratio of the electrical force to the mechanical (spring) force is 

3

2

0

dk

VA

F

F

m

E
ε

=  , 

Putting the numerical values: 

9106.7 −×=
m

E

F

F
 .               ((0.2) + (0.2) + (0.2): (0.2) for order of magnitude, (0.2) for 

two significant digits and (0.2) for correct answer (7.6 or 7.5)).  

As it is clear from this result, we can ignore the electrical forces compared to the electric 

force. 

 

 

 

4.2) 

As seen in the previous section, one may assume that the only force acting on the moving 

plate is due to springs:  

xkF 2=  .     (The concept of equilibrium (0.2)) 

Hence in mechanical equilibrium, the displacement of the moving plate is  

k

ma
x

2
=  . 

The maximum displacement is twice this amount, like the mass spring system in a 

gravitational force field, when the mass is let to fall. 

xx 2max =     (0.2) 

k

am
x =max     (0.2) 

 

4.3) 

At the acceleration 

ga = ,              (0.2) 

The maximum displacement is 

k

gm
x =max . 

Moreover, from the result obtained in 3.2, we have     



dACd

xA
VV

S

S

0

2

max0

2

2

ε

ε

+
=  

This should be the same value given in the problem, V15.0 . 









−=⇒ 1

2 max0

dV

xV

d

A
C

S

S

ε
    (0.2) 

F100.8 11−×=⇒ SC                (0.2) 

 

4.4) 

Let l  be the distance between the driver’s head and the steering wheel. It can be 

estimated to be about 

mm 14.0 −=l .            (0.2) 

Just at the time the acceleration begins, the relative velocity of the driver’s head with 

respect to the automobile is zero. 

 0)0( ==∆ tv ,             (0.2) 

then 

2

1
2

1
tg=l      

g
t

l2
1 =⇒     (0.2) 

st 5.03.01 −=           (0.2) 

 

4.5) 

The time 2t is half of period of the harmonic oscillator, hence   

 

2
2

T
t = ,            (0.3) 

The period of harmonic oscillator is simply given by  

k

m
T

2
2π=  ,     (0.2) 

therefore, 

st 013.02 = .     (0.2) 

 

As 21 tt > , the airbag activates in time.                   (0.2) 



1.1)  One may use any reasonable equation to obtain the dimension of the questioned 

quantities.  

 

I) The Planck relation is 121]][[][][]][[ −− ==⇒=⇒= TMLEhEhEh ννν                                   

(0.2) 

II) 1][ −= LTc           (0.2) 

III)  23122

2
]][][[][ −−− ==⇒= TLMmrFG

r

mmG
F     (0.2) 

IV) 1221 ][][][ −−− ==⇒= KTMLEKKE BB θθ      (0.2) 

 

 

 

1.2) Using the Stefan-Boltzmann's law,  

 4θσ=
Area

Power
, or any equivalent relation, one obtains:     

 (0.3) 

.][][][ 43124 −−−− =⇒= KMTTLEK σσ       (0.2) 

 

 

 

1.3)  The Stefan-Boltzmann's constant, up to a numerical coefficient, equals 

,
δγβασ BkGch=  where δγβα ,,, can be determined by dimensional analysis. Indeed, 

,][][][][][ δγβασ BkGch= where e.g. .][ 43 −−= KMTσ  

 

 

( ) ( ) ( ) ( ) ,2223212223111243 δδγβαδγβαδγαδγβα −−−−−++++−−−−−−−−− == KTLMKTMLTLMLTTMLKMT  

          (0.2) 

The above equality is satisfied if,            

 













−=−

−=−−−−

=+++

=+−

⇒

,4

,322

,0232

,1

δ

δγβα

δγβα

δγα

   (Each one (0.1)) ⇒













=

=

−=

−=

.4

,0

,2

,3

δ

γ

β

α

   (Each one (0.1))                  

⇒  .
32

4

hc

kB=σ   

 

 

2.1) Since A , the area of the event horizon, is to be calculated in terms of m from a 

classical theory of relativistic gravity, e.g. the General Relativity, it is a combination of 

c , characteristic of special relativity, and G  characteristic of gravity. Especially, it is 



independent of the Planck constant h  which is characteristic of quantum mechanical 

phenomena.  

 
γβα

mcGA =  

 

Exploiting dimensional analysis, 

( ) ( ) βαβαγαγβαγβα −−++−−−− ==⇒=⇒ 2312312][][][][ TLMMLTTLMLmcGA  

           (0.2) 

The above equality is satisfied if,   

 









=−−

=+

=+−

⇒

,02

,23

,0

βα

βα

γα

  (Each one (0.1))      ⇒       








=

−=

=

,2

,4

,2

γ

β

α

 (Each one (0.1))⇒  

 .
4

22

c

Gm
A =  

                    

 

2.2) 

 

From the definition of entropy 
θ

dQ
dS = , one obtains 1221]][[][ −−− == KTMLES θ  (0.2) 

 

 

2.3)  Noting AS=η , one verifies that,  

 









==

==

−−−−−+++++−

−−−

,][][][][][

,]][[][

22223

121

δδγβαδγβαδβαδγβαη

η

KTLMkchG

KMTAS

B

   (0.2) 

Using the same scheme as above, 

 

 ⇒













=

−=−−−−

=+++

=++−

,1

,222

,0223

,1

δ

δγβα

δγβα

δβα

 (Each one (0.1))    













=

=

−=

−=

⇒

,1

,3

,1

,1

δ

γ

β

α

     (Each one (0.1))                

thus, .
3

hG

kc B=η          (0.1) 

  

3.1)  



The first law of thermodynamics is dWdQdE += . By assumption, 0=Wd . Using the 

definition of entropy, 
θ

dQ
dS = , one obtains,  

,0+= dSdE Hθ   (0.2) + (0.1), for setting 0=Wd . 

Using, 








=

=

,

,

2

2

mcE

m
ch

kG
S B

  [(0.1) for S]    

one obtains, 

1

2

1 −−









=








==

dm

dS
c

dE

dS

dS

dE
Hθ          (0.2) 

Therefore,
mkG

hc

B

H

1

2

1 3









=θ .    (0.1)+(0.1) (for the coefficient) 

 

3.2) The Stefan-Boltzmann's law gives the rate of energy radiation per unit area. Noting 

that 2
mcE =  we have: 

  
















=

=

=

−=

,2

4

22

32

4

4

,

,/

mcE

c

Gm
A

hc

k

AdtdE

B

H

σ

σθ

     ⇒ ,
1

2 4

22
4

3

32

4

2

c

Gm

mkG

hc

hc

k

td

md
c

B

B









−=   (0.2)                                 

⇒  .
1

16

1
22

4

mG

hc

td

md
−=   (0.1)  (for simplification) + (0.2) (for the minus sign) 

 

3.3)  

By integration:   

.
1

16

1
22

4

mG

hc

td

md
−=  dt

G

hc
dmm ∫∫ −=⇒

2

4
2

16
   (0.3)      

,
16

3
)0()(

2

4
33

t
G

hc
mtm −=−⇒  (0.2) + (0.2)   (Integration and correct boundary values)  

At *
tt =  the black hole evaporates completely: 

0)( * =tm      (0.1)        3

4

2
*

3

16
m

hc

G
t =⇒    (0.2)+(0.1) (for the coefficient) 

 

 

3.4)  VC  measures the change in E  with respect to variation of θ .  

 

(0.2) 
















=

=

=

mkG

hc

cmE

d

Ed
C

B

V

1

2

,

,

3

2

θ

θ

                           ⇒   .
2 2

m
hc

kG
C B

V −=    0.1)+(0.1) (for the coefficient) 

 

 

4.1) Again the Stefan-Boltzmann's law gives the rate of energy loss per unit area of the 

black hole. A similar relation can be used to obtain the energy gained by the black 

hole due to the background radiation. To justify it, note that in the thermal 

equilibrium, the total change in the energy is vanishing. The blackbody radiation 

is given by the Stefan-Boltzmann's law. Therefore the rate of energy gain is given 

by the same formula.  

 

 








=

+−=

,2

44

cmE

AA
td

Ed
Bσθσθ

              ⇒   ( ) 24

38

2

22

4 1

16
mk

hc

G

mG

hc

dt

dm
BB θ+−=   (0.3) 

 

4.2)   

Setting 0=
dt

dm
, we have: 

( ) 0
1

16

2*4

38

2

2*2

4

=+− mk
hc

G

mG

hc
BB θ     (0.2) 

and consequently,  

BBkG

hc
m

θ

1

2

3
* =         (0.2) 

 

4.3)  









−−=⇒=

4*

4

22

4

*

3

1
1

16

1

2 m

m

mG

hc

dt

dm

mkG

hc

B

Bθ      (0.2) 

 

4.4) Use the solution to 4.2,  

BBkG

hc
m

θ

1

2

3
* = (0.2)  and 3.1 to obtain,   B

B mkG

hc
θθ ==

*

3
* 1

2
     (0.2) 

One may also argue that *
m corresponds to thermal equilibrium. Thus for *

mm = the 

black hole temperature equals Bθ . 

Or one may set ( ) 0
44* =−−= A

td

Ed
Bθθσ  to get Bθθ =* . 

 

(0.2) 

(0.2) 

(0.1) + (0.4) (For the first and the second terms respectively) 

 



4.5) Considering the solution to 4.3, one verifies that it will go away from the 

equilibrium.       (0.6) 

⇒







−−=

4*

4

22

4

1
1
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m
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hc

dt

dm
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dm
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dt

dm
mm

                                                

 

 



Question “Pink” 

 
1.1  

Period = 3.0 days = s106.2 5× .   (0.4) 

Period = 
ω

π2
 (0.2) ⇒  15 srad104.2 −−×=ω . (0.2) 

 

 

1.2 

Calling the minima in the diagram 1, 90.001 ==αII  and 63.002 == βII , we have: 

 

α

1
1

4

1

2

2

1

2

1

0 =















+=

T

T

R

R

I

I
   (0.4) 

α

β
=























−








−=

4

1

2

2

1

2

1

2 11
T

T

R

R

I

I
    (0.4)   (or equivalent relations) 

 

From above, one finds: 

6.1
1 2

1

2

1 =⇒
−

=
R

R

R

R

β

α
 (0.2+0.2)  and        4.1

1

1

2

14

2

1 =⇒
−

−
=

T

T

T

T

α

β
 (0.2+0.2) 

 

 

2.1) 

Doppler-Shift formula: 

c

v
≅

∆

0λ

λ
 (or equivalent relation)   (0.4) 

 

Maximum and minimum wavelengths:   7.5897max,1 =λ Å , 1.5894min,1 =λ  Å 

           0.5899max,2 =λ Å , 8.5892min,2 =λ  Å    

 

Difference between maximum and minimum wavelengths: 

                  6.31 =∆λ  Å   ,    2.62 =∆λ  Å   (All 0.6) 

 

Using the Doppler relation and noting that the shift is due to twice the orbital speed: (Factor of 

two 0.4) 

   
0

1
1

2λ

λ∆
= cv   

4102.9 ×=  m/s   (0.2) 

   
0

2
2

2λ

λ∆
= cv   

5106.1 ×=  m/s   (0.2) 



The student can use the wavelength of central line and maximum (or minimum) wavelengths. 

Marking scheme is given in the Excel file. 

 

 

2.2) As the center of mass is not moving with respect to us: (0.5) 

 

1

2

2

1

v

v

m

m
=  = 7.1    (0.2) 

 

 

2.3) 

 

Writing 
ω

i
i

v
r =  for 2,1=i  , we have  (0.4) 

 
9

1 108.3 ×=r m, (0.2)    
9

2 105.6 ×=r m (0.2) 

 

 

2.4) 

 
10

21 100.1 ×=+= rrr m (0.2) 

 

 

3.1) 

 

The gravitational force is equal to mass times the centrifugal acceleration 

 

2

2

2
2

1

2

1
12

21

r

v
m

r

v
m

r

mm
G ==    (0.7) 

Therefore, 

 










=

=

1

2

1

2

2

2

2

2

2

1

rG

vr
m

rG

vr
m

 (0.1) ⇒  




×=
×=

kg103

kg106
30

2

30

1

m

m
   (0.2 + 0.2) 

 

 

 

 

 

 

 

 



 

4.1) As it is clear from the diagram, with one significant digit, 4=α .  (0.6) 
 

 

 
 

4.2) 

As we have found in the previous section: 

4









=

Sun

i
Suni

M

M
LL (0.2) 

So, 

   Watt103 28

1 ×=L (0.2) 

   Watt104 27

2 ×=L (0.2) 

 
 

4.3) The total power of the system is distributed on a sphere with radius d  to produce 0I , 

that is: 

2

21
0

4 d

LL
I

π

+
=   (0.5)           

0

21

4 I

LL
d

π

+
=⇒ = 18101× m     (0.2) 

          = 100 ly. (0.2) 

 
 

4.4)   
d

r
=≅ θθ tan = 8101 −× rad.    (0.2 + 0.2) 

 
 

4.5) 

A typical optical wavelength is 0λ . Using uncertainty relation: 

   ≅=
r

d
D 0λ

 50 m.   (0.2 + 0.2) 

 



 

1

 

0

Solution (The Experimental Question):

 
Task 1

  
1a. 

nominal=5´=0.08

 
nominal (degree) 0.08 

   

1b.  
                    

                                                       

                

If a is the distance between card and the grating and r

 

is the distance between the 
hole and the light spot so we have   

...,...,
2

2
2

2

1
1

21 x
x

f
x

x

f
xxf

2

2

2

0000 2

a

22
1,2tan

a

r

a

r

a

r
If

a

r

 

We want 0 to be zero i.e.
a

r
r

2
0 0

  

4.0007.0
2

170,1 0 radrad
a

r
mmammr

  

0  0.4

  

range of visible light (degree) 13 

 

26

       

r

Reflected Beam 

a Optical Axis 

Incident Beam 



 

2

 
1c. 

0
minR (21.6±0.1) k

 
0 5´ = 0.08

 
1

minR R=(192±1) k

 
0=5´ because  

   

 
= 5´ => R= (21.9±0.1) k

 
   

 
=-5´ => R= (21.9±0.1) k

    

1d.  

Table 1d. The measured parameters  

 (degree) Rglass(M )

 

Rglass(M )

 

Rfilm(M )

 

Rfilm(M )

 

15.00

 

3.77

 

0.03

 

183

 

3

 

15.50

 

2.58

 

0.02

 

132

 

2

 

16.00

 

1.88

 

0.01

 

87

 

1

 

16.50

 

1.19

 

0.01

 

51.5

 

0.5

 

17.00

 

0.89

 

0.01

 

33.4

 

0.3

 

17.50

 

0.68

 

0.01

 

19.4

 

0.1

 

18.00

 

0.486

 

0.005

 

10.4

 

0.1

 

18.50

 

0.365

 

0.005

 

5.40

 

0.03

 

19.00

 

0.274

 

0.003

 

2.66

 

0.02

 

19.50

 

0.225

 

0.002

 

1.42

 

0.01

 

20.00

 

0.200

 

0.002

 

0.880

 

0.005

 

20.50

 

0.227

 

0.002

 

0.822

 

0.005

 

21.00

 

0.368

 

0.003

 

1.123

 

0.007

 

21.50

 

0.600

 

0.005

 

1.61

 

0.01

 

22.00

 

0.775

 

0.005

 

1.85

 

0.01

 

22.50

 

0.83

 

0.01

 

1.87

 

0.01

 

23.00

 

0.88

 

0.01

 

1.93

 

0.02

 

23.50

 

1.01

 

0.01

 

2.14

 

0.02

 

24.00

 

1.21

 

0.01

 

2.58

 

0.02

 

24.50

 

1.54

 

0.01

 

3.27

 

0.02

 

25.00

 

1.91

 

0.01

 

4.13

 

0.02

 

16.25

 

1.38

 

0.01

 

66.5

 

0.5

 

16.75

 

1.00

 

0.01

 

40.0

 

0.3

 

17.25

 

0.72

 

0.01

 

23.4

 

0.2

 

17.75

 

0.535

 

0.005

 

12.8

 

0.1

 

18.25

 

0.391

 

0.003

 

6.83

 

0.05

 

18.75

 

0.293

 

0.003

 

3.46

 

0.02

 

19.25

 

0.235

 

0.003

 

1.76

 

0.01

 

19.75

 

0.195

 

0.002

 

0.988

 

0.005

 

20.25

 

0.201

 

0.002

 

0.776

 

0.005

 

20.75

 

0.273

 

0.003

 

0.89

 

0.01

         



 

3

 
1e.   

In =-20 => Rglass= (132± 2) k   , Rfilm= (518±5) k      

 
Tfilm 

 
Tfilm 

 = -20

 
0.255 19.25

 
0.134

 
19.50

 
0.158

 
19.75

 
0.197

 

20.00

 

0.227

 

20.25

 

0.259

 

20.50

 

0.276

   

20.75

 

0.307

   

Graphics   

We see that: T(

 

= 20.25 ) = T(

 

= -20 )   

(degree) 0.25±0.08 

      

0.10

0.15

0.20

0.25

0.30

0.35

19.0 19.5 20.0 20.5 21.0

T
ra

ns
m

is
si

on
 

 

(degree) 

Tfilm| =-20° 
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Task 2.

  
2a. 

180

1.0
cos

42
cot

2
sin

2
22

2

d
d

d
d     

 

= 2.9 cos( ) (nm) 

 

22

glass

glass

film

film
film

film

glass
film R

R

R

R
TT

R

R
T  

22

glass

glass

film

film

film

glass

R

R

R

R

R

R
T 

   

2b.   

2613

   

2.6    2.8 nm 

  

mm
600

1
d   and    

degree0.085where



 

5

 
2c.  

Table 2c. The calculated parameters using the measured parameters   

 
(degree)  

(nm)

 
Ig/C( ) 
(M -1) 

Is/C( ) 
(M -1) Tfilm t

 
15.0

 
428

 
0.265

 
0.00546

 
0.0206

 
3.88

 
15.5

 
442

 
0.388

 
0.00758

 
0.0195

 
3.94

 

16.0

 

456

 

0.532

 

0.0115

 

0.0216

 

3.83

 

16.25

 

463

 

0.725

 

0.0150

 

0.0208

 

3.88

 

16.5

 

470

 

0.840

 

0.0194

 

0.0231

 

3.77

 

16.75

 

477

 

1.00

 

0.0250

 

0.0250

 

3.69

 

17.0

 

484

 

1.12

 

0.0299

 

0.0266

 

3.63

 

17.25

 

491

 

1.39

 

0.0427

 

0.0308

 

3.48

 

17.5

 

498

 

1.47

 

0.0515

 

0.0351

 

3.35

 

17.75

 

505

 

1.87

 

0.0781

 

0.0418

 

3.17

 

18.0

 

512

 

2.06

 

0.096

 

0.0467

 

3.06

 

18.25

 

518

 

2.56

 

0.146

 

0.0572

 

2.86

 

18.5

 

525

 

2.74

 

0.185

 

0.0676

 

2.69

 

18.75

 

532

 

3.41

 

0.289

 

0.0847

 

2.47

 

19.0

 

539

 

3.65

 

0.376

 

0.103

 

2.27

 

19.25

 

546

 

4.26

 

0.568

 

0.134

 

2.01

 

19.5

 

553

 

4.44

 

0.704

 

0.158

 

1.84

 

19.75

 

560

 

5.13

 

1.01

 

0.197

 

1.62

 

20.0

 

567

 

5.00

 

1.14

 

0.227

 

1.48

 

20.25

 

573

 

4.98

 

1.29

 

0.259

 

1.35

 

20.5

 

580

 

4.41

 

1.22

 

0.276

 

1.29

 

20.75

 

587

 

3.66

 

1.12

 

0.307

 

1.18

 

21.0

 

594

 

2.72

 

0.890

 

0.328

 

1.12

 

21.5

 

607

 

1.67

 

0.621

 

0.373

 

0.99

 

22.0

 

621

 

1.29

 

0.541

 

0.419

 

0.87

 

22.5

 

634

 

1.20

 

0.535

 

0.444

 

0.81

 

23.0

 

648

 

1.14

 

0.518

 

0.456

 

0.79

 

23.5

 

661

 

0.99

 

0.467

 

0.472

 

0.75

 

24.0

 

675

 

0.826

 

0.388

 

0.469

 

0.76

 

24.5

 

688

 

0.649

 

0.306

 

0.471

 

0.75

 

25.0

 

701

 

0.524

 

0.242

 

0.462

 

0.77

               



 

6

 
2d.  

 Graphics  

max(Iglass) 564±5 (nm) 

max(Ifilm) 573±5 (nm) 

  

2e. Graphics                      

0.0

1.0

2.0

3.0

4.0

5.0

6.0

420 470 520 570 620 670 720

glass

 

film

 

Wavelength (nm)

 
-1

-1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

420 470 520 570 620 670 720

Wavelength(nm)

T
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n
sm

is
si

o
n
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Task 3.

  
3a. 

Table 3a. The calculated parameters for each measured data point 
 (degree) x (eV) y ( eV2) 

15.00

 
2.898

 
126.6

 
15.50

 
2.806

 
121.9

 
16.00

 
2.720

 
108.8

 
16.25

 
2.679

 
107.8

 

16.50

 

2.639

 

98.9

 

16.75

 

2.600

 

92.0

 

17.00

 

2.563

 

86.3

 

17.25

 

2.527

 

77.4

 

17.50

 

2.491

 

69.7

 

17.75

 

2.457

 

60.9

 

18.00

 

2.424

 

55.1

 

18.25

 

2.392

 

46.8

 

18.50

 

2.360

 

40.4

 

18.75

 

2.330
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In linear range we have, m=213 (eV),  r2= 0.9986,  Eg=2.17 (eV)   
and we have /nmeV0.071A 1/2  so we find t= 206 (nm)  
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Table 3d. The calculated values of Eg and t using Fig. 3  

Eg (eV) Eg (eV) t (nm) t (nm) 
2.17 0.02 206 5 
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WATER-POWERED RICE-POUNDING MORTAR 
 
A. Introduction  
 Rice is the main staple food of most people in Vietnam. To make white rice from 
paddy rice, one needs separate of the husk (a process called "hulling") and separate the 
bran layer ("milling"). The hilly parts of northern Vietnam are abundant with water 
streams, and people living there use water-powered rice-pounding mortar for bran layer 
separation. Figure 1 shows one of such mortars., Figure 2 shows how it works.  

                    
B. Design and operation 

1. Design.  
The rice-pounding mortar shown in Figure 1 has the following parts: 

 The mortar, basically a wooden container for rice. 
 The lever, which is a tree trunk with one larger end and one smaller end. It can rotate 
around a horizontal axis. A pestle is attached perpendicularly to the lever at the smaller 
end. The length of the pestle is such that it touches the rice in the mortar when the lever 
lies horizontally. The larger end of the lever is carved hollow to form a bucket. The shape 
of the bucket is crucial for the mortar's operation. 
 2. Modes of operation 
 The mortar has two modes. 
  Working mode. In this mode, the mortar goes through an operation cycle illustrated in 
Figure 2.  
 The rice-pounding function comes from the work that is transferred from the pestle to 
the rice during stage f) of Figure 2. If, for some reason, the pestle never touches the rice, 
we say that the mortar is not working. 
 Rest mode with the lever lifted up. During stage c) of the operation cycle (Figure 2), 
as the tilt angle α  increases, the amount of water in the bucket decreases. At one 
particular moment in time, the amount of water is just enough to counterbalance the 
weight of the lever. Denote the tilting angle at this instant by β . If the lever is kept at 
angle β  and the initial angular velocity is zero, then the lever will remain at this 
position forever. This is the rest mode with the lever lifted up. The stability of this 
position depends on the flow rate of water into the bucket, Φ . If  exceeds some 

value 

Φ

2Φ , then this rest mode is stable, and the mortar cannot be in the working mode. 

In other words,  is the minimal flow rate for the mortar not to work. 2Φ
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A water-powered rice-pounding mortar 
Figure 1  
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OPERATION CYCLE OF A WATER-POWERED RICE-POUNDING MORTAR 
 

α = β 

α1

α 2 

α 0 

Figure 2 

a) 

b) 

c) 

d) 

e) 

f) 

a) At the beginning there is no water in 
the bucket, the pestle rests on the mortar. 
Water flows into the bucket with a small 
rate, but for some time the lever remains 
in the horizontal position. 
 
b) At some moment the amount of water 
is enough to lift the lever up. Due to the 
tilt, water rushes to the farther side of the 
bucket, tilting the lever more quickly. 

Water starts to flow out at 1α α= . 

 
c) As the angle α  increases, water 
starts to flow out. At some particular tilt 
angle, α β= , the total torque is zero. 
 
d) α  continues increasing, water 
continues to flow out until no water 
remains in the bucket. 
 
e) α  keeps increasing because of 
inertia. Due to the shape of the bucket, 
water falls into the bucket but 
immediately flows out. The inertial 
motion of the lever continues until α  

reaches the maximal value 0α . 

 
f) With no water in the bucket, the 
weight of the lever pulls it back to the 
initial horizontal position. The pestle 
gives the mortar (with rice inside) a 
pound and a new cycle begins. 
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C. The problem    
 Consider a water-powered rice-pounding mortar with the following parameters 
(Figure 3) 

The mass of the lever (including the pestle but without water) is M = 30 kg,  
  The center of mass of the lever is G.. The lever rotates around the axis T 
(projected onto the point T on the figure). 
  The moment of inertia of the lever around T is I = 12 kg ⋅m2. 

When there is water in the bucket, the mass of water is denoted as , the center 
of mass of the water body is denoted as N. 

m

  The tilt angle of the lever with respect to the horizontal axis is α .   
  The main length measurements of the mortar and the bucket are as in Figure 3. 
 Neglect friction at the rotation axis and the force due to water falling onto the bucket. 
In this problem, we make an approximation that the water surface is always horizontal. 

      
 
 
 
 
 
 
 
 

Pestle

a =20cm 

L = 74 cm 

γ =300 
h= 12 cm 

b =15cm 

8 cm 

Mortar 

    

Bucket 
T

N 
G 

Lever

 

 
Figure 3  Design and dimensions of the rice-pounding mortar 

 
 
1. The structure of the mortar 

At the beginning, the bucket is empty, and the lever lies horizontally. Then water flows 
into the bucket until the lever starts rotating. The amount of water in the bucket at this 
moment is 1.0 kg.  m =

1.1. Determine the distance from the center of mass G of the lever to the rotation  
axis T. It is known that GT is horizontal when the bucket is empty. 
 1.2. Water starts flowing out of the bucket when the angle between the lever and the 

horizontal axis reaches 1α . The bucket is completely empty when this angle is 2α . 

Determine 1α and 2α .  

 1.3. Let ( )μ α  be the total torque (relative to the axis T) which comes from the 
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weight of the lever and the water in the bucket. ( )μ α  is zero when α β= . Determine 

β  and the mass of water in the bucket at this instant.  1m

 
2. Parameters of the working mode 

 Let water flow into the bucket with a flow rate Φ  which is constant and small. The 
amount of water flowing into the bucket when the lever is in motion is negligible.  In 
this part, neglect the change of the moment of inertia during the working cycle. 

 2.1. Sketch a graph of the torque μ  as a function of the angle α , ( )μ α , during 

one operation cycle. Write down explicitly the values of ( )μ α  at angle α1, α2, and    

α = 0. 
 2.2. From the graph found in section 2.1., discuss and give the geometric 

interpretation of the value of the total energy  produced by totalW ( )μ α and the work 

 that is transferred from the pestle to the rice. poundingW

 2.3. From the graph representing μ  versus α , estimate 0α  and  (assume 

the kinetic energy of water flowing into the bucket and out of the bucket is negligible.) 
You may replace curve lines by zigzag lines, if it simplifies the calculation. 

poundingW

 
3. The rest mode 
  Let water flow into the bucket with a constant rate Φ , but one cannot neglect the 
amount of water flowing into the bucket during the motion of the lever. 
 3.1. Assuming the bucket is always overflown with water, 
  3.1.1. Sketch a graph of the torque μ  as a function of the angle α  in the 
vicinity of α β= . To which kind of equilibrium does the position α β=  of the lever 
belong? 

  3.1.2. Find the analytic form of the torque ( )μ α  as a function of αΔ  when 

α β= + Δα , and αΔ  is small. 
  3.1.3. Write down the equation of motion of the lever, which moves with zero 
initial velocity from the position α β α= + Δ  ( αΔ  is small). Show that the motion is, 
with good accuracy, harmonic oscillation. Compute the period τ . 
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 3.2. At a given , the bucket is overflown with water at all times only if the lever 
moves sufficiently slowly. There is an upper limit on the amplitude of harmonic 

oscillation, which depends on . Determine the minimal value 

Φ

Φ 1Φ of  (in kg/s) so 

that the lever can make a harmonic oscillator motion with amplitude 1

Φ

o.   
 3.3. Assume that  is sufficiently large so that during the free motion of the lever 

when the tilting angle decreases from 

Φ

2α  to 1α  the bucket is always overflown with 

water. However, if  is too large the mortar cannot operate. Assuming that the motion 

of the lever is that of a harmonic oscillator, estimate the minimal flow rate  for the 

rice-pounding mortar to not work.  

Φ

2Φ
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CHERENKOV LIGHT AND RING IMAGING COUNTER 
 

 Light propagates in vacuum with the speed . There is no particle which moves with 
a speed higher than . However, it is possible that in a transparent medium a particle 

moves with a speed  higher than the speed of the light in the same medium 

c
c

v c
n

, where 

 is the refraction index of the medium. Experiment (Cherenkov, 1934) and theory 
(Tamm and Frank, 1937) showed that a charged particle, moving with a speed  in a 
transparent medium with refractive index 

 such that 

n
v

n c
n

>v , radiates light, called 

Cherenkov light, in directions forming 
with the trajectory an angle  

 1arccos
n

θ
β

=      (1) 

θ

θ

A B 

where 
c

β =
v .  

1. To establish this fact, consider a particle moving at constant velocity 
c
n

>v  on a 

straight line. It passes A at time 0 and B at time . As the problem is symmetric with 

respect to rotations around AB, it is sufficient to consider light rays in a plane containing 
AB. 

1t

 At any point C between A and B, the particle emits a spherical light wave, which 

propagates with velocity 
c
n

. We define the wave front at a given time as the envelope 

of all these spheres at this time.  

t

 1.1. Determine the wave front at time  and draw its intersection with a plane 

containing the trajectory of the particle.  

1t

  1.2. Express the angle ϕ  between this intersection and the trajectory of the particle 
in terms of  and n β . 

2. Let us consider a beam of particles moving with velocity 
c
n

>v , such that the angle 

θ  is small, along a straight line IS. The beam crosses a concave spherical mirror of focal 
length f and center C, at point S. SC makes with SI a small angle α  (see the figure in 
the Answer Sheet). The particle beam creates a ring image in the focal plane of the mirror. 
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Explain why with the help of a sketch illustrating this fact. Give the position of the center 
O and the radius  of the ring image.  r
 This set up is used in ring imaging Cherenkov counters (RICH) and the medium which 
the particle traverses is called the radiator. 

Note: in all questions of the present problem, terms of second order and higher in α  
and θ  will be neglected. 

 
3. A beam of particles of known momentum 10 0 GeV/.p c=  consists of three types of 

particles: protons, kaons and pions, with rest mass 2
p 0 94 GeV. /M c= ,  

2
κ 0 50 GeV. /M c=  and 2

π 0 14 GeV. /M c= , respectively. Remember that  and pc

2Mc  have the dimension of an energy, and 1 eV is the energy acquired by an electron 
after being accelerated by a voltage 1 V, and 1 GeV = 109 eV, 1 MeV = 106 eV.  
 The particle beam traverses an air medium (the radiator) under the pressure . The 
refraction index of air depends on the air pressure according to the relation 

where a = 2.7×10

P
P

1n a= + P -4 atm-1

 3.1. Calculate for each of the three particle types the minimal value of the air 

pressure such that they emit Cherenkov light. 

minP

 3.2. Calculate the pressure 1
2

P  such that the ring image of kaons has a radius equal 

to one half of that corresponding to pions. Calculate the values of κθ  and πθ  in this 

case.  
 Is it possible to observe the ring image of protons under this pressure? 
  
4. Assume now that the beam is not perfectly monochromatic: the particles momenta are 
distributed over an interval centered at 10  having a half width at half height 

. This makes the ring image broaden, correspondingly 
GeV / c

pΔ θ  distribution has a half 

width at half height θΔ . The pressure of the radiator is 1
2

P  determined in 3.2.  

 4.1. Calculate κ

p
θΔ
Δ

 and π

p
θΔ
Δ

, the values taken by 
p
θΔ
Δ

in the pions and kaons 

cases. 

 4.2. When the separation between the two ring images, π κθ θ− , is greater than 10 
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πtimes the half-width sum κθ θΔ = Δ + Δθ , that is π κ 10θ θ θ− > Δ , it is possible to 

distinguish well the two ring images. Calculate the maximal value of  such that the 
two ring images can still be well distinguished. 

pΔ

5. Cherenkov first discovered the effect bearing his name when he was observing a bottle 
of water located near a radioactive source. He saw that the water in the bottle emitted 
light.  

 5.1. Find out the minimal kinetic energy  of a particle with a rest mass minT M  

moving in water, such that it emits Cherenkov light. The index of refraction of water is  
n = 1.33. 

5.2. The radioactive source used by Cherenkov emits either α particles (i.e. helium 

nuclei) having a rest mass 2
α 3 8 GeV. /M c=  or β particles (i.e. electrons) having a 

rest mass 2
e 0 51 MeV. /M c= . Calculate the numerical values of  for α particles 

and β particles.  

minT

Knowing that the kinetic energy of particles emitted by radioactive sources never 
exceeds a few MeV, find out which particles give rise to the radiation observed by 
Cherenkov. 

 
6. In the previous sections of the problem, the dependence of the Cherenkov effect on 
wavelength λ  has been ignored. We now take into account the fact that the Cherenkov 
radiation of a particle has a broad continuous spectrum including the visible range  
(wavelengths from 0.4 µm to 0.8 µm). We know also that the index of refraction  of 
the radiator decreases linearly by 2% of 

n
1n −  whenλ  increases over this range.  

 6.1. Consider a beam of pions with definite momentum of  moving in 
air at pressure 6 atm. Find out the angular difference 

10 0 GeV. c/
δθ  associated with the two ends 

of the visible range. 
 6.2. On this basis, study qualitatively the effect of the dispersion on the ring image of 
pions with momentum distributed over an interval centered at and 
having a half width at half height

10 GeV /p c=
0 3 GeV. /p cΔ = .  

6.2.1. Calculate the broadening due to dispersion (varying refraction index) and 
that due to achromaticity of the beam (varying momentum). 

6.2.2. Describe how the color of the ring changes when going from its inner to 
outer edges by checking the appropriate boxes in the Answer Sheet. 
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CHANGE OF AIR TEMPERATURE WITH ALTITUDE, 
ATMOSPHERIC STABILITY AND AIR POLLUTION 

 
 
 Vertical motion of air governs many atmospheric processes, such as the formation of 
clouds and precipitation and the dispersal of air pollutants. If the atmosphere is stable, 
vertical motion is restricted and air pollutants tend to be accumulated around the 
emission site rather than dispersed and diluted. Meanwhile, in an unstable atmosphere, 
vertical motion of air encourages the vertical dispersal of air pollutants. Therefore, the 
pollutants’ concentrations depend not only on the strength of emission sources but also 
on the stability of the atmosphere.  

We shall determine the atmospheric stability by using the concept of air parcel in 
meteorology and compare the temperature of the air parcel rising or sinking adiabatically 
in the atmosphere to that of the surrounding air. We will see that in many cases an air 
parcel containing air pollutants and rising from the ground will come to rest at a certain 
altitude, called a mixing height. The greater the mixing height, the lower the air pollutant 
concentration. We will evaluate the mixing height and the concentration of carbon 
monoxide emitted by motorbikes in the Hanoi metropolitan area for a  morning rush 
hour scenario, in which the vertical mixing is restricted due to a temperature inversion 
(air temperature increases with altitude) at elevations above 119 m.      

Let us consider the air as an ideal diatomic gas, with molar mass μ  = 29 g/mol. 
  
 

 Quasi equilibrium adiabatic transformation obey the equation , where constpV γ =

p

V

c
c

γ =  is the ratio between isobaric and isochoric heat capacities of the gas. 

The student may use the following data if necessary: 
 The universal gas constant is R = 8.31 J/(mol.K). 

The atmospheric pressure on ground is 0p = 101.3 kPa 

The acceleration due to gravity is constant, g = 9.81 m/s2 

    The molar isobaric heat capacity is 
7
2pc = R  for air. 

   The molar isochoric heat capacity is 
5
2Vc = R  for air. 
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Mathematical hints 

a.  
( ) ( )1 1 ln

d A Bxdx A Bx
A Bx B A Bx B

+
= =

+ +∫ ∫ +  

b. The solution of the differential equation =dx Ax B
dt

+   (with  A and B  constant) is             

( ) ( )1
Bx t x t
A

= +  where ( )1x t  is the solution of the differential equation =0dx Ax
dt

+ . 

c. 
11lim

x

x e
x→∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

 
1. Change of pressure with altitude. 

 1.1. Assume that the temperature of the atmosphere is uniform and equal to . 

Write down the expression giving the atmospheric pressure  as a function of the 
altitude . 

0T

p
z

 1.2. Assume that the temperature of the atmosphere varies with the altitude according 
to the relation 

   ( ) ( )0T z T z= − Λ  

where is a constant, called the temperature lapse rate of the atmosphere (the vertical 
gradient of temperature is - ).  

Λ
Λ

  1.2.1. Write down the expression giving the atmospheric pressure  as a 
function of the altitude .   

p
z

  1.2.2. A process called free convection occurs when the air density increases with 
altitude. At which values of does the free convection occur? Λ
  
2. Change of the temperature of an air parcel in vertical motion  

Consider an air parcel moving upward and downward in the atmosphere. An air 
parcel is a body of air of sufficient dimension, several meters across, to be treated as an 
independent thermodynamical entity, yet small enough for its temperature to be 
considered uniform. The vertical motion of an air parcel can be treated as a quasi 
adiabatic process, i.e. the exchange of heat with the surrounding air is negligible. If the 
air parcel rises in the atmosphere, it expands and cools. Conversely, if it moves 
downward, the increasing outside pressure will compress the air inside the parcel and its 
temperature will increase.  
 As the size of the parcel is not large, the atmospheric pressure at different points on 
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the parcel boundary can be considered to have the same value ( )p z , with - the 

altitude of the parcel center. The temperature in the parcel is uniform and equals to 

z

( )parcelT z , which is generally different from the temperature of the surrounding air 

( )T z . In parts 2.1 and 2.2, we do not make any assumption about the form of T(z). 

 2.1. The change of the parcel temperature parcelT with altitude is defined by 

parceldT
G

dz
= − . Derive the expression of (T, TG parcel). 

  
2.2. Consider a special atmospheric condition in which at any altitude z the 

temperature of the atmosphere equals to that of the parcel T parcelT , ( ) ( )parcelT z T z= . 

We use Γ  to denote the value of  when G parcelT T= , that is parceldT
dz

Γ = −  

(with parcelT T= ). Γ  is called dry adiabatic lapse rate.  

  2.2.1. Derive the expression of Γ  
  2.2.2. Calculate the numerical value of Γ .  

  2.2.3. Derive the expression of the atmospheric temperature ( )T z as a function 

of the altitude.  
 2.3. Assume that the atmospheric temperature depends on altitude according to the 

relation ( ) ( )0T z T z= − Λ , where Λ  is a constant. Find the dependence of the parcel 

temperature ( )parcelT z  on altitude . z

 2.4. Write down the approximate expression of ( )parcelT z  when ( )0z TΛ <<  and 

T(0) ≈ Tparcel(0). 
  
 
3. The atmospheric stability. 
 In this part, we assume that changes linearly with altitude.  T

3.1. Consider an air parcel initially in equilibrium with its surrounding air at altitude 
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0z , i.e. it has the same temperature ( )0T z  as that of the surrounding air. If the parcel is 

moved slightly up and down (e.g. by atmospheric turbulence), one of the three following 
cases may occur: 

- The air parcel finds its way back to the original altitude , the equilibrium of 

the parcel is stable. The atmosphere is said to be stable.  

0z

- The parcel keeps moving in the original direction, the equilibrium of the parcel 
is unstable. The atmosphere is unstable. 

- The air parcel remains at its new position, the equilibrium of the parcel is 
indifferent. The atmosphere is said to be neutral. 
What is the condition on  for the atmosphere to be stable, unstable or neutral? Λ

3.2. A parcel has its temperature on ground ( )parcel 0T  higher than the temperature 

( )0T  of the surrounding air. The buoyancy force will make the parcel rise. Derive the 

expression for the maximal altitude the parcel can reach in the case of a stable 
atmosphere in terms of and Γ. Λ

  
 

4. The mixing height 
 4.1. Table 1 shows air temperatures recorded by a radio sounding balloon at 7: 00 am 
on a November day in Hanoi. The change of temperature with altitude can be 

approximately described by the formula ( ) ( )0T z T z= − Λ  with different lapse rates Λ 

in the three layers 0 < < 96 m, 96 m < < 119 m and 119 m< < 215 m. z z z

Consider an air parcel with temperature ( )parcel 0T = 22oC ascending from ground. 

On the basis of the data given in Table 1 and using the above linear approximation, 
calculate the temperature of the parcel at the altitudes of 96 m and 119 m. 

4.2. Determine the maximal elevation  the parcel can reach, and the temperature  H

( )parcelT H  of the parcel.  

H is called the mixing height. Air pollutants emitted from ground can mix with the 
air in the atmosphere (e.g. by wind, turbulence and dispersion) and become diluted 
within this layer.   
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Table 1 
Data recorded by a radio sounding balloon at 7:00 am on a November day in Hanoi.  
 

Altitude, m Temperature, oC

5 21.5

60 20.6

64 20.5

69 20.5

75 20.4

81 20.3

90 20.2

96 20.1

102 20.1

109 20.1

113 20.1

119 20.1

128 20.2

136 20.3

145 20.4

153 20.5

159 20.6

168 20.8

178 21.0

189 21.5

202 21.8

215 22.0

225 22.1

234 22.2

246 22.3

257 22.3

 
 
5. Estimation of carbon monoxide (CO) pollution during a morning motorbike rush 
hour in Hanoi. 

Hanoi metropolitan area can be approximated by a rectangle with base 
dimensions and W as shown in the figure, with one side taken along the south-west 
bank of the Red River.  

L
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It is estimated that during the morning rush hour, from 7:00 am to 8:00 am, there are 
8x105 motorbikes on the road, each running on average 5 km and emitting 12 g of CO 
per kilometer. The amount of CO pollutant is approximately considered as emitted 
uniformly in time, at a constant rate M during the rush hour. At the same time, the clean 
north-east wind blows perpendicularly to the Red River (i.e. perpendicularly to the sides 
L of the rectangle) with velocity u, passes the city with the same velocity, and carries a 
part of the CO-polluted air out of the city atmosphere. 

Also, we use the following rough approximate model: 
• The CO spreads quickly throughout the entire volume of the mixing layer 

above the Hanoi metropolitan area, so that the concentration ( )C t of CO at time  can 

be assumed to be constant throughout that rectangular box of dimensions L, W and H.  

t

• The upwind air entering the box is clean and no pollution is assumed to be 
lost from the box through the sides parallel to the wind.  

• Before 7:00 am, the CO concentration in the atmosphere is negligible.    
5.1. Derive the differential equation determining the CO pollutant concentration 

( )C t  as a function of time. 

5.2. Write down the solution of that equation for ( )C t . 

5.3. Calculate the numerical value of the concentration ( )C t at 8:00 a.m. 

Given = 15 km, = 8 km,  = 1 m/s. L W u
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DIFFERENTIAL THERMOMETRIC METHOD 
 In this problem, we use the differential thermometric method to fulfill the two 
following tasks: 
 1. Finding the temperature of solidification of a crystalline solid substance. 
 2. Determining the efficiency of a solar cell. 

A. Differential thermometric method  

In this experiment forward biased silicon diodes are used as temperature sensors to 
measure temperature. If the electric current through the diode is constant, then the voltage 
drop across the diode depends on the temperature according to the relation  

        ( ) ( ) ( )0V T V T T Tα= − − 0                               (1) 

where ( )V T and ( )0V T are respectively the voltage drops across the diode at 

temperature  and at room temperature  (measured in T 0T oC), and the factor 

     ( ) o2 00 0 03 mV/ C. .α = ±               (2) 

The value of ( )0V T may vary slightly from diode to diode.  

If two such diodes are placed at different temperatures, the difference between the 
temperatures can be measured from the difference of the voltage drops across the two 
diodes. The difference of the voltage drops, called the differential voltage, can be 
measured with high precision; hence the temperature difference can also be measured 
with high precision. This method is called 
the differential thermometric method.  The 
electric circuit used with the diodes in this 
experiment is shown in Figure 1. Diodes 
D1 and D2 are forward biased by a 9V 

battery, through 10 kΩ resistors, 1R  and 

2R . This circuit keeps the current in the 

two diodes approximately constant. 

V1 
V2 

Δ V   

D 1       D 2   

R 1     R 2   E

 
Figure 1. Electric circuit of the diode 

If the temperature of diode D1 is 1T  and that of D2 is , then according to (1), we 

have: 

2T

 1
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    ( ) ( ) ( )1 1 1 0 1 0V T V T T Tα= − −  

and  

     ( ) ( ) ( )2 2 2 0 2 0V T V T T Tα= − −  

The differential voltage is: 

      ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 2 0 1 0 2 1 0 2 1V V T V T V T V T T T V T T Tα αΔ = − = − − − = Δ − −   

      ( )0V V T αΔ = Δ − ΔT

1

                                    (3) 

in which . By measuring the differential voltage 2T T TΔ = − VΔ , we can determine 

the temperature difference. 
To bias the diodes, we use a circuit box, the diagram of which is shown in Figure 2. 

                                           
                                                  

Blue 
 
 
 
 
 
 
 
 
 
  
 

The circuit box contains two biasing resistors of 10 kΩ for the diodes, electrical leads 
to the 9 V battery, sockets for connecting to the diodes D1 and D2, and sockets for 

connecting to digital multimeters to measure the voltage drop  on diode D2V 2 and the 

differential voltage of the diodes DVΔ 1 and D2. 
  
 
 
 
 

Common- Black 
 

Black 

Figure 2. Diagram of the circuit box 
(top view) 

9 V 

To D2 - Red 

To D1 - Blue 

10 kΩ 

10 kΩ 

 Red 

V2

ΔV

 Red 
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B. Task 1: Finding the temperature of solidification of a crystalline substance  
1. Aim of the experiment  

If a crystalline solid substance is heated to the melting state and then cooled down, 

it solidifies at a fixed temperature , called temperature of solidification, also called the 

melting point of the substance. The traditional method to determine  is to follow the 

change in temperature with time during the cooling process. Due to the fact that the 
solidification process is accompanied by the release of the latent heat of the phase 
transition, the temperature of the substance does not change while the substance is 
solidifying. If the amount of the substance is large enough, the time interval in which the 
temperature remains constant is rather long, and one can easily determine this 
temperature. On the contrary, if the amount of substance is small, this time interval is too 

short to be observed and hence it is difficult to determine . 

sT

sT

sT

 In order to determine  in case of small amount of substance, we use the 

differential thermometric method, whose principle can be summarized as follows. We use 
two identical small dishes, one containing a small amount of the substance to be studied, 
called the sample dish, and the other not containing the substance, called the reference 
dish. The two dishes are put on a heat source, whose temperature varies slowly with time. 
The thermal flows to and from the two dishes are nearly the same. Each dish contains a 
temperature sensor (a forward biased silicon diode). While there is no phase change in 

the substance, the temperature of the sample dish and the temperature of the 

reference dish vary at nearly the same rate, and thus 

sT

sampT refT

ref sampT T TΔ = − varies slowly with 

. If there is a phase change in the substance, and during the phase change 

does not vary and equals , while steadily varies, then varies quickly. 

The plot of versus shows an abrupt change. The value of corresponding 

to the abrupt change of  is indeed . 

sampT

sampT sT refT TΔ

TΔ sampT sampT

TΔ sT

 The aim of this experiment is to determine the temperature of solidification sT  of a 

 3
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pure crystalline substance, having  in the range from 50sT oC to 70oC, by using the 

traditional and differential thermal analysis methods. The amount of substance used in 
the experiment is about 20 mg. 
 
2. Apparatus and materials 

1. The heat source is a 20 W halogen lamp.  
 2. The dish holder is a bakelite plate with a square hole in it. A steel plate is fixed on 
the hole. Two small magnets are put on the steel plate.   
 3. Two small steel dishes, each contains a silicon diode soldered on it. One dish is 
used as the reference dish, the other - as the sample dish.       

 

Figure 4. The dishes on the dish holder 
(top view) 

 
 

 
 
 
 
 

 

Steel plate  Magnets 

12V/20W bulb  

Ref. dish  
Sample dish 

D1  D2  

Red
Black  

Blue 

Cover   

Figure 3. Apparatus for measuring the solidification temperature 

Each dish is placed on a magnet. The magnetic force maintains the contact between 
the dish, the magnet and the steel plate. The magnets also keep a moderate thermal 
contact between the steel plate and the dishes.   

A grey plastic box used as a cover to 
protect the dishes from the outside influence.  

D1 D2 

Red  

Blue

Black 

Figure 3 shows the arrangement of the 
dishes and the magnets on the dish holder 
and the light bulb.  

4. Two digital multimeters are used as 
voltmeters. They can also measure room 
temperature by turning the Function selector 
to the ‘’oC/oF” function. The voltage function 
of the multimeter has an error of ±2 on the 
last digit. 

Note: to prevent the multimeter (see 
Figure 9) from going into the “Auto power 
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off” function, turn the Function selector from OFF position to the desired function while 
pressing and holding the SELECT button. 

5. A circuit box as shown in Figure 2.  
6. A 9 V battery. 
7. Electrical leads. 
8. A small ampoule containing about 20 mg of the substance to be measured. 
9. A stop watch 
10. A calculator 
11. Graph papers.  

 
3. Experiment  
1. The magnets are placed on two equivalent locations on the steel plate. The reference 
dish and the empty sample dish are put on the magnets as shown in the Figure 4. We use 
the dish on the left side as the reference dish, with diode D1 on it (D1 is called the 
reference diode), and the dish on the right side as the sample dish, with diode D2 on it (D2 
is called the measuring diode). 

Put the lamp-shade up side down as shown in Figure 5. Do not switch the lamp on. 
Put the dish holder on the lamp. Connect the apparatuses so that you can measure the 

voltage drop on the diode D2, that is samp 2V V= , and the differential voltage . VΔ

In order to eliminate errors due to the warming up period of the instruments and 
devices, it is strongly recommended that the complete measurement circuit be switched 
on for about 5 minutes before starting real experiments. 
 

Figure 5. 
Using the halogen lamp as a heat source 

   
 
 
 
 
 

1.1. Measure the room temperature  and the voltage drop 0T ( )samp 0V T  across 

diode D2 fixed to the sample dish, at room temperature .  0T

 1.2. Calculate the voltage drops ( )o
samp 50 CV , ( )o

samp 70 CV  and ( )o
samp 80 CV  

on the measuring diode at temperatures 50oC, 70oC and 80oC, respectively.  
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2. With both dishes still empty, switch the lamp on. Follow Vsam. When the temperature 

of the sample dish reaches ~ 80sampT oC, switch the lamp off. 

2.1. Wait until ~ 70sampT oC, and then follow the change in  and  with 

time, while the steel plate is cooling down. Note down the values of and 

sampV VΔ

sampV VΔ  

every 10 s to 20 s in the table provided in the answer sheet. If VΔ  varies quickly, the 
time interval between consecutive measurements may be shorter. When the temperature 

of the sample dish decreases to ~ 50sampT oC, the measurement is stopped. 

2.2. Plot the graph of versus t, called Graph 1, on a graph paper provided.  sampV

2.3. Plot the graph of versus , called Graph 2, on a graph paper provided. VΔ sampV

Note: for 2.2 and 2.3 do not forget to write down the correct name of each graph. 
 
3. Pour the substance from the ampoule into the sample dish. Repeat the experiment 
identically as mentioned in section 2.  

3.1. Write down the data of and sampV VΔ with time t in the table provided in the 

answer sheet. 

   3.2. Plot the graph of versus t, called Graph 3, on a graph paper provided.  sampV

3.3. Plot the graph of versus , called Graph 4, on a graph paper provided.  VΔ sampV

Note: for 3.2 and 3.3 do not forget to write down the correct name of each graph. 
 
4. By comparing the graphs in section 2 and section 3, determine the temperature of 
solidification of the substance. 

4.1. Using the traditional method to determine : by comparing the graphs of 

versus t in sections 3 and 2, i.e. Graph 3 and Graph 1, mark the point on Graph 3 

where the substance solidifies and determine the value  (corresponding to this point) 

of . 

sT

sampV

sV

sampV
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Find out the temperature of solidification  of the substance and estimate its error. sT

 4.2. Using the differential thermometric method to determine : by comparing the 

graphs of versus  in sections 3 and 2, i.e. Graph 4 and Graph 2, mark the 

point on Graph 4 where the substance solidifies and determine the value of .  

sT

VΔ sampV

sV sampV

Find out the temperature of solidification  of the substance.  sT

4.3. From errors of measurement data and instruments, calculate the error of  

obtained with the differential thermometric method. Write down the error calculations 

and finally write down the values of  together with its error in the answer sheet. 

sT

sT

 
C. Task 2: Determining the efficiency of a solar cell under illumination of an 
incandescent lamp 
1. Aim of the experiment 

The aim of the experiment is to determine the efficiency of a solar cell under 
illumination of an incandescent lamp. Efficiency is defined as the ratio of the electrical 
power that the solar cell can supply to an external circuit, to the total radiant power 
received by the cell. The efficiency depends on the incident radiation spectrum. In this 
experiment the radiation incident to the cell is that of an incandescent halogen lamp. In 
order to determine the efficiency of the 
solar cell, we have to measure the 
irradiance  at a point situated under 
the lamp, at a distance d from the lamp 
along the vertical direction, and the 
maximum power P

E

max of the solar cell 
when it is placed at this point. In this 
experiment, d = 12 cm  (Figure 6). 
Irradiance  can be defined by: E

 /E S= Φ  
in which  is the radiant flux (radiant 
power), and is the area of the 
illuminated surface. 

Φ

 d = 12 cm

Figure 6. 
Using the halogen lamp 

 as a light source S
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2. Apparatus and materials 
1. The light source is a 20W halogen lamp.  
2. The radiation detector is a hollow cone made of copper, the inner surface of it is 

blackened with soot (Figure 7). The cone is incompletely thermally isolated from the 
surrounding. In this experiment, the detector is considered an ideal black body. To 
measure temperature, we use silicon diodes. The measuring diode is fixed to the radiation 
detector (D2 in Figure 1 and Figure 7), so that its temperature equals that of the cone. The 
reference diode is placed on the inner side of the wall of the box containing the detector; 
its temperature equals that of the surrounding. The total heat capacity of the detector (the 

cone and the measuring diode) is ( )0 69 0 02 J/K= ±. .C . The detector is covered by a 

very thin polyethylene film; the radiation absorption and reflection of which can be 
neglected. 

 

 

 
  Thermal insulator   

Measuring 
diode D2

 
 
 
 
 

   

Red Blue  Black
 

Common  

Reference 
diode D1

Figure 7. Diagram of the radiation detector 
 

3. A circuit box as shown in Figure 2. 
4. A piece of solar cell fixed on a plastic box 

(Figure 8). The area of the cell includes some metal 
connection strips. For the efficiency calculation these 
strips are considered parts of the cell. 

5. Two digital multimeters. When used to 
measure the voltage, they have a very large internal 
resistance, which can be considered infinitely large. 
When we use them to measure the current, we cannot 
neglect their internal resistance. The voltage function 
of the multimeter has an error of ±2 on the last digit. 

Red

Black Figure 8. 
The solar cell 
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The multimeters can also measure the room temperature.  
Note: to prevent the multimeter (see Figure 9) from going into the “Auto power off” 

function, turn the Function selector from OFF position to the desired function while 
pressing and holding the SELECT button. 

6. A 9 V battery 
7. A variable resistor. 
8. A stop watch 
9. A ruler with 1mm divisions 
10. Electrical leads.  

 11. Graph papers. 
 
3. Experiment 

When the detector receives energy from radiation, it heats up. At the same time, the 
detector loses its heat by several mechanisms, such as thermal conduction, convection, 
radiation etc...Thus, the radiant energy received by detector in a time interval dt is equal 
to the sum of the energy needed to increase the detector temperature and the energy 
transferred from the detector to the surrounding: 

     dt CdT dQΦ = +
where  is the heat capacity of the detector and the diode,  - the temperature 
increase and  - the heat loss.  

C dT
dQ

When the temperature difference between the detector and the surrounding 

 is small, we can consider that the heat  transferred from the detector to 

the surrounding in the time interval is approximately proportional to and , 
that is dQ , with  being a factor having the dimension of W/K. Hence, 
assuming that  is constant and 

0T T TΔ = − dQ

dt TΔ dt
k Tdt= Δ k
k TΔ  is small, we have: 

       ( )dt CdT k Tdt Cd T k TdtΦ = + Δ = Δ + Δ

or    
( )d T k T
dt C C
Δ Φ

+ Δ =            (4) 

The solution of this differential equation determines the variation of the temperature 
difference with time t, from the moment the detector begins to receive the light with 
a constant irradiation, assuming that at t=0, 

TΔ
TΔ =0 

 ( ) 1
k t
CT t e

k
−⎛ ⎞Φ

Δ = −⎜⎜
⎝ ⎠

⎟⎟                     (5) 

When the radiation is switched off, the mentioned above differential equation 
becomes  

 9
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( ) 0d T k T
dt C
Δ

+ Δ =             (6) 

and the temperature difference TΔ varies with the time according to the following 
formula: 

( ) ( )0
k t
CT t T e

−
Δ = Δ         (7) 

where  is the temperature difference at 0( )TΔ 0t = (the moment when the measurement 
starts). 

1. Determine the room temperature . 0T

2. Compose an electric circuit comprising the diode sensors, the circuit box and the 
multimeters to measure the temperature of the detector. 

In order to eliminate errors due to the warming up period of the instruments and 
devices, it is strongly recommended that the complete measurement circuit be switched 
on for about 5 minutes before starting real experiments. 
 2.1. Place the detector under the light source, at a distance of d = 12 cm to the lamp. 
The lamp is off. Follow the variation of VΔ for about 2 minutes with sampling intervals 

of 10 s and determine the value of 0V TΔ ( )  in equation (3). 

2.2. Switch the lamp on to illuminate the detector. Follow the variation of . Every 
10-15 s, write down a value of 

VΔ
VΔ  in the table provided in the answer sheet. (Note: 

columns x and y of the table will be used later in section 4.). After 2 minutes, switch the 
lamp off. 

2.3. Move the detector away from the lamp. Follow the variation of for about 2 
minutes after that. Every 10-15 s, write down a value of 

VΔ
VΔ  in the table provided in the 

answer sheet. (Note: columns x and y of the table will be used later in section 3.). 
 

Hints: As the detector has a thermal inertia, it is recommended not to use some data 
obtained immediately after the moment the detector begins to be illuminated or ceases to 
be illuminated.   

 
3. Plot a graph in an x-y system of coordinates, with variables x and y chosen 
appropriately, in order to prove that after the lamp is switched off, equation (7) is satisfied.    

3.1. Write down the expression for variables x and y. 
3.2. Plot a graph of y versus x, called Graph 5. 
3.3. From the graph, determine the value of . k

 
4. Plot a graph in an x-y system of coordinates, with variables x and y chosen 
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appropriately, in order to prove that when the detector is illuminated, equation (5) is 
satisfied.  

4.1. Write down the expressions for variables x and y. 
4.2. Plot a graph of y versus x, called Graph 6. 
4.3. Determine the irradiance E at the orifice of the detector. 
  

5. Put the solar cell to the same place where the radiation detector was. Connect the solar 
cell to an appropriate electric circuit comprising the multimeters and a variable resistor 
which is used to change the load of the cell. Measure the current in the circuit and the 
voltage on the cell at different values of the resistor.  

5.1. Draw a diagram of the circuit used in this experiment. 
5.2. By rotating the knob of the variable resistor, you change the value of the load. 

Note the values of current  and voltage V  at each position of the knob. I
5.3. Plot a graph of the power of the cell, which supplies to the load, as a function of 

the current through the cell. This is Graph 7. 
5.4. From the graph deduce the maximum power Pmax of the cell and estimate its error. 
5.5. Write down the expression for the efficiency of the cell that corresponds to the 

obtained maximum power. Calculate its value and error. 
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Contents of the experiment kit (see also Figure 10) 
1 Halogen lamp 220 V/ 20 W 9 Stop watch 
2 Dish holder 10 Calculator 
3 Dish 11 Radiation detector 
4 Multimeter 12 Solar cell 
5 Circuit box 13 Variable resistor 
6 9 V battery 14 Ruler 
7 Electrical leads 15 Box used as a cover 
8 Ampoule with substance to be 

measured 
  

 
 
 
Note: to prevent the multimeter (see Figure 9) from going into the “Auto power off” 

function, turn the Function selector from OFF position to the desired function while 
pressing and holding the SELECT button. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Digital multimeter 

Function selector 

Select 
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1 

2 

3 

4

5 

6 

7 

8 9 

10 

11 

12 13 

14

15 

Figure 10. Contents of the experiment kit 
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3−= =

 
Solution 

 
1. The structure of the mortar 
 1.1. Calculating the distance TG 

The volume of water in the bucket is V . The length of the 

bottom of the bucket is . 

3 31000cm 10 m

0 060 0 74 0 12 60 m 0 5322mtan ( . . tan ) .d L h= − = − =

(as the initial data are given with two significant digits, we shall keep only two 
significant digits in the final answer, but we keep more digits in the intermediate steps). 
The height  of the water layer in the bucket is calculated from the formula: c

2 1/ 2b0 ( 2 3 / )tan 60
2 3
c d V dV bcd b c c + −

= + ⇒ =  

Inserting numerical values for ,  and , we find b d 0.01228mc =V . 
When the lever lies horizontally, the distance, on the horizontal axis, between the rotation 

axis and the center of mass of water N, is oTH 60 0 4714m
2 4

tan .d ca≈ + + = , and 

(see the figure below). TG ( / )TH 0.01571mm M= =
 

H                     T  

N 

 

 

K 

R 

S P 

 

 

 

 
Answer: . TG 0.016m=
 

α1 α2 1.2. Calculating the values of  and . 
α1  When the lever tilts with angle , water level is at the edge of the bucket. At that 

point the water volume is . Assume 3 310 m− PQ d< . From geometry , 

from which P . The assumption 

PQ / 2V hb= ×

PQ d<Q 0.1111m= is obviously satisfied 
( ). 0.5322md =

QS= PQ+ 3tan / /( ).h h hα1 =α1To compute the angle , we note that  From this 

we find . o20.6α1 =
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When the tilt angle is , the bucket is empty: . o30 o30α2 =

                                                                   G 

                                            h                 T    

 

R               N            

                             Q 

                   P 
I

S 

 

 

 

 

 

 

 

 

 

 

 
β 1.3. Determining the tilt angle  of the lever and the amount of water in the bucket 

 m μwhen the total torque  on the lever is equal to zero 
(m)x= Denote PQ . The amount of water in the bucket is 

water 9 (kg)
2

xhbm xρ= = .  

μ = 0  when the torque coming from the water in the bucket cancels out the torque 
coming from the weight of the lever. The cross section of the water in the bucket is the 
triangle PQR in the figure. The center of mass N of water is located at 2/3 of the meridian 
RI, therefore NTG lies on a straight line. Then: TN TGmg Mg× = ×  or 

TN TG 30 0.1571 0.4714m M× = × = × =       (1)  
Calculating  from x then substitute (1) : TN

2TN ( 3 ) 0.94 0.08 3 0.8014
3 2 3 3

x x xL a h= + − + = − − = −  

which implies     (2) 2TN 9 (0.8014 / 3) 3 7.213m x x x× = − = − + x

xSo we find an equation for : 
                 (3) 23 7.213 0.4714x x− + =

2.337x = 0.06723x = xThe solutions to (3) are and . Since  has to be smaller than 
0.5322, we have to take  and m x0 0.06723x x= = 09 0.6051kg= = .    

0 4362
3

tan .h
x h

β = =
+

o7β = 23.5, or  .  

Answer:  and . oβ = 23.60.61kgm =

 
2. Parameters of the working mode 
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)tα( )tμ( 2.1.Graphs of μ α( )  during one operation cycle.  , , and
μα = 0 Initially when there is no water in the bucket, ,  has the largest magnitude 

equal to . Our convention will be that 
the sign of this torque is negative as it tends to decrease 

TG 30 9.81 0.01571 4.624 N mgM × = × × = ⋅
α . 

As water flows into the bucket, the torque coming from the water (which carries 
positive sign) makes μ μ increase until  is slightly positive, when the lever starts to 
lift up. From that moment, by assumption, the amount of water in the bucket is constant. 
 The lever tilts so the center of mass of water moves away from the rotation axis, 
leading to an increase of μ , which reaches maximum when water is just about to 

overflow the edge of the bucket. At this moment .  o20.6α α1= =

 A simple calculation shows that 
  . SI SP PQ / 2 0.12 1.732 0.1111/ 2 0.2634m= + = × + =

2TN 0.20 0.74 SI 0.7644m
3

= + − =  . 

    o
max 1 0 TN 30 TG 20.6( . ) cosgμ = × − ×

      = o1 0 0 7644 30 0 01571 9 81 20 6 2 690 N m( . . . ) . cos . .× − × × × = ⋅ .  

max 2.7 N mμ = ⋅ . Therefore 
 As the bucket tilts further, the amount of water in the bucket decreases, and when 

μα β= μ = 0, . Due to inertia, α  keeps increasing and  keeps decreasing. The 

bucket is empty when oα = 30 μ, when  equals  

. After that o30 TG 30 4 0 N mcos .g− × × × = − ⋅ α  keeps increasing due to inertia to 

TG 2 N mcos cosgMμ α α0= − = −4.6 ⋅α0  ( 0 ), then quickly decreases to 0 

( 2 N mμ = −4.6 ⋅ ).  
)tα( ( )tμ μ α( ) On this basis we can sketch the graphs of , , and  as in the figure 

below 
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 is dW dμ α α= ( )μ α( ) 2.2. The infinitesimal work produced by the torque . The 
energy obtained by the lever during one cycle due to the action of 

-4.0 N.m                           C 

-4.6 N.m  F 

O                           E   α 
B    30o     α0 

     μ 
2.7 N.m                A 

20.6o 

 23.6o 

-4.6 cosα0 N.m                           D 

μ α( )  is 

( )W dμ α α= ∫ , which is the area limited by the line μ α( ) . Therefore  is equal 

to the area enclosed by the curve

totalW

μ α( ) (OABCDFO) on the graph . 
   The work that the lever transfers to the mortar is the energy the lever receives as it 

moves from the position poundingWoα α= α = 0 to the horizontal position . We have  

μ α( )equals to the area of (OEDFO) on the graph . It is equal to 

0 0TG 4 6sin . singM α α× × =   (J).  

0α  2.3. The magnitudes of  can be estimated from the fact that at point D the energy 
of the lever is zero. We have   

area (OABO) = area (BEDCB) 
Approximating OABO by a triangle, and BEDCB by a trapezoid, we obtain:  

23.6 2.7 (1/ 2) 4.0 [( 23.6) ( 30)] (1/ 2)α α0 0× × = × − + − × , 

which implies . From this we find  o34.7α0 =

0

34 76

TG
.

cosMg dα α− × ×∫poundingW  =  o4 62 34 7 2 63. sin . .× == area (OEDFO) = 
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Thus we find  J. pounding 2.6W ≈ μ 

β                 α

3. The rest mode 
 3.1.  
  3.1.1. The bucket is always overflown 
with water. The two branches of μ α( )  in the 
vicinity of α β=  corresponding to 
increasing and decreasing α coincide with 
each other. 

α β= The graph implies that  is a stable 
equilibrium of the mortar.  

μ α β α= + Δ  3.1.2. Find the expression for the torque  when the tilt angle is  
( αΔ  is small ). 
 The mass of water in bucket when the lever tilts with angle α  is 

0
1 1PQ

30tan tan
h

α
⎛= −⎜
⎝ ⎠

⎞
⎟(1/ 2) PQm bhρ= , where . A simple calculation shows that 

when α β β α+ Δ increases from  to , the mass of water increases by 

2 2

2 22 2sin sin
bh bhm ρ ρα α

α β
Δ = − Δ ≈ − Δ μ. The torque  acting on the lever when the tilt 

is mΔβ α+ Δ  equals the torque due to .  

( )TN cosm gμ β α= Δ × × × + Δ We have . TN is found from the equilibrium 

condition of the lever at tilting angle β :   
 . TN TG / 30 0.01571/ 0.605 0.779mM m= × = × =

N m N mμ α α= −47.2×Δ ⋅ ≈ −47×Δ ⋅ .    We find at the end 
   3.1.3. Equation of motion of the lever 

2

2
dI
dt
αμ =  where μ α= −47×Δ , α β α= + Δ , and  is the sum of moments 

of inertia of the lever and of the water in bucket relative to the axis T. Here  is not 
constant the amount of water in the bucket depends on 

I

I
αΔα . When  is small, one can 

consider the amount and the shape of water in the bucket to be constant, so  is 
approximatey a constant. Consider water in bucket as a material point with mass 0.6 kg, a 

simple calculation gives . We have 

I

2 212 0.6 0.78 12.36 12.4 kg mI = + × = ≈

2

247 12.4 d
dt
αα Δ

− ×Δ = × . That is the equation for a harmonic oscillator with period  
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12.42 3
47

τ π= = .227 . The answer is therefore 2sτ = 3. . 

α β= 3.2. Harmonic oscillation of lever (around ) when bucket is always overflown. 
Assume the lever oscillate harmonically with amplitude α0Δ  around α β= . At time 

, 0t = αΔ = 0 , the bucket is overflown. At time  the tilt changes by dt dα . We are 
interested in the case dα < 0 , i.e., the motion of lever is in the direction of decreasing 
α , and one needs to add more water to overflow the bucket. The equation of motion is: 

0 2sin( / )tα α πΔ = −Δ τ dt0 2 2( ) ( / )cos( / )d d tα α α π τ π τΔ = = −Δ, therefore . 

 For the bucket to be overflown, during this time the amount of water falling to the 

bucket should be at least  
22

0
2 2

2 2
2 2

cos
sin sin

bh dtbh tdm d α π ρρ πα
τβ τ β

Δ ⎛ ⎞= − = ⎜
⎝ ⎠

⎟  ; is 

maximum at ,  

dm

2
0

0 2sin
bhdm dtπ ρ α
τ β

Δ
=0t = . 

 The amount of water falling to the bucket is related to flow rate ; , 0dm dt= ΦΦ

2
0

2sin
bhπ ρ α
τ β

Δ
Φ =therefore .  

 An overflown bucket is the necessary condition for harmonic oscillations of the lever, 
therefore the condition for the lever to have harmonic oscillations with ampltude  or o1

2π/360 rad is  with  1Φ ≥ Φ

2

1 2
2 0 2309kg/s

360
.

sin
bhπ ρ π
τ β

Φ = =       

 So . 0.23kg/s1Φ =
 
 3.3 Determination of  2Φ

 If the bucket remains overflown when the tilt decreases to ,o20.6  then the amount of 
water in bucket should reach 1 kg at this time, and the lever oscillate harmonically with 

amplitude equal o o20.6 3o23.6 − = 3 1Φ. The flow should exceed , therefore   

  . 3 0.23 .7kg/s2Φ = × ≈ 0
 This is the minimal flow rate for the rice-pounding mortar not to work. 
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Solution 

 
 
1. 
 
 
                                                                                 
                                                                                    
                           
 
 
 
                                                                                     
                                                                                 

A

θ

C B

D

E

D’

 
Figure 1 

                                           
Let us consider a plane containing the particle trajectory. At , the particle 

position is at point A. It reaches point B at 

0t =

1t t= . According to the Huygens principle, at 

moment , the radiation emitted at A reaches the circle with a radius equal to AD 

and the one emitted at C reaches the circle of radius CE. The radii of the spheres are 
proportional to the distance of their centre to B: 

10 t t< <

( )
( )
1

1

CE 1 const
CB

/c t t n
t t nβ
−

= = =
−v

 

The spheres are therefore transformed into each other by homothety of vertex B and 

their envelope is the cone of summit B and half aperture 
1

2
Arcsin

n
πϕ θ

β
= = − , 

where θ  is the angle made by the light ray CE with the particle trajectory.  
1.1. The intersection of the wave front with the plane is two straight lines, BD and 

BD'. 

1.2. They make an angle 
1Arcsin
n

ϕ
β

= with the particle trajectory.  
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2. The construction for finding the ring image of the particles beam is taken in the plane  
containing the trajectory of the particle and the optical axis of the mirror.  

We adopt the notations: 
S – the point where the beam crosses the spherical mirror 

 F – the focus of the spherical mirror  
 C – the center of the spherical mirror 
 IS – the straight-line trajectory of the charged particle making a small angle α with 
the optical axis of the mirror. 
 
 
 
 
 
 
 
 
 
 
      
 

 
 

I 

θ

θ

CF

O

M

N
S

α 

A 

P 

Q 

Figure 2 
  CF = FS = f 
  CO//IS 
  CM//AP 
  CN//AQ 

  FCO α= ⇒FO f α= ×  

  MCO OCN θ= = ⇒MO f θ= ×  

 We draw a straight line parallel to IS passing through the center C. The line intersects 
the focal plane at O. We have FO ≈ f × α  . 
 Starting from C, we draw two lines in both sides of the line CO making with it an 
angle θ. These two lines intersect the focal plane at M and N, respectively. All the rays of 
Cherenkov radiation in the plane of the sketch, striking the mirror and being reflected, 
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intersect at M or N. 
 In three-dimension case, the Cherenkov radiation gives a ring in the focal plane with 
the center at O (FO ≈ f × α) and with the radius MO ≈ f × θ.  
 In the construction, all the lines are in the plane of the sketch. Exceptionally, the ring 
is illustrated spatially by a dash line.  
 
3. 

 3.1. For the Cherenkov effect to occur it is necessary that 
cn >
v

 , that is  

min
cn =
v

. 

Putting ,  we get      41 2 7 10.n −ζ = − = × P

  4
min min

12 7 10 1 1. cPζ
β

−= × = − = −
v

            (1)                   

Because 

22

2

1

1

Mc Mc Mc KMvpc p
β

β
β

−
= = = =

−

                       (2)                   

then K = 0.094 ; 0.05 ; 0.014 for proton, kaon and pion, respectively. 
 From (2) we can express β through K as 

        
2

1

1 K
β =

+
                     (3)                  

Since  for all three kinds of particles we can neglect the terms of order 
higher than 2 in K . We get 

2 1K <<

     2
2

1 11 1
21

K
K

β− = − ≈
+

= 
2

1
2

Mc
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

                        (3a) 

    2 21 11 1 1
2

K K
β
− = + − ≈ =

2
1
2

Mc
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

           (3b)  

                            
 Putting (3b) into (1), we obtain 
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      2
min 4

1 1
22 7 10.

P −= ×
×

K

κ

                                (4) 

 
 We get the following numerical values of the minimal pressure:   

minP = 16 atm      for protons, 

minP = 4.6 atm     for kaons, 

minP = 0.36 atm     for pions. 

 3.2. For π 2θ θ=   we have 

                  (5)                   2
π κ κ2 2cos cos cosθ θ θ= = 1−

We denote  

     2
2

1 11 1
21

K
K

ε β= − = − ≈
+

            (6)                   

From (5) we obtain 

      2 2
π κ

1 2 1
n nβ β
= −                                (7)                   

Substituting 1β ε= −  and 1n ζ= +  into (7), we get approximately: 
                                           

      ( )2 2 2 2κ π
1 κ π
2

4 1 14 4 0 05 0 014
3 6 6

.( . ) ( . )K Kε ε
ζ

− ⎡ ⎤= = − = −⎣ ⎦ , 

      1 14
2 2

1 6 atm
2 7 10.

P −= ζ =
×

. 

 The corresponding value of refraction index is n = 1.00162. We get: 

       κθ  = 1.6o ;        . o
π κ2 3 2.θ θ= =

We do not observe the ring image of protons since 
        1 m

2

6atm 16atm inP P= < =  for protons. 
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4. 
 4.1. Taking logarithmic differentiation of both sides of the equation            

1cos
n

θ
β

= , we obtain 

       
sin

cos
θ θ
θ
×Δ

 = 
β
β
Δ

               (8)      

                                                      
 Logarithmically differentiating equation (3a) gives 

       2
1

p
p

β
β

Δ Δ
=

−
                  (9)                   

 Combining (8) and (9), taking into account (3b) and putting approximately 
tanθ θ= , we derive 

       
22 1 K

p p
θ β

pθ β θ
Δ −

= × =
Δ

                (10)                 

 
 We obtain 

 -for kaons  ,  κ 0 05.K = o
κ 1 6 1 6 rad

180
. . πθ = = , and so,  

o
κ 10 51

GeV
.

/p c
θΔ

=
Δ

, 

 -for pions π 0 014.K = , , and             o
π 3 2.θ =

o
π 10 02

GeV
.

/p c
θΔ

=
Δ

 . 

 4.2.  κ π

p
θ θΔ + Δ

≡
Δ

( )
o o1 10 51 0 02 0 53

GeV GeV
. . .

/ /p c c
θΔ
= + =

Δ
. 

 The condition for two ring images to be distinguishable is 

. o
π κ0 1 0 16. ( ) .θ θ θΔ < − =

 It follows  
1 1 6 0 3 GeV

10 0 53
. . /
.

p cΔ < × = . 
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5.  
 5.1. The lower limit of β  giving rise to Cherenkov effect is 

    
1 1

1 33.n
β = = .                                           (11) 

 The kinetic energy of a particle having rest mass M  and energy E  is given by the 
expression 

       
2

2 2 2
2 2

1 1
1 1

McT E Mc Mc Mc
β β

⎡ ⎤
⎢ ⎥= − = − = −
⎢ ⎥− −⎣ ⎦

.     (12) 

Substituting the limiting value (11) of β  into (12), we get the minimal kinetic energy of 
the particle for Cherenkov effect to occur: 

  2 2
min 2

1 1 0 517
11

1 33

.

.

T Mc M

⎡ ⎤
⎢ ⎥
⎢ ⎥= − =⎢ ⎥

⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

c        (13) 

                                  
 5.2.  

 For α particles, . min 0 517 3 8 GeV 1 96 GeV. . .T = × =

 For electrons,  . min 0 517 0 51 MeV 0 264 MeV. . .T = × =

 Since the kinetic energy of the particles emitted by radioactive source does not 
exceed a few MeV, these are electrons which give rise to Cherenkov radiation in the 
considered experiment. 
 
6. For a beam of particles having a definite momentum the dependence of the angle θ  
on the refraction index  of the medium is given by the expression n

     
1cos

n
θ

β
=                  (14)               

 6.1. Let δθ  be the difference of θ  between two rings corresponding to two 
wavelengths limiting the visible range, i.e. to wavelengths of 0.4 µm (violet) and     
0.8 µm (red), respectively. The difference in the refraction indexes at these wavelengths 

is ( )v r 0 02 1.n n nδ n− = = − . 

    Logarithmically differentiating both sides of equation (14) gives 
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sin

cos
n

n
θ δθ δ
θ
×

=                                       (15)        

 Corresponding to the pressure of the radiator P = 6 atm we have from 4.2. the values            

πθ = 3.2o , 1.00162.  n =

 Putting approximately tanθ θ=   and  n = 1, we get  o0 033.nδδθ
θ

= = .        

 6.2.  
 6.2.1. The broadening due to dispersion in terms of half width at half height is, 

according to (6.1), o1 0 017
2

.δθ = . 

 6.2.2. The broadening due to achromaticity is, from 4.1., 

o
o10 02 0 3 GeV/c 0 006

GeV/c
. .× = . , that is three times smaller than above. 

    6.2.3. The color of the ring changes from red to white then blue from the inner 
edge to the outer one. 
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Solution 
 

1. For an altitude change , the atmospheric pressure change is : dz
         dp gdzρ= −                                        (1) 
where  is the acceleration of gravity, considered constant, g ρ  is the specific mass of 
air,  which is considered as an ideal gas: 

                         
m p
V RT

μρ = =  

Put this expression in (1) : 

                         
dp g dz
p RT

μ
= −  

 1.1. If the air temperature is uniform and equals , then 0T

                         
0

dp g dz
p RT

μ
= −  

After integration, we have : 

          ( ) ( ) 00 e
g z

RTp z p
μ

−
=                                (2) 

 1.2. If 

           ( ) ( )0T z T z= −Λ                           (3) 

then 

 
( )0

dp g dz
p R T z

μ
= −

⎡ ⎤− Λ⎣ ⎦
               (4)                      

  1.2.1. Knowing that : 

         
( )

( )
( ) ( )( )01 1 0

0 0
ln

d T zdz T z
T z T z

⎡ ⎤− Λ⎣ ⎦= − = − − Λ
−Λ Λ −Λ Λ∫ ∫    

by integrating both members of (4), we obtain : 

          
( )
( )

( )
( ) ( )

0
1

0 0
ln ln ln

p z T zg g
p R T R T

μ μ ⎛ ⎞− Λ Λ
= = ⎜⎜Λ Λ ⎝ ⎠0

z
− ⎟⎟                                 

          ( ) ( ) ( )
0 1

0

g
Rzp z p

T

μ
Λ⎛ ⎞Λ

= −⎜⎜
⎝ ⎠

⎟⎟                    (5) 

 1
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1.2.2. The free convection occurs if: 

           
( )
( )

1
0
zρ

ρ
>  

The ratio of specific masses can be expressed as follows: 

   
( )
( )

( )
( )

( )
( ) ( )

1
0

1
0 0 0

g
Rz p z T z

p T z T

μ

ρ
ρ

−
Λ⎛ ⎞Λ

= = −⎜ ⎟⎜ ⎟
⎝ ⎠

  

       The last term is larger than unity if its exponent is negative: 

    1 0g
R
μ

− <
Λ

 

 Then : 

          
0 029 9 81 K0 034

8 31 m
. . .

.
g

R
μ ×

Λ > = =  

 
2. In vertical motion, the pressure of the parcel always equals that of the surrounding air, 

the latter depends on the altitude. The parcel temperature parcelT  depends on the 

pressure. 
 
 2.1. We can write: 

        parcel parceldT dT dp
dz dp dz

=  

p  is simultaneously the pressure of air in the parcel and that of the surrounding air. 

Expression for parceldT
dp

 

By using the equation for adiabatic processes  and equation of state, 

we can deduce the equation giving the change of pressure and temperature in a 
quasi-equilibrium adiabatic process of an air parcel: 

constpV γ =

        
1

parcel constT p
γ
γ
−

=                                 (6) 

 2
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where  p

V

c
c

γ =  is the ratio of isobaric and isochoric thermal capacities of air. By 

logarithmic differentiation of the two members of (6), we have:                                  

         parcel

parcel

1 0
dT dp
T p

γ
γ
−

+ =  

Or 

       parcel parcel 1dT T
dp p

γ
γ
−

=                             (7) 

Note: we can use the first law of thermodynamic to calculate the heat received by the 

parcel in an elementary process: parcelV
mdQ c dT pdV
μ

= + , this heat equals zero in an 

adiabatic process. Furthermore, using the equation of state for air in the parcel 

parcel
mpV RT
μ

=  we can derive (6) 

Expression for 
dp
dz

           

From (1) we can deduce: 

            
dp pgg
dz RT

μρ= − = −  

where is the temperature of the surrounding air. T

On the basis of these two expressions, we derive the expression for  : parcel /dT dz

          parcel parcel1dT Tg G
dz R T

γ μ
γ
−

= − = −                      (8) 

In general,  is not a constant. G
 
 2.2.  

2.2.1. If at any altitude, parcelT T= , then instead of  in (8), we have : G

        
1 constg

R
γ μ
γ
−

Γ = =                        (9) 

or  

 3
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p

g
c
μ

Γ =                (9’) 

2.2.2. Numerical value: 

         21 4 1 0 029 9 81 K K0 00978 10
1 4 8 31 m m
. . . .

. .
−− ×

Γ = = ≈     

  2.2.3. Thus, the expression for the temperature at the altitude  in this special 
atmosphere (called adiabatic atmosphere) is : 

z

         ( ) ( )0T z T z= −Γ                          (10) 

 2.3. Search for the expression of ( )parcelT z  

Substitute  in (7) by its expression given in (3), we have: T

         
( )

parcel

parcel

1
0

dT g dz
T R T

γ μ
γ
−

= −
z−Λ

 

Integration gives: 

         
( )
( )

( )
( )

parcel

parcel

01 1
0 0

ln ln
T z T zg
T R T

−γ μ
γ

Λ− ⎛ ⎞= − −⎜ ⎟Λ⎝ ⎠
 

Finally, we obtain: 

        ( ) ( ) ( )
( )parcel parcel

0
0

0
T z

T z T
T

Γ
Λ⎛ ⎞− Λ

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                 (11) 

 2.4.  
 From (11) we obtain  

 ( ) ( ) ( )parcel parcel 0 1
0
zT z T

T

Γ
Λ⎛ ⎞Λ

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

If ( )0z TΛ << , then by putting 
( )0T

x
z

−
=

Λ
, we obtain 

 
( ) ( )

( )

( ) ( ) ( ) ( ) ( )

0

parcel parcel

0
parcel parcel parcel

10 1

0 0 1
0

e

z
x T

z
T

T z T
x

zT T T
T

Γ
−

Γ
−

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞Γ
≈ ≈ − ≈⎜ ⎟⎜ ⎟

⎝ ⎠
0 z−Γ

   

 4
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hence, 

  ( ) ( )parcel parcel 0T z T≈ z−Γ             (12) 

 
3. Atmospheric stability  

In order to know the stability of atmosphere, we can study the stability of the 
equilibrium of an air parcel in this atmosphere. 

 At the altitude , where 0z ( ) ( )parcel 0 0T z T z= , the air parcel is in equilibrium. 

Indeed, in this case the specific mass ρ  of air in the parcel equals 'ρ - that of the 
surrounding air in the atmosphere. Therefore, the buoyant force of the surrounding air on 
the parcel equals the weight of the parcel. The resultant of these two forces is zero. 

   Remember that the temperature of the air parcel ( )parcelT z  is given by (7), in which 

we can assume approximately G = Γ  at any altitude  near z 0z z= .    

 Now, consider the stability of the air parcel equilibrium: 

 Suppose that the air parcel is lifted into a higher position, at the altitude 0z d+  

(with d>0),  ( ) ( )parcel 0 parcel 0T z d T z+ = −Γd  and ( ) ( )0 0T z d T z d+ = −Λ .    

• In the case the atmosphere has temperature lapse rate , we have Λ > Γ

( ) ( )parcel 0 0T z d T z d+ > + , then  'ρ ρ< . The buoyant force is then larger than the 

air parcel weight, their resultant is oriented upward and tends to push the parcel away 
from the equilibrium position. 

 Conversely, if the air parcel is lowered to the altitude  (d>0),             0z d−

( ) ( )parcel 0 0T z d T z d− < −  and then 'ρ ρ>  . 

   The buoyant force is then smaller than the air parcel weight; their resultant is oriented 
downward and tends to push the parcel away from the equilibrium position (see     
Figure 1) 
 So the equilibrium of the parcel is unstable, and we found that: An atmosphere with a 
temperature lapse rate is unstable. Λ > Γ

• In an atmosphere with temperature lapse rate Λ < Γ , if the air parcel is lifted to a 

higher position, at altitude 0z d+  (with d>0),  ( ) ( )parcel 0 0T z d T z d+ < + , then 

 5
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'ρ ρ> . The buoyant force is then smaller than the air parcel weight, their resultant is 
oriented downward and tends to push the parcel back to the equilibrium position. 

  Conversely, if the air parcel is lowered to altitude (d > 0),             0z d−

( ) ( )parcel 0 0T z d T z d− > − and then 'ρ ρ< . The buoyant force is then larger than the 

air parcel weight, their resultant is oriented upward and tends to push the parcel also back 
to the equilibrium position (see Figure 2). 
 So the equilibrium of the parcel is stable, and we found that: An atmosphere with a 
temperature lapse rate is stable. Λ < Γ
 

   z 
 

z0+d 
z0

 z0-d 
 

 
 

parcelT T> ⇒ parcelρ ρ<      up↑ 

parcelT T< ⇒ parcelρ ρ>    down↓ 

 
 
 

unstable 

0   ( )0T z               T 

T  Tparcel 

Γ      Λ 

Λ > Γ  
 
 
 
 
 
 
 
 
 
 

Figure 1 
 

   z 
 

z0+d 
z0

 z0-d 
 

 
 

parcelT T< ⇒ parcelρ ρ>  down ↓ 

parcelT T> ⇒ parcelρ ρ<    up↑ 

 
 
 

 stable 

0      ( )0T z               T

Tparcel T   

Λ   Γ

Λ < Γ  
 
 
 
 
 
 
 
 
 
 

Figure 2 
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• In an atmosphere with lapse rate Λ = Γ , if the parcel is brought from equilibrium 
position and put in any other position, it will stay there, the equilibrium is indifferent. An 
atmosphere with a temperature lapse rateΛ = Γ is neutral 
 
  3.2. In a stable atmosphere, withΛ < Γ , a parcel, which on ground has temperature 

( )parcel 0T  > ( )0T  and pressure ( )0p equal to that of the atmosphere, can rise and 

reach a maximal altitude , where h ( )parcelT h = ( )T h . 

 In vertical motion from the ground to the altitude , the air parcel realizes an 

adiabatic quasi-static process, in which its temperature changes from 

h

( )parcel 0T  to 

( ) ( )parcelT h T= h . Using (11), we can write:       

   
( )

( )
( )

( )

( ) ( )

parcel parcel0 0
1

0
0 1

0

T Th
T T h hT

T

Γ
−
Λ⎛ ⎞Λ

− = =⎜ ⎟⎜ ⎟ ⎛ ⎞Λ⎝ ⎠ −⎜ ⎟⎜ ⎟
⎝ ⎠

 

   
( ) ( ) ( )

1

1
parcel1 0

0
h T T

T

Γ
−
Λ

−⎛ ⎞Λ
− = ×⎜ ⎟⎜ ⎟

⎝ ⎠
0  

   

   
( ) ( ) ( )- -

parcel1 0
0
h T T

T

Λ Λ
−

Λ Γ Λ ΓΛ
− = × 0  

   

( ) ( ) ( )

( ) ( ) ( )

- -
parcel

parcel

1 0 1 0 0

1 0 0 0

h T T T

T T T

Λ Λ
−

Λ Γ Λ Γ

Λ Γ
−
Λ−Γ Γ−Λ

⎡ ⎤
= − ×⎢ ⎥Λ ⎢ ⎥⎣ ⎦

⎡ ⎤
= −⎢ ⎥Λ ⎢ ⎥⎣ ⎦

 

So that the maximal altitude  has the following expression: h

         ( ) ( )( )
( )( )

1

parcel

01 0
0

T
h T

T

Γ Γ−Λ

Λ

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥= − ⎜Λ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎣ ⎦

                (13) 

 

 7



                 39th International Physics Olympiad - Hanoi - Vietnam - 2008                                   

                            Theoretical Problem No. 3 / Solution   

                           

4. 
 Using data from the Table, we obtain the plot of  versus T  shown in Figure 3. z

 

0

100

200

300

20.0 20.5 21.0 21.5 22.0 22.5

D(20.6oC;142 m)
C(20.8oC; 119 m)

B(21.0oC; 96 m)

A( 22oC; 0 m)

Temperature [oC]

A
lti

tu
de

 [m
]

 

Figure 3 
 

 4.1. We can divide the atmosphere under 200m into three layers, corresponding to the 
following altitudes: 

1)     0 <  < 96 m,     z 3
1

21 5 20 1 K15 4 10
91 m

. . . −−
Λ = = × . 

2)    96 m <  < 119 m,   , isothermal layer.  z 2 0Λ =

3)    119 m <  < 215 m, z 3
22 20 1 K0 02
215 119 m

. .−
Λ = − = −

−
.  

In the layer 1), the parcel temperature can be calculated by using (11) 

       ( )parcel 96m 294 04 K 294.0 K.T = ≈  that is 21.0oC 

In the layer 2), the parcel temperature can be calculated by using its expression in 

isothermal atmosphere ( ) ( ) ( )parcel parcel 0
0

exp zT z T
T

⎡ ⎤Γ
= −⎢ ⎥

⎢ ⎥⎣ ⎦
. 

 8



                 39th International Physics Olympiad - Hanoi - Vietnam - 2008                                   

                            Theoretical Problem No. 3 / Solution   

                           

The altitude 96 m is used as origin, corresponding to 0 m. The altitude 119 m 
corresponds to 23 m. We obtain the following value for parcel temperature:  

            ( )parcel 119 m 293 81 K.T =  that is 20.8oC 

 4.2. In the layer 3), starting from 119 m, by using (13) we find the maximal elevation 
 = 23 m, and the corresponding temperature 293.6 K (or 20.6 h oC).  

 Finally, the mixing height is 
          119 + 23 = 142 m.  H =
And  

          ( )parcel 142 m 293 6 K.T =   that is  20.6oC 

 From this relation, we can find ( )parcel 119 m 293 82 K.T ≈  and . 23 mh =

Note: By using approximate expression (12) we can easily find ( )parcelT z = 294 K and 

293.8 K at elevations 96 m and 119 m, respectively. At 119 m elevation, the difference 
between parcel and surrounding air temperatures is 0.7 K (= 293.8 – 293.1), so that the 

maximal distance the parcel will travel in the third layer is 0.7/( )3Γ −Λ = 0.7/0.03 = 23 m.  

 
5.     

Consider a volume of atmosphere of Hanoi metropolitan area being a parallelepiped 
with height , base sides L and W. The emission rate of CO gas by motorbikes from 
7:00 am to 8:00 am 

H

              M = 800 000 × 5 × 12 /3600 = 13 300 g/s 
The CO concentration in air is uniform at all points in the parallelepiped and denoted 

by ( )C t .  

5.1. After an elementary interval of time , due to the emission of the motorbikes, 
the mass of CO gas in the box increases by

dt
Mdt . The wind blows parallel to the short 

sides W, bringing away an amount of CO gas with mass ( )LHC t udt . The remaining 

part raises the CO concentration by a quantity  in all over the box. Therefore: dC

   ( )Mdt LHC t udt LWHdC− =  

or  

 9
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       ( )dC u MC t
dt W LWH

+ =                                (14) 

5.2. The general solution of (14) is : 

      ( ) exp ut MC t K
W LH

⎛ ⎞= − +⎜ ⎟
⎝ ⎠ u

          (15) 

From the initial condition ( )0C 0= , we can deduce : 

       ( ) 1 expM utC t
LHu W

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎝ ⎠⎣ ⎦
⎥                        (16) 

 
5.3. Taking as origin of time the moment 7:00 am, then 8:00 am corresponds to 

=3600 s. Putting the given data in (15), we obtain : t

      ( ) ( ) 33600 s 6 35 1 0 64 2 3 mg/m. . .C = × − =  
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Solution 

Task 1 
1. 

 1.1.   25±1 o0T = C 

( )samp 0V T = 573.9 mV 

With different experiment sets,  may differ from the above value within ±40 mV. sampV

Note for error estimation: 
Vδ Vδ and   are calculated using the specs of the multimeter: ±0.5% reading digit +2 

on the last digit. Example: if V = 500mV,  the error δV = 500×0.5% + 0.2 = 2.7 mV ≈ 3 
mV. 

( )0 574 3 mVsampV T = ±Thus, . 

( )0sampV TAll values of within 505÷585 mV are acceptable. 

 1.2. Formula for temperature calculation: 

samp samp 0 0( ) ( )V V T T Tα= − −From Eq (1):  

( )o
samp 50 CV  = 523.9 mV 

( )o
samp 70 CV  = 483.9 mV 

( )o
samp 80 CV  = 463.9 mV 

( ) ( )samp samp 0 0V V T T Tδ δ δ= + − αError calculation:  

Example:  = 495.2 mV , then  sampV samp 2 7 0 03 50 25 3 45mV 3 5mV. . ( ) . .Vδ = + × − = ≈  

Thus: 

( )o
samp 50 CV  = 524±4 mV 

( )o
samp 70 CV  = 484±4 mV 

 1
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( )o
samp 80 CV = 464±5 mV 

The same rule for acceptable range of  as in 1.1 is applied. sampV

 
2. 
 2.1. Data of cooling-down process without sample: 
 

t (s) V ΔV (mV) (±0.2mV)  (mV) (±3mV) samp

0 492 -0.4 
10 493 -0.5 
20 493 -0.5 
30 494 -0.6 
40 495 -0.7 
50 496 -0.7 
60 497 -0.8 
70 497 -0.8 
80 498 -0.9 
90 499 -1.0 
100 500 -1.0 
110 500 -1.1 
120 501 -1.1 
130 502 -1.2 
140 503 -1.2 
150 503 -1.3 
160 504 -1.3 
170 504 -1.4 
180 505 -1.5 
190 506 -1.6 
200 507 -1.6 
210 507 -1.7 
220 508 -1.7 
230 508 -1.8 
240 509 -1.8 
250 509 -1.8 
260 510 -1.9 
270 511 -1.9 
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280 512 -1.9 
290 512 -2.0 
300 513 -2.0 
310 514 -2.1 
320 515 -2.1 
330 515 -2.1 
340 516 -2.1 
350 516 -2.2 
360 517 -2.2 
370 518 -2.3 
380 518 -2.3 
390 519 -2.3 
400 520 -2.4 
410 520 -2.4 
420 521 -2.5 
430 521 -2.5 
440 522 -2.5 
450 523 -2.6 
460 523 -2.6 

The acceptable range of ΔV is  ±40 mV. There is no fixed rule for the change in ΔV with 
(this depends on the positions of the dishes on the plate, etc.) T

 
 2.2. 

Graph 1 

490

500

510

520

530

0 100 200 300 400 500

t [s]

V
sa

m
p[m

V]
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 The correct graph should not have any abrupt changes of the slope. 
 
 2.3. 

Graph 2 

-3

-2

-1

0

490 500 510 520 530

Vsamp[mV]

Δ
V

[m
V]

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 The correct graph should not have any abrupt changes of the slope. 
 
3. 
 3.1. Dish with substance 

t (s) V ΔV (mV) (±0.2mV)  (mV) (±3mV) samp

0 492 -4.6 
10 493 -4.6 
20 493 -4.6 
30 494 -4.6 
40 495 -4.6 
50 496 -4.6 
60 497 -4.6 
70 497 -4.5 
80 498 -4.5 
90 499 -4.5 
100 500 -4.5 
110 500 -4.5 
120 501 -4.5 
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130 502 -4.6 
140 503 -4.6 
150 503 -5.1 
160 503 -5.6 
170 503 -6.2 
180 503 -6.5 
190 504 -6.6 
200 505 -6.5 
210 506 -6.4 
220 507 -6.3 
230 507 -6.1 
240 508 -5.9 
250 509 -5.7 
260 510 -5.5 
270 511 -5.3 
280 512 -5.1 
290 512 -5.0 
300 513 -4.9 
310 514 -4.8 
320 515 -4.7 
330 515 -4.7 
340 516 -4.6 
350 516 -4.6 
360 517 -4.5 
370 518 -4.5 
380 518 -4.4 
390 519 -4.4 
400 520 -4.4 
410 520 -4.4 
420 521 -4.4 
430 521 -4.3 
440 522 -4.3 
450 523 -4.3 
460 523 -4.3 
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 3.2. 
Graph 3 
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 The correct Graph 3 should contain a short plateau as marked by the arrow in the 
above figure. 
 
 3.3. 
           Graph 4 
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 The correct Graph 4 should have an abrupt change in ΔV, as shown by the arrow in 
the above figure. 
Note: when the dish contains the substance, values of ΔV may change compared to those 
without the substance. 

 
4. 

 4.1.  is shown in Graph 3. Value  = (503±3) mV. From that, = 60.5 o
sV sV sT C can 

be deduced. 

 4.2.  is shown in Graph 4. Value = (503±3) mV. From that, = 60.5 o
sV sV sT C can 

be deduced. 
 
 4.3. Error calculations, using root mean square method: 
 

0
0

( ) ( )s
s

V T V TT T T
α 0 A−

= + = + Error of  :  sT , in which A is an intermediate 

variable. 

( ) ( )2
0= +sT T Aδ δ δ 2

 Therefore error of  can be written as sT , in which d… is 

the error. 
 Error for A is calculated separately: 

[ ] 2 2
00

0

( ) ( )( ) ( )
( ) ( )

ss

s

V T V TV T V TA
V T V T

δ δαδ
α α

⎧ ⎫−− ⎪ ⎪ ⎛ ⎞= +⎨ ⎬ ⎜ ⎟− ⎝ ⎠⎪ ⎪⎩ ⎭
 

in which we have: 

[ ] [ ] [ ]2 2
0 0( ) ( ) ( ) ( )s sV T V T V T V Tδ δ− = + δ  

 Errors of other variables in this experiment: 
  dT =1oC 0

( )0V Tδ  = 3 mV, read on the multimeter. 

  da = 0.03 mV/oC 
  dV(Ts)ª 3 mV 
From the above constituent errors we have: 

  [ ]0 4 24( ) ( ) .sV T V T mVδ − ≈
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2.1 CAδ ≈ °   

Finally, the error of   is: 2 5 C.sTδ ≈ °sT  

Hence, the final result is: =60±2.5 osT C 

 
Note: if the student uses any other reasonable error calculation method that leads to 
approximately the same result, it is also accepted. 
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Task 2 
1.  

 1.1. ±1 C 0 26T = o

2. 
 2.1. Measured data with the lamp off 
t (s) ΔV(T ) (mV) (±0.2mV) 0

0 19.0
10 19.0
20 19.0
30 19.0
40 19.0
50 18.9
60 18.9
70 18.9
80 18.9
90 18.9

100 19.0
110 19.0
120 19.0

 
 Values of ΔV(T0) can be different from one experiment set to another. The acceptable 
values lie in between -40÷+40 mV. 
 
 2.2. Measured data with the lamp on 
t (s) ΔV (mV) (±0.2mV) 

0 19.5
10 21.9
20 23.8
30 25.5
40 26.9
50 28.0
60 29.0
70 29.9
80 30.7
90 31.4

 9
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100 32.0
110 32.4
120 32.9

 
 When illuminated (by the lamp) values of ΔV may change 10 ÷ 20 mV compared to 
the initial situation (lamp off). 
  
2.3. Measured data after turning the lamp off 
 
t (s) ΔV (mV) (±0.2mV) 

0 23.2
10 22.4
20 21.6
30 21.0
40 20.5
50 20.1
60 19.6
70 19.3
80 18.9
90 18.6

100 18.4
110 18.2
120 17.9

 
3. Plotting graph 5 and calculating k 

( ) ( )0lny V T V⎡ ⎤= Δ − Δ⎣ ⎦ 3.1. x t= t;  

Note: other reasonable ways of writing expressions for x and y that also leads to a linear 
relationship using ln are also accepted. 
 
 3.2. Graph 5 
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Graph 5

 3.3. Calculating k: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k
C

 

Note: Error of lated in 5.5. Students are not asked to give error of

=  0.0109 s-1 and C = 0.69 J/K, thus: k = 7.52×10-3 W/K

k will be calcu  k in this 

. Plotting Graph 6 and calculating E 

 4.1. 

step. The acceptable value of k lies in between 6×10-3 ÷ 9×10-3 W/K depending on the 
experiment set.  
 
4

 1 exp kt−⎡ ⎤⎛ ⎞x
C

= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
; ( ) ( )0y V T V t= Δ −Δ  

 4.2. 
 
 
 
 
 
 
 
 
 
 
 Graph 6 should 
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be substantially linear, with the slope in between 15÷25 mV, depending on the 
experiment set. 
 
 4.3. From the slope of Graph 6 and the area of the detector orifice we obtain          
E = 140 W/m2. The area of the detector orifice is 

4 2  with error: det

det

5%R
R
δ

=  2 3 2
det det 13 10 5 30 10 mS Rπ π − −= = × × = ×( ) .

 Error of E will be calculated in 5.5. Students are not asked to give error of E in this 
step. The acceptable value of E lies in between 120 ÷ 160 W/m2, depending on the 
experiment set. 
 
5. 
 5.1. Circuit diagram: 
 
 

mA
mV 

Solar cell 

 

5.2. Measurements of V and I  
V (mV) (±0.3÷3mV) I (mA) (±0.05÷0.1mA) P (mW)  

 
 

18.6 ±0.3 11.7 0.21 
33.5  11.7 0.39 
150  11.5 1.72 
157  11.6 1.82 
182 ±1 11.4 2.08 
2 7  11.2 3.00 6
40 2 9.23 3.70 2 ±
448 6.70 3.02 
459 5.91 2.74 
468 5.07 2.37 
473 ±3 4.63 2.20 
480  3.81 1.86 
485  3.24 1.57 
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W
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487  3.12 1.54 
489  3.13 1.55 

 
 

P
 [m

5.3. 
Graph 7 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 5.4. Pmax = 3.7±0.2 m
 e acceptable valu max lies in between 3÷4.5 ent 
s
 xpression for t ciency 

 219 24mm 10 m−= × ×  

 Then 

 

 
W 

e of PTh  mW, depending on the experim
et. 

5.5. E he effi

2 6S 450=cell

max
max

cell

0 058P
E S

η = =
×

.  

lculation: 

 

 Error ca
2 22

max cell⎛ ⎞
max max

max cell

P SE
P E S
δ δδδη η
⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
, in which Scell is the area of the 

solar cell. 
 

 max

max

P
P
δ

 is estimated from Graph 7, typical value ª 6 % 
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 cell

cell

S
S
δ

 : error from the millimeter measurement (with the ruler), typical value ª  % 

 E is calculated from averaging the ratio (using Graph 6): 

 

 5

2
0 d

1

V T V t E RB
k kt
C

etπ αΔ − Δ
= =

⎛ ⎞− −⎜ ⎟
⎝ ⎠

( ) ( )

exp
  

in which B is an intermediate variable, Rdet is the radius of the detector orifice. 

 2
kBE

Rπ α
=

det

 

Calculation of error of E: 

 
22 2

4 RE k B 2

R
δδ

E k B
δ δ δα

α
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎠ ⎝ ⎠⎝ ⎠
det

det

 

 is

⎝ ⎠ ⎝ ⎠ ⎝

k  calculated from the regression of: 

 0 ⎛ ⎞Δ = Δ −⎜ ⎟
⎝ ⎠

( )exp kT T t
C

, hence 0Δ = Δ −ln ln ( ) kT T
C

 t

 set  then
From the regression, we can calculate the error of m: 

 

=/k C m  =k mC  We

2 1 0 2m r
m
δ

≈ − ≈( ) . %  

 
2 2k m C

k m C
δ δ δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

We derive the expression for the error of ηmax: 
2 2 22 2 2

max cell
max max

max cell

4P S RB m C
P S B R m C
δ δ δ 2δ δ δ δαδη η

α
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
det

det

 
Typical values for maxη  and other constituent errors: 
 0 058max .η ≈  

 5=max

maxP
%Pδ

; 0 6B
B
δ

≈ . % ; 0 2m
m
δ

≈ . % ; cell

cell

5%
S
Sδ 5≈det

det

%R
R
δ

≈ ; ; 

 14



                 39th International Physics Olympiad - Hanoi - Vietnam - 2008                                   

                                Experimental Problem / Solution 

                             

3≈ %C
C
δ

; 3%k
k
δ

≈ 10 5. %E
E
δ

≈ 1 5δα
α

≈ . %   ; ; 

Finally: 

δ
 max 12.7%

max

η
η

= ; 0 0074max .δη ≈  

and 

 ( )5 8 0 8max %. .η = ±  

 
ote: if the student uses any other reasonable error me od that leads to approximately 

the same result, it is also accepted. 

 

 

 

 

 
 
 

 

 

 
 

N th
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THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

Scientists can determine the distance Earth-Moon with great precision. They achieve 

this by bouncing a laser beam on special mirrors deposited on the Moon´s surface by 

astronauts in 1969, and measuring the round travel time of the light (see Figure 1). 

 

 

 
 

With these observations, they have directly measured that the Moon is slowly receding 

from the Earth. That is, the Earth-Moon distance is increasing with time. This is 

happening because due to tidal torques the Earth is transferring angular momentum to 

the Moon, see Figure 2. In this problem you will derive the basic parameters of the 

phenomenon. 

 

  

Figure 1. A laser beam sent 

from an observatory is used 

to measure accurately the 

distance between the Earth 

and the Moon. 



 
 

 

 

 

 

 

 

 

 

1. Conservation of Angular Momentum. 

 

Let 1L  be the present total angular momentum of the Earth-Moon system. Now, make 

the following assumptions: i) 1L  is the sum of the rotation of the Earth around its axis 

and the translation of the Moon in its orbit around the Earth only. ii) The Moon’s orbit 

is circular and the Moon can be taken as a point. iii) The Earth’s axis of rotation and the 

Moon’s axis of revolution are parallel. iv) To simplify the calculations, we take the 

motion to be around the center of the Earth and not the center of mass. Throughout the 

problem, all moments of inertia, torques and angular momenta are defined around the 

axis of the Earth. v) Ignore the influence of the Sun.  

 

1a Write down the equation for the present total angular momentum of the 

Earth-Moon system. Set this equation in terms of EI , the moment of 

inertia of the Earth; 1Eω , the present angular frequency of the Earth’s 

rotation; 1MI , the present moment of inertia of the Moon with respect to 

the Earth´s axis; and 1Mω , the present angular frequency of the Moon’s 

orbit. 

0.2 

 

This process of transfer of angular momentum will end when the period of rotation of 

the Earth and the period of revolution of the Moon around the Earth have the same 

duration. At this point the tidal bulges produced by the Moon on the Earth will be 

aligned with the line between the Moon and the Earth and the torque will disappear. 

 

 

Figure 2. The Moon’s gravity produces tidal deformations or “bulges” in the Earth. 

Because of the Earth’s rotation, the line that goes through the bulges is not aligned 

with the line between the Earth and the Moon. This misalignment produces a torque 

that transfers angular momentum from the Earth’s rotation to the Moon’s 

translation. The drawing is not to scale. 



1b Write down the equation for the final total angular momentum 2L of the 

Earth-Moon system. Make the same assumptions as in Question 1a. Set 

this equation in terms of EI , the moment of inertia of the Earth; 2ω , the 

final angular frequency of the Earth’s rotation and Moon’s translation; 

and 2MI , the final moment of inertia of the Moon. 

0.2 

 

 

1c Neglecting the contribution of the Earth´s rotation to the final total 

angular momentum, write down the equation that expresses the angular 

momentum conservation for this problem. 

0.3 

 

2. Final Separation and Final Angular Frequency of the Earth-Moon System. 

 

Assume that the gravitational equation for a circular orbit (of the Moon around the 

Earth) is always valid. Neglect the contribution of the Earth´s rotation to the final total 

angular momentum. 

 

2a Write down the gravitational equation for the circular orbit of the Moon 

around the Earth, at the final state, in terms of EM , 2ω , G and the final 

separation 2D  between the Earth and the Moon. EM  is the mass of the 

Earth and G  is the gravitational constant. 

0.2 

 

 

2b Write down the equation for the final separation 2D  between the Earth 

and the Moon in terms of the known parameters, 1L , the total angular 

momentum of the system, EM and MM , the masses of the Earth and 

Moon, respectively, and G . 

0.5 

 

2c Write down the equation for the final angular frequency 2ω  of the Earth-

Moon system in terms of the known parameters 1L , EM , MM  and G . 

0.5 

 

Below you will be asked to find the numerical values of 2D  and 2ω . For this you need 

to know the moment of inertia of the Earth.  

 

2d Write down the equation for the moment of inertia of the Earth EI  

assuming it is a sphere with inner density iρ  from the center to a radius 

ir , and with outer density oρ  from the radius ir  to the surface at a 

radius or  (see Figure 3).  

0.5 

 

 

 



  
 

 

 

 Determine the numerical values requested in this problem always to two significant 

digits. 

 

 

2e Evaluate the moment of inertia of the Earth EI , using 4103.1 ×=iρ kg m
-3
, 

6105.3 ×=ir m, 3100.4 ×=oρ  kg m
-3
, and 6104.6 ×=or m.  

0.2 

 

The masses of the Earth and Moon are 24100.6 ×=EM  kg and 22103.7 ×=MM kg, 

respectively. The present separation between the Earth and the Moon is 8

1 108.3 ×=D m. 

The present angular frequency of the Earth’s rotation is 5

1 103.7 −×=Eω s
-1
. The present 

angular frequency of the Moon’s translation around the Earth is 6

1 107.2 −×=Mω s
-1
, and 

the gravitational constant is 11107.6 −×=G m
3
 kg

-1
 s
-2
. 

 

 

2f Evaluate the numerical value of the total angular momentum of the 

system, 1L . 

0.2 

 

 

2g Find the final separation 2D in meters and in units of the present 

separation 1D . 

0.3 

 

 

2h Find the final angular frequency 2ω  in s
-1
, as well as the final duration of 

the day in units of present days. 

0.3 

 

 

Figure 3. The Earth as a sphere 

with two densities, 
iρ  and 

oρ . 

 



Verify that the assumption of neglecting the contribution of the Earth´s rotation to the 

final total angular momentum is justified by finding the ratio of the final angular 

momentum of the Earth to that of the Moon. This should be a small quantity. 

 

2i Find the ratio of the final angular momentum of the Earth to that of the 

Moon.  

 

0.2 

 

3. How much is the Moon receding per year? 

 

Now, you will find how much the Moon is receding from the Earth each year. For this, 

you will need to know the equation for the torque acting at present on the Moon. 

Assume that the tidal bulges can be approximated by two point masses, each of massm , 

located on the surface of the Earth, see Fig. 4. Let θ  be the angle between the line that 

goes through the bulges and the line that joins the centers of the Earth and the Moon.  

 

 
 

 
 

 

 

3a Find
cF , the magnitude of the force produced on the Moon by the closest 

point mass.  

 

0.4 

 

 

3b Find fF , the magnitude of the force produced on the Moon by the farthest  

point mass.   

0.4 

 

Figure 4.  Schematic diagram to estimate the torque produced on the Moon by the 

bulges on the Earth. The drawing is not to scale. 



You may now evaluate the torques produced by the point masses.  

 

3c Find the magnitude of
cτ , the torque produced by the closest point mass.  0.4 

 

3d Find the magnitude of fτ , the torque produced by the farthest point mass. 0.4 

 

3e Find the magnitude of the total torque τ  produced by the two masses. 

Since 1Dro <<  you should approximate your expression to lowest 

significant order in 
1/Dro . You may use that axx a +≈+ 1)1( , if 1<<x .   

1.0 

 

 

3f Calculate the numerical value of the total torque τ , taking into account 

that o3=θ  and that 16106.3 ×=m  kg  (note that this mass is of the order 

of 810− times the mass of the Earth). 

0.5 

 

Since the torque is the rate of change of angular momentum with time, find the increase 

in the distance Earth-Moon at present, per year. For this step, express the angular 

momentum of the Moon in terms of MM , EM , 1D  and G  only. 

 

3g Find the increase in the distance Earth-Moon at present, per year.  1.0 

 

Finally, estimate how much the length of the day is increasing each year. 

 

3h Find the decrease of 1Eω  per year and how much is the length of the day 

at present increasing each year.  

 

1.0 

 

4. Where is the energy going? 

 

In contrast to the angular momentum, that is conserved, the total (rotational plus 

gravitational) energy of the system is not. We will look into this in this last section. 

 

4a Write down an equation for the total (rotational plus gravitational) energy 

of the Earth-Moon system at present, E . Put this equation in terms of EI , 

1Eω  ,  MM , EM , 1D  and G  only. 

0.4 

 

4b Write down an equation for the change inE , E∆ , as a function of the 

changes in  1D  and in 1Eω . Evaluate the numerical value of E∆  for a 

year, using the values of changes in  1D  and in 1Eω found in questions 3g 

and 3h.  

0.4 



 

Verify that this loss of energy is consistent with an estimate for the energy dissipated as 

heat in the tides produced by the Moon on the Earth. Assume that the tides rise, on the 

average by 0.5 m, a layer of water =h   0.5 m deep that covers the surface of the Earth 

(for simplicity assume that all the surface of the Earth is covered with water). This 

happens twice a day. Further assume that 10% of this gravitational energy is dissipated 

as heat due to viscosity when the water descends. Take the density of water to be 
310=waterρ  kg m

-3
, and the gravitational acceleration on the surface of the Earth to be 

8.9=g  m s
-2
. 

 

4c What is the mass of this surface layer of water? 0.2 

 

4d Calculate how much energy is dissipated in a year? How does this 

compare with the energy lost per year by the Earth-Moon system at 

present?  

0.3 

 

 

 



 

     

 

 

Answer Form 

Theoretical Problem No. 1 

Evolution of the Earth-Moon System 

 

     1.  Conservation of Angular Momentum 
 

1a  0.2 

 

1b  0.2 

 

 

1c  0.3 

 

2. Final Separation and Angular Frequency of the Earth-Moon System. 

 

 

2a  0.2 

 

 

2b  0.5 

 

 

2c  0.5 

 

2d  

 

0.5 

 



 

     

 

 

 

2e 
 

 

0.2 

 

2f 
 

0.2 

 

2g  

 

0.3 

 

2h  

 

0.3 

 

2i  0.2 

 

3. How much is the Moon receding per year? 

 

 

3a  0.4 

 

3b  0.4 

 



 

     

 

 

 

3c  0.4 

 

 

3d  0.4 

 

 

3e  1.0 

 

 

3f  0.5 

 

 

3g  1.0 



 

     

 

 

 

3h  1.0 

 

4. Where is the energy going? 

 

4a  0.4 

 

4b  0.4 

 

4c  0.2 

 

 

4d  0.3 

 

                                                               



THEORETICAL PROBLEM 2 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The purpose of this problem is to develop a simple theory to understand the so-called 

“laser cooling” and “optical molasses” phenomena. This refers to the cooling of a beam 

of neutral atoms, typically alkaline, by counterpropagating laser beams with the same 

frequency. This is part of the Physics Nobel Prize awarded to S. Chu, P. Phillips and C. 

Cohen-Tannoudji in 1997. 

 

 
 

 

The image above shows sodium atoms (the bright spot in the center) trapped at the 
intersection of three orthogonal pairs of opposing laser beams. The trapping region is 
called “optical molasses” because the dissipative optical force resembles the viscous 

drag on a body moving through molasses. 

 

In this problem you will analyze the basic phenomenon of the interaction between a 

photon incident on an atom and the basis of the dissipative mechanism in one 

dimension. 

 

 

PART I: BASICS OF LASER COOLING 

 

Consider an atom of mass m  moving in the +x  direction with velocity v . For 
simplicity, we shall consider the problem to be one-dimensional, namely, we shall 

ignore the y  and z  directions (see figure 1). The atom has two internal energy levels. 
The energy of the lowest state is considered to be zero and the energy of the excited 

state to be   hω0, where π2/h=h . The atom is initially in the lowest state. A laser beam 

with frequency ωL  in the laboratory is directed in the −x  direction and it is incident on 
the atom. Quantum mechanically the laser is composed of a large number of photons, 

each with energy   hωL  and momentum   −hq. A photon can be absorbed by the atom and 
later spontaneously emitted; this emission can occur with equal probabilities along the 

+x  and −x  directions. Since the atom moves at non-relativistic speeds, v /c <<1 (with 
c  the speed of light) keep terms up to first order in this quantity only. Consider also 

1/ <<mvqh , namely, that the momentum of the atom is much larger than the 



momentum of a single photon. In writing your answers, keep only corrections linear in 

either of the above quantities. 

 

 
 

Fig.1 Sketch of an atom of mass m  with velocity v  in the +x  direction, colliding with a 
photon with energy   hωL  and momentum   −hq. The atom has two internal states with 
energy difference   hω0. 

 

Assume that the laser frequency ωL  is tuned such that, as seen by the moving atom, it is 

in resonance with the internal transition of the atom.  Answer the following questions:  

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  0.2 

 

1b Write down the momentum pat  of the atom after absorption, as seen in the 

laboratory.  

0.2 

 

1c Write down the total energy εat  of the atom after absorption, as seen in the 

laboratory. 

0.2 

 

 

2. Spontaneous emission of a photon in the −x  direction. 
 

At some time after the absorption of the incident photon, the atom may emit a photon in 

the −x  direction.  
 

2a Write down the energy of the emitted photon, εph , after the emission 

process in the −x  direction, as seen in the laboratory.  

0.2 

 

2b Write down the momentum of the emitted photon pph , after the emission 

process in the −x  direction, as seen in the laboratory. 

0.2 

 



 

2c Write down the momentum of the atom pat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

2d Write down the total energy of the atom εat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

3. Spontaneous emission of a photon in the +x  direction.  
 

At some time after the absorption of the incident photon, the atom may instead emit  a 

photon in the x+  direction.  

 

3a Write down the energy of the emitted photon, εph , after the emission 

process in the x+  direction, as seen in the laboratory.  

0.2 

 

3b Write down the momentum of the emitted photon pph , after the emission 

process in the x+  direction, as seen in the laboratory. 

0.2 

 

 

3c Write down the momentum of the atom pat , after the emission process in 

the x+ direction, as seen in the laboratory. 

0.2 

 

 

3d Write down the total energy of the atom εat , after the emission process in 

the x+  direction, as seen in the laboratory. 

0.2 

 

 

4. Average emission after the absorption. 

 

The spontaneous emission of a photon in the x−  or  in the x+  directions occurs with 

the same probability. Taking this into account, answer the following questions. 

 

4a Write down the average energy of an emitted photon, εph , after the 

emission process. 

0.2 

 

4b Write down the average momentum of an emitted photon pph , after the 

emission process. 

0.2 

 

 

4c Write down the average total energy of the atom εat , after the emission 

process. 

0.2 



 

4d Write down the average momentum of the atom pat , after the emission 

process. 

0.2 

 

5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser radiation 

and the atom.  

 

5a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.2 

 

 

5b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.2 

 

6. Energy and momentum transfer by a laser beam along the +x  direction. 
 

Consider now that a laser beam of frequency ′ ω L  is incident on the atom along the +x  
direction, while the atom moves also in the +x  direction with velocity v . Assuming a  
resonance condition between the internal transition of the atom and the laser beam, as 

seen by the atom, answer the following questions: 

 

6a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.3 

 

 

6b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

Nature, however, imposes an inherent uncertainty in quantum processes. Thus, the fact 

that the atom can spontaneously emit a photon in a finite time after absorption, gives 

as a result that the resonance condition does not have to be obeyed exactly as in the 

discussion above. That is, the frequency of the laser beams ωL  and ′ ω L  may have any 
value and the absorption-emission process can still occur. These will happen with 

different (quantum) probabilities and, as one should expect, the maximum probability 

is found at the exact resonance condition. On the average, the time elapsed between a 

single process of absorption and emission is called the lifetime of the excited energy 

level of the atom and it is denoted byΓ−1. 

 

Consider a collection of N  atoms at rest in the laboratory frame of reference, and a 



laser beam of frequency ωL  incident on them. The atoms absorb and emit 

continuously such that there is, on average, Nexc  atoms in the excited state (and 

therefore, N − Nexc  atoms in the ground state). A quantum mechanical calculation 

yields the following result:  

Nexc = N
ΩR

2

ω0 −ωL( )2 + Γ2

4
+ 2ΩR

2

 

 

where ω0 is the resonance frequency of the atomic transition and ΩR  is the so-called 

Rabi frequency; ΩR
2  is proportional to the intensity of the laser beam. As mentioned 

above, you can see that this number is different from zero even if the resonance 

frequency ω0 is different from the frequency of the laser beamωL . An alternative way 

of expressing the previous result is that the number of absorption-emission processes 

per unit of time isNexcΓ . 
 

 

Consider the physical situation depicted in Figure 2, in which two counter propagating 

laser beams with the same but arbitrary frequency ωL  are incident on a gas of N  
atoms that move in the +x  direction with velocityv . 
 

 
Figure 2. Two counter propagating laser beams with the same but arbitrary frequency 

ωL  are incident on a gas of N  atoms that move in the +x  direction with velocityv .  
 

7. Force on the atomic beam by the lasers. 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You should assume that qmv h>> . 

1.5 

 

8. Low velocity limit. 

 

Assume now that the velocity of the atoms is small enough, such that you can expand 

the force up to first order in v . 
 

8a Find an expression for the force found in Question (7a), in this limit. 1.5 

 

Using this result, you can find the conditions for speeding up, slowing down, or no 

effect at all on the atoms by the laser radiation. 

 



8b Write down the condition to obtain a positive force (speeding up the 

atoms). 

0.25 

 

 

8c Write down the condition to obtain a zero force. 0.25 

 

 

8d Write down the condition to obtain a negative force (slowing down the 

atoms). 

0.25 

 

8e Consider now that the atoms are moving with a velocity v−  (in the x−  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 

0.25 

 

 

9. Optical molasses. 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, at 0=t , the gas of atoms has velocity 0v . 

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a timeτ .  
1.5 

 

 

9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperatureT0. Find the temperature T  after the laser beams have been 
on for a timeτ . 

0.5 

 

This model does not allow you to go to arbitrarily low temperatures. 



 

     

 

 

 

Answer Form 

Theoretical problem No. 2 

 

                 DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

 

 

PART I: BASICS OF LASER COOLING 

 

1. Absorption. 

 

1a  0.2 

 

1b  0.2 

 

1c  0.2 

 

 

2. Spontaneous emission in the −x  direction. 
 

 

2a  0.2 

 

2b  0.2 

 

 



 

     

 

 

 

2c  0.2 

 

 

2d  0.2 

 

 

3. Spontaneous emission in the +x  direction. 
 

3a  0.2 

 

3b  0.2 

 

 

3c  0.2 

 

 

3d  0.2 

 

 

4. Average emission after absorption. 

 

4a  0.2 



 

     

 

 

 

 

4b  0.2 

 

 

4c  0.2 

 

 

4d  0.2 

 

 

 

5. Energy and momentum transfer. 

 

 

5a  0.2 

 

 

5b  0.2 

 

6. Energy and momentum transfer by a laser beam along the +x  direction. 
 

 

6a  0.3 

 

 



 

     

 

 

 

6b  0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

7. Force on the atomic beam by the lasers. 

 

 

7a  1.5 

 

8. Low velocity limit. 

 

 

8a  1.5 

 

 

8b  0.25 

 

 



 

     

 

 

 

8c  0.25 

 

 

8d  0.25 

 

 

8e  0.25 

 

 

9. Optical molasses 

 

 

9a  1.5 

 

 

9b  0.5 

 

 

 

                                                            



THEORETICAL PROBLEM No. 3 

 

WHY ARE STARS SO LARGE? 

 

The stars are spheres of hot gas. Most of them shine because they are fusing hydrogen 

into helium in their central parts. In this problem we use concepts of both classical and 

quantum mechanics, as well as of  electrostatics and thermodynamics, to understand 

why stars have to be big enough to achieve this fusion process and also derive what 

would be the mass and radius of the smallest star that can fuse hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Our Sun, as most stars, shines 

as a result of thermonuclear fusion of 

hydrogen into helium in its central 

parts. 

USEFUL CONSTANTS 

Gravitational constant = 11107.6 −×=G  m
3
 kg

-1
 s
2 

Boltzmann´s constant = 23104.1 −×=k J K
-1 

Planck’s constant = 34106.6 −×=h  m
2
 kg s

-1
 

Mass of the proton = 27107.1 −×=pm kg 

Mass of the electron = 31101.9 −×=em kg 

Unit of electric charge = 19106.1 −×=q C 

Electric constant (vacuum permittivity) = 12

0 109.8 −×=ε  C
2 
N
-1 
m

-2 

Radius of the Sun = 8100.7 ×=SR m 

Mass of the Sun = 30100.2 ×=SM kg 



 

 

 

 

1. A classical estimate of the temperature at the center of the stars. 

 

Assume that the gas that forms the star is pure ionized hydrogen (electrons and protons 

in equal amounts), and that it behaves like an ideal gas. From the classical point of view, 

to fuse two protons, they need to get as close as 1510− m for the short range strong 

nuclear force, which is attractive, to become dominant. However, to bring them together 

they have to overcome first the repulsive action of Coulomb’s force. Assume classically 

that the two protons (taken to be point sources) are moving in an antiparallel way, each 

with velocity
rmsv , the root-mean-square (rms) velocity of the protons, in a one-

dimensional frontal collision.  

 

1a  What has to be the temperature of the gas,
cT , so that the distance of 

closest approach of the protons, cd , equals 1510− m? Give this and all 

numerical values in this problem up to two significant figures. 

1.5 

 

  

2. Finding that the previous temperature estimate is wrong. 

To check if the previous temperature estimate is reasonable, one needs an independent 

way of estimating the central temperature of a star. The structure of the stars is very 

complicated, but we can gain significant understanding making some assumptions. Stars 

are in equilibrium, that is, they do not expand or contract because the inward force of 

gravity is balanced by the outward force of pressure (see Figure 2). For a slab of gas the 

equation of hydrostatic equilibrium at a given distance r from the center of the star, is 

given by 

2r

MG

r

P rr ρ−=
∆
∆

, 

where P is the pressure of the gas, G  the gravitational constant, rM the mass of the star 

within a sphere of radius r , and rρ is the density of the gas in the slab.  

 



  

 

An order of magnitude estimate of the central temperature of the star can be obtained 

with values of the parameters at the center and at the surface of the star, making the 

following approximations: 

co PPP −≈∆ , 

where cP  and oP  are the pressures at the center and surface of the star, respectively. 

Since oc PP >> , we can assume that 

cPP −≈∆ . 

Within the same approximation, we can write 

Rr ≈∆ , 

where R is the total radius of the star, and 

MMM Rr =≈ , 

with M the total mass of the star. 

The density may be approximated by its value at the center, 

cr ρρ ≈ . 

You can assume that the pressure is that of an ideal gas. 

2a Find an equation for the temperature at the center of the star, cT , in terms 

of the radius and mass of the star and of physical constants only. 

0.5 

 

 

Figure 2. The stars 

are in hydrostatic 

equilibrium, with the 

pressure difference 

balancing gravity. 



We can use now the following prediction of this model as a criterion for its validity: 

  

2b Using the equation found in (2a) write down the ratio RM /  expected for 

a star in terms of physical constants and 
cT only.  

0.5 

 

2c Use the value of  cT  derived in section (1a) and find the numerical value 

of the ratio RM /  expected for a star.  

0.5 

 

2d Now, calculate the ratio )(/)( SunRSunM , and verify that this value is 

much smaller than the one found in (2c). 

0.5 

 

3. A quantum mechanical estimate of the temperature at the center of the 

stars 

 

The large discrepancy found in (2d) suggests that the classical estimate for cT obtained 

in (1a) is not correct. The solution to this discrepancy is found when we consider 

quantum mechanical effects, that tell us that the protons behave as waves and that a 

single proton is smeared on a size of the order of pλ , the de Broglie wavelength. This 

implies that if
cd , the distance of closest approach of the protons is of the order of pλ , 

the protons in a quantum mechanical sense overlap and can fuse.  

 

3a 
 Assuming that 

2/12

p

cd
λ

=  is the condition that allows fusion, for a proton 

with velocity rmsv , find an equation for cT in terms of physical constants 

only. 

1.0 

 

3b  Evaluate numerically the value of cT obtained in (3a).  0.5 

 

3c  Use the value of  cT  derived in (3b) to find the numerical value of the 

ratio RM /  expected for a star, using the formula derived in (2b). Verify 

that this value is quite similar to the ratio )(/)( SunRSunM  observed.  

0.5 

 

Indeed, stars in the so-called main sequence (fusing hydrogen) approximately do follow 

this ratio for a large range of masses. 

 

 



4. The mass/radius ratio of the stars. 

 

The previous agreement suggests that the quantum mechanical approach for estimating 

the temperature at the center of the Sun is correct.  

 

4a  Use the previous results to demonstrate that for any star fusing hydrogen, 

the ratio of mass M to radius R is the same and depends only on physical 

constants. Find the equation for the ratio RM / for stars fusing hydrogen.  

0.5 

 

5. The mass and radius of the smallest star. 

The result found in (4a) suggests that there could be stars of any mass as long as such a 

relationship is fulfilled; however, this is not true.  

The gas inside normal stars fusing hydrogen is known to behave approximately as an 

ideal gas. This means that ed , the typical separation between electrons is on the average 

larger that eλ , their typical de Broglie wavelength. If closer, the electrons would be in a 

so-called degenerate state and the stars would behave differently. Note the distinction in 
the ways we treat protons and electrons inside the star. For protons, their de Broglie 

waves should overlap closely as they collide in order to fuse, whereas for electrons their 

de Broglie waves should not overlap in order to remain as an ideal gas.   

The density in the stars increases with decreasing radius. Nevertheless, for this order-of-

magnitude estimate assume they are of uniform density. You may further use that 

ep mm >> . 

 

5a  Find an equation for en , the average electron number density inside the 

star. 

0.5 

 

5b  Find an equation for ed , the typical separation between electrons inside 

the star. 

0.5 

 

5c 
 Use the 

2/12

e
ed

λ≥  condition to write down an equation for the radius of 

the smallest normal star possible. Take the temperature at the center of the 

star as typical for all the stellar interior.  

1.5 

 



 

 

6. Fusing helium nuclei in older stars. 

 

As stars get older they will have fused most of the hydrogen in their cores into helium 

(He), so they are forced to start fusing helium into heavier elements in order to continue 

shining. A helium nucleus has two protons and two neutrons, so it has twice the charge 

and approximately four times the mass of a proton. We saw before that 
2/12

p

cd
λ

= is the 

condition for the protons to fuse.  

 

6a  Set the equivalent condition for helium nuclei and find )(Hevrms , the rms 

velocity of the helium nuclei and )(HeT , the temperature needed for 

helium fusion.  

0.5 

 

5d  Find the numerical value of the radius of the smallest normal star 

possible, both in meters and in units of solar radius.  

0.5 

5e  Find the numerical value of the mass of the smallest normal star possible, 

both in kg and in units of solar masses.  

0.5 



 

     

 

 

 

Answer Form 

Theoretical Problem No. 3 

Why are stars so large? 

 

1) A first, classic estimate of the temperature at the center of the stars. 

 

 

1a  

 

 

 

1.5 

 

          2) Finding that the previous temperature estimate is wrong.  

 

2a  

 

 

 

0.5 

 

 

2b  

  

0.5 

 

 

2c  

 

0.5 

 



 

     

 

 

 

2d  

 

0.5 

 

       3) A quantum mechanical estimate of the temperature at the center of the stars 

 

3a  

 

 

1.0 

 

 

3b  0.5 

 

3c  

 

0.5 

 

        4) The mass/radius ratio of the stars. 

 

4a  

 

0.5 

 



 

     

 

 

 

 

5) The mass and radius of the smallest star. 

 

5a  0.5 

 

5b  0.5 

 

5c  

 

 

1.5 

 

5d  

 

0.5 

 

 

5e  

 

0.5 

 



 

     

 

 

 

6) Fusing helium nuclei in older stars. 

 

6a  

 

0.5 

  



IPhO2009 

 

Experimental Competition 

                                                     Wednesday, July 15, 2009 

 

The experimental part of this Olympiad consists of two problems. In Problem 1 

the aim is to measure the wavelength of a diode laser, and in Problem 2 the goal is to 

measure the birefringence of a material called mica.  

 

Please read this first: 

1. The total time available is 5 hours for the experimental competition. 

2. Use only the pencils provided. 

3. Use only the front side of the paper sheets. 

4. Each problem is presented in the question form, marked with a Q in the upper 

left corner.  

5. You must summarize the answers you have obtained in the answer form, marked 

with an A in the upper left corner.  

6. In addition, there is a set of working sheets, marked with a W in the upper left 

corner, where you may write your calculations.  

7. In addition, write down the Problem Number (1 or 2) on the top of the answer 

forms and working sheets. 

8. Write on the working sheets of paper whatever you consider is required for the 

solution of the problem. Please use as little text as possible; express yourself 

primarily in equations, numbers, figures, and plots. 

9. For each problem and each of the forms (question form, answer form and 

working sheets), fill in the boxes at the top of each sheet of paper used by writing 

your student number (Student Number), the progressive page number (Page No.) 

and the total number of pages used (Total No. of Pages). If you use some 

working sheets of paper for notes that you do not wish to be marked, do not 

destroy it. Instead, mark it with a large X across the entire working sheet and do 

not include it in your numbering. 

10. At the end of the exam, arrange all sheets for each problem in the following 

order:  

• answer form (including graph paper for your plots). 

• used working sheets in order  

• the working sheets that you do not wish to be considered (marked with the 

large X)  

• unused working sheets 

• printed question form.  

Place the papers of each problem set inside the folder and leave everything on 

your desk. You are not allowed to take any sheets of paper out of the room nor 

any device of the experimental kit. 

11. The devices and materials for the experiments are contained in two separate 

packing layers within the box. The photographs of the sets are in the next page. 

Some devices are LABELED. For each experiment check that all the material is 

in the box. If during the experiments you find that any of the devices is not 

working properly, please ask for a replacement. 
 



 
 

 

 
 

 



DIODE LASER EQUIPMENT AND MOVABLE MIRROR. 

 

In both experimental setups you should need a diode laser, with its holder and 

power supply, and a mirror on a mechanical movable mount.  

 

Before you decide on which problem to work first, we suggest that you mount 

the laser and the mirror, as indicated in Figure 0. Use the following material: 

 

1) Wooden optical table. 

2) Diode laser equipment. Includes the diode laser, support post, "S" clamp and 

power supply box (LABEL A). See photograph for mounting instructions. DO NOT 

LOOK DIRECTLY INTO THE LASER BEAM. 

3) A mirror on a movable mount with two adjusting knobs and support post 

(LABEL B). See photograph for mounting instructions. CAUTION: mount the support 

post to the optical table without touching the mirror. Take off the paper cover after 

you have mounted the mirror. 
 

Mount the above devices as indicated in Figure 0. The alignment of the laser beam will 

be done later on. NOTE: Although we have provided you with optional Allen wrenches, 

everything can be left fingertight.  

 

 
 

 

Figure 0. Mounting the laser and the mirror. 
 

 

 

 

 

 

 

 

 



 

 

 
Diode laser, support post, "S" clamp and power supply box (LABEL A). 

 

 

                 
Mirror on a movable movable mount with two adjusting knobs and support post 

(LABEL B). 



 

EXPERIMENTAL PROBLEM 1 

 

DETERMINATION OF THE WAVELENGTH OF A DIODE LASER 

 

 MATERIAL 
 

 In addition to items 1), 2) and 3), you should use: 

 

4)  A lens mounted on a square post (LABEL C). 

5)  A razor blade in a slide holder to be placed in acrylic support, (LABEL D1) and 

mounted on sliding rail (LABEL D2). Use the screwdriver to tighten the support if 

necessary. See photograph for mounting instructions. 

6)  An observation screen with a caliper scale (1/20 mm) (LABEL E). 

7)  A magnifying glass (LABEL F). 

8)  30 cm ruler (LABEL G). 

9)  Caliper (LABEL H). 

10) Measuring tape (LABEL I). 

11) Calculator.  

12) White index cards, masking tape, stickers, scissors, triangle squares set. 

13) Pencils, paper, graph paper.  

 

 

 
 

Razor blade in a slide holder to be placed in acrylic support (LABEL D1) and mounted on 

sliding rail (LABEL D2). 

 



EXPERIMENT DESCRIPTION 

 

 
You are asked to determine a diode laser wavelength. The particular feature of this 

measurement is that no exact micrometer scales (such as prefabricated diffraction gratings) 

are used. The smallest lengths measured are in the millimetric range. The wavelength is 

determined using light diffraction on a sharp edge of a razor blade. 

 

 

  

                           
Figure 1.1 Typical interference fringe pattern. 

 

 

 

 

Once the laser beam (A) is reflected on the mirror (B), it must be made to pass through a 

lens (C), which has a focal length of a few centimeters. It can now be assumed that the focus 

is a light point source from which a spherical wave is emitted. After the lens, and along its 

path, the laser beam hits a sharp razor blade edge as an obstacle. This can be considered to 

be a light source from which a cylindrical wave is emitted. These two waves interfere with 

each other, in the forward direction, creating a diffractive pattern that can be observed on a 

screen. See Figure 1.1 with a photograph of a typical pattern. 

 

 

 

 

There are two important cases, see Figures 1.2 and 1.3.  

 

 



 
 

 

Figure 1.2. Case (I). The razor blade is before the focus of the lens. Figure is not at scale. B 

in this diagram is the edge of the blade and F is the focal point. 

 

 

 
 

Figure 1.3. Case (II). The razor blade is after the focus of the lens. Figure is not at scale. B 

in this diagram is the edge of the blade and F is the focal point.  

 

 

 

 

 

 



EXPERIMENTAL SETUP 
 

Task 1.1 Experimental setup (1.0 points). Design an experimental setup to obtain the 

above described interference patterns. The distance L0 from the focus to the screen should 

be much larger than the focal length.  

 

• Make a sketch of your experimental setup in the drawing of the optical table 

provided. Do this by writing the LABELS of the different devices on the drawing of 

the optical table. You can make additional simple drawings to help clarify your 

design.  

• You may align the laser beam by using one of the white index cards to follow the 

path.  

• Make a sketch of the laser beam path on the drawing of the optical table and write 

down the height h of the beam as measured from the optical table.  

 

WARNING: Ignore the larger circular pattern that may appear. This is an effect due 

to the laser diode itself.  

 

Spend some time familiarizing yourself with the setup. You should be able to see of the 

order of 10 or more vertical linear fringes on the screen. The readings are made using the 

positions of the dark fringes. You may use the magnifying glass to see more clearly the 

position of the fringes. The best way to observe the fringes is to look at the back side of 

the illuminated screen (E). Thus, the scale of the screen should face out of the optical table. 

If the alignment of the optical devices is correct, you should see both patterns (of Cases I 

and II) by simply sliding the blade (D1) through the rail (D2). 

 

THEORETICAL CONSIDERATIONS 
 

Refer to Figure 1.2  and 1.3 above. There are five basic lengths: 

 

 L0 : distance from the focus to the screen. 

 Lb  : distance from the razor blade to the screen, Case I. 

 La  : distance from the razor blade to the screen, Case II. 

 LR (n) : position of the n-th dark fringe for Case I.  

 LL (n) : position of the n-th dark fringe for Case II.  

 

The first dark fringe, for both Cases I and II, is the widest one and corresponds to n = 0. 

 

Your experimental setup must be such that LR (n) << L0,Lb  for Case I and LL (n) << L0,La  

for Case II. 

 

The phenomenon of wave interference is due to the difference in optical paths of a wave 

starting at the same point. Depending on their phase difference, the waves may cancel each 



other (destructive interference) giving rise to dark fringes; or the waves may add 

(constructive interference) yielding bright fringes. 

 

A detailed analysis of the interference of these waves gives rise to the following condition to 

obtain a dark fringe, for Case I:  

 

∆ I(n) = n + 5

8

 
 
 

 
 
 λ        with     n = 0, 1, 2, …    (1.1) 

 

and for Case II: 

 

∆ II(n) = n + 7

8

 
 
 

 
 
 λ      with     n = 0, 1, 2, …    (1.2) 

 

where λ  is the wavelength of the laser beam, and ∆ I and ∆ II are the optical path differences 

for each case. 

 

The difference in optical paths for Case I is, 

 

∆ I(n) = (BF + FP) − BP      for each     n = 0, 1, 2, …  (1.3) 

 

while for Case II is, 

 

∆ II(n) = (FB + BP) − FP        for each     n = 0, 1, 2, …  (1.4) 

 

 

Task 1.2 Expressions for optical paths differences (0.5 points). Assuming LR (n) << L0,Lb  

for Case I and LL (n) << L0,La  for Case II in equations (1.3) and (1.4) (make sure your setup 

satisfies these conditions), find approximated expressions for ∆ I(n)  and ∆ II(n)  in terms of 

L0,  Lb ,  La,  LR (n) and LL (n). You may find useful the approximation 1+ x( )r ≈1+ rx  if 

x <<1.  

 

The experimental difficulty with the above equations is that L0, LR (n)  and  LL (n)  cannot be 

accurately measured. The first one because it is not easy to find the position of the focus of 

the lens, and the two last ones because the origin from which they are defined may be very 

hard to find due to misalignments of your optical devices.  

 

To solve the difficulties with LR (n)  and LL (n) , first choose the zero (0) of the scale of  the 

screen (LABEL E) as the origin for all your measurements of  the fringes. Let 0Rl  and 0Ll  be 

the (unknown) positions from which LR (n)  and )(nLL  are defined. Let lR (n)  and lL (n)  be 

the positions of the fringes as measured from the origin (0) you chose. Therefore 

 

LR (n) = lR (n) − l0R        and        LL (n) = lL (n) − l0L    (1.5) 



 

 PERFORMING THE EXPERIMENT. DATA ANALYSIS. 
 

Task 1.3 Measuring the dark fringe positions and locations of the blade (3.25 points).  

 

• For both Case I and Case II, measure the positions of the dark fringes lR (n)  and 

lL (n)  as a function of the number fringe n. Write down your measurements in Table 

I; you should report no less than 8 measurements for each case.  

• Report also the positions of the blade Lb  and La , and indicate with its LABEL the 

intrument you used. 

• IMPORTANT SUGGESTION: For purposes of both simplification of analysis and 

better accuracy, measure directly the distance d = Lb − La  with a better accuracy than 

that of Lb  and La ; that is, do not calculate it from the measurements of Lb  and La . 

Indicate with its LABEL the instrument you used. 

 

Make sure that you include the uncertainty of your measurements.  

 

Task 1.4 Data analysis. (3.25 points). With all the previous information you should be able 

to find out the values of 0Rl  and 0Ll , and, of course, of the wavelength λ .  

 

• Devise a procedure to obtain those values. Write down the expressions and/or 

equations needed.  

• Include the analysis of the errors. You may use Table I or you can use another one to 

report your findings; make sure that you label clearly the contents of the columns of 

your tables.  

• Plot the variables analyzed. Use the graph paper provided. 

• Write down the values for 0Rl  and 0Ll , with uncertainties.  

 

Task 1.5 Calculating λ . Write down the calculated value for λ . Include its uncertainty and 

the analysis to obtain it. SUGGESTION:  In your formula for λ , wherever you find 

Lb − La( ) replace it by d  and use its measured value. (2 points).  

 

  

 



 Answer Form 

Experimental Problem No. 1 

Diode laser wavelength  

 

Task 1.1 Experimental setup. 

 

 

 
 

 

1.1 Sketch the laser path in drawing and write down the height h of the beam 

as measured from the table 

 

h =    

1.0 

 

Task 1.2 Expressions for optical path differences. 

 

1.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 



Task 1.3 Measuring the dark fringe positions and locations of the blade. Use 

additional sheets if necessary. 

TABLE I    

 

n lR  lL    

     

     

     

     

     

     

     

     

     

     

     

     

     

     

 

 



1.3 Report positions of the blade and label of instrument: 

 

 

 

 

Lb =                                                                 LABEL:  

 

La =                                                                 LABEL: 

 

d = Lb − La =                                                    LABEL: 

 

3.25 

 

 

 

Task 1.4 Performing a statistical and graphical analysis. 

 

1.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.25 



Task 1.5 Calculating λ . 

 

1.5  

Write down the value of λ . 

 

λ = 
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EXPERIMENTAL PROBLEM 2 

BIREFRINGENCE OF MICA 

 
In this experiment you will measure the birefringence of mica (a crystal widely used in 

polarizing optical components). 

 

MATERIAL 
 

 In addition to items 1), 2) and 3), you should use, 

 

14) Two polarizing films mounted in slide holders, each with an additional acrylic 

support (LABEL J). See photograph for mounting instructions. 

15)  A thin mica plate mounted in a plastic cylinder with a scale with no numbers; 

acrylic support for the cylinder (LABEL K). See photograph for mounting 

instructions. 

16)  Photodetector equipment. A photodetector in a plastic box, connectors and foam 

support. A multimeter to measure the voltage of the photodetector (LABEL L). 

See photograph for mounting  and connecting instructions. 

17) Calculator. 
18) White index cards, masking tape, stickers, scissors, triangle squares set. 

19) Pencils, paper, graph paper.  
 

                       
 

Polarizer mounted in slide holder with 

acrylic support (LABEL J). 

 

Thin mica plate mounted in cylinder with 

a scale with no numbers, and acrylic 

support (LABEL K).



 

 
A photodetector in a plastic box, connectors and foam support. A multimeter to measure the 

voltage of the photodetector (LABEL L). Set the connections as indicated. 

 

DESCRIPTION OF THE PHENOMENON 
 

Light is a transverse electromagnetic wave, with its electric field lying on a plane 

perpendicular to the propagation direction and oscillating in time as the light wave travels.  

 

If the direction of the electric field remains in time oscillating  along a single line, the wave 

is said to be linearly polarized, or simply, polarized. See Figure 2.1. 

 

 
 

Figure 2.1 A wave travelling in the y-direction and polarized in the z-direction. 

y 



 

A polarizing film (or simply, a polarizer) is a material with a privileged axis parallel to its 

surface, such that, transmitted light emerges polarized along the axis of the polarizer. Call 

(+) the privileged axis and (-) the perpendicular one.  

 

                    
Figure 2.2 Unpolarized light normally incident on a polarizer. Transmitted light is polarized 

in the (+) direction of the polarizer. 

 

Common transparent materials (such as window glass), transmit light with the same 

polarization as the incident one, because its index of refraction does not depend on the 

direction and/or polarization of the incident wave. Many crystals, including mica, however, 

are sensitive to the direction of the electric field of the wave. For propagation perpendicular 

to its surface, the mica sheet has two characteristic orthogonal axes, which we will call Axis 

1 and Axis 2. This leads to the phenomenon called birefringence. 

 
Figure 2.3  Thin slab of mica with its two axes, Axis 1 (red) and Axis 2 (green). 

 

Let us analyze two simple cases to exemplify the birefringence. Assume that a wave 

polarized in the vertical direction is normally incident on one of the surfaces of the thin 

slab of mica. 

 



Case 1) Axis 1 or Axis 2 is parallel to the polarization of the incident wave. The trasmitted 

wave passes without changing its polarization state, but the propagation is characterized as if 

the material had either an index of refraction n1 or n2 . See Figs. 2.4 and 2.5. 

 
 

Figure 2.4 Axis 1 is parallel to polarization of incident wave. Index of refraction is n1. 

 
Figure 2.5 Axis 2 is parallel to polarization of incident wave. Index of refraction is n2 . 

 

Case 2) Axis 1 makes an angle θ  with the direction of polarization of the incident wave. 
The transmitted light has a more complicated polarization state. This wave, however, can be 

seen as the superposition of two waves with different phases, one that has polarization 

parallel to the polarization of the incident wave (i.e. "vertical") and another that has 

polarization perpendicular to the polarization of the incident wave (i.e. "horizontal").  

 



 
Figure 2.6 Axis 1 makes and angle θ  with polarization of incident wave 
Call IP  the intensity of the wave transmitted parallel to the polarization of the incident 

wave, and IO  the intensity of the wave transmitted perpendicular to polarization of the 

incident wave. These intensities depend on the angle θ , on the wavelength λ  of the light 
source, on the thickness L  of the thin plate, and on the absolute value of the difference of 
the refractive indices, n1 − n2 . This last quantity is called the birefringence of the material. 

The measurement of this quantity is the goal of this problem. Together with polarizers, 

birefringent materials are useful for the control of light polarization states. 

 

We point out here that the photodetector measures the intensity of the light incident on it, 

independent of its polarization.  

 
The dependence of IP (θ)  and IO (θ)  on the angle θ  is complicated due to other effects not 

considered, such as the absorption of the incident radiation by the mica. One can obtain, 

however, approximated but very simple expressions for the normalized intensities I P (θ)  and 
I O (θ) , defined as, 

 

I P (θ) = IP (θ)
IP (θ) + IO (θ)

  (2.1)  

 

and 

 

I O (θ) = IO (θ)
IP (θ) + IO (θ)

  (2.2)  

It can be shown that the normalized intensities are (approximately) given by, 

 

I P (θ) =1− 1
2

1− cos∆φ( )sin2(2θ)  (2.3) 

and 

 



I O (θ) = 1
2

1− cos∆φ( )sin2(2θ)   (2.4) 

 

where ∆φ  is the difference of phases of the parallel and perpendicular transmitted waves. 

This quantity is given by, 

 

∆φ = 2πL

λ
n1 − n2   (2.5) 

 

where L  is the thickness of the thin plate of mica, λ  the wavelength of the incident 
radiation and n1 − n2  the birefringence. 

 
 

 

EXPERIMENTAL SETUP 
 

Task 2.1 Experimental setup for measuring intensities. Design an experimental setup for 

measuring the intensities IP  and IO  of the transmitted wave, as a function of the angle θ  of 
any of the optical axes, as shown in Fig. 2.6. Do this by writing the LABELS of the different 

devices on the drawing of the optical table. Use the convention (+) and (-) for the direction 

of the polarizers. You can make additional simple drawings to help clarify your design.  

 

Task 2.1 a) Setup for IP  (0.5 points). 

Task 2.1 b) Setup for IO  (0.5 points). 

 

Laser beam alignment. Align the laser beam in such a way that it is parallel to the table and 

is incident on the center of the cylinder holding the mica. You may align by using one the 

white index cards to follow the path. Small adjustments can be made with the movable 

mirror. 

 

Photodetector and the multimeter. The photodetector produces a voltage as light impinges 

on it. Measure this voltage with the multimeter provided.  The voltage produced is linearly 

proportional to the intensity of the light. Thus, report the intensities as the voltage produced 

by the photodetector. Without any laser beam incident on the photodetector, you can 

measure the background light intensity of the detector. This should be less than 1 mV. Do 

not correct for this background when you perform the intensity measurements. 

 

WARNING: The laser beam is partially polarized but it is not known in which direction. 

Thus, to obtain polarized light with good intensity readings, place a polarizer with either its 

(+) or (–) axes vertically in such a way that you obtain the maximum transmitted intensity in 

the absence of any other optical device. 

 



MEASURING INTENSITIES 
 

Task 2.2 The scale for angle settings. The cylinder holding the mica has a regular 

graduation for settings of the angles. Write down the value in degrees of the smallest interval 

(i.e. between two black consecutive lines). (0.25 points).  

 

Finding (approximately) the zero of θ  and/or the location of the mica axes. To facilitate 

the analysis, it is very important that you find the appropriate zero of the angles. We suggest 

that, first, you identify the location of one of the mica axes, and call it Axis 1. It is almost 

sure that this position will not coincide with a graduation line on the cylinder.  Thus, 

consider the nearest graduation line in the mica cylinder as the provisional origin for the 

angles. Call θ  the angles measured from such an origin. Below you will be asked to provide 

a more accurate location of the zero of θ . 

 

Task 2.3 Measuring IP  and IO . Measure the intensities IP  and IO  for as many angles θ  as 
you consider necessary. Report your measurements in Table I. Try to make the 

measurements for IP  and IO  for the same setting of the cylinder with the mica, that is, for a 

fixed angle θ . (3.0 points). 
 

Task 2.4 Finding an appropriate zero for θ . The location of Axis 1 defines the zero of the 

angle θ . As mentioned above, it is mostly sure that the location of Axis 1 does not coincide 

with a graduation line on the mica cylinder. To find the zero of the angles, you may proceed 

either graphically or numerically. Recognize that the relationship near a maximum or a 

minimum may be approximated by a parabola where: 

 

I(θ ) ≈ aθ 2 + bθ + c  
 

and the minimum or maximum of the parabola is given by, 

            θ m = − b

2a
. 

 

Either of the above choices gives rise to a shift δθ  of all your values of θ  given in 
Table I of Task 2.3, such that they can now be written as angles θ  from the appropriate zero, 

θ = θ + δθ . Write down the value of the shift δθ  in degrees. (1.0 points). 
  

DATA ANALYSIS. 

 

Task 2.5 Choosing the appropriate variables. Choose I P (θ)  or I O (θ)  to make an analysis 

to find the difference of phases ∆φ . Identify the variables that you will use. (0.5 point). 

 

 

 

 



Task 2.6 Data analysis and the phase difference.  

 

• Use Table II to write down the values of the variables needed for their analysis. 

Make sure that you use the corrected values for the angles θ . Include uncertainties. 
Use graph paper to plot your variables. (1.0 points). 

 

• Perform an analysis of the data needed to obtain the phase difference ∆φ . Report 

your results including uncertainties. Write down any equations or formulas used in 

the analysis. Plot your results. (1.75 points). 

 

• Calculate the value of the phase difference∆φ  in radians, including its uncertainty. 

Find the value of the phase difference in the interval 0,π[ ]. (0.5 points). 
 

Task 2.7 Calculating the birefringence n1 − n2 . You may note that if you add 2Nπ  to the 

phase difference ∆φ , with N any integer, or if you change the sign of the phase, the values 

of the intensities are unchanged. However, the value of the birefringence n1 − n2  would 

change. Thus, to use the value ∆φ  found in Task 2.6 to correctly calculate the birefringence, 

you must consider the following: 

 

∆φ = 2πL

λ
n1 − n2         if        L < 82 ×10−6  m 

or 

2π − ∆φ = 2πL

λ
n1 − n2         if      L > 82 ×10−6  m  

 

 

where the value L  of the thickness of the slab of mica you used is written on the cylinder 

holding it. This number is given in micrometers (1 micrometer = 10
-6
 m). Assign 1×10−6m 

as the uncertainty for L . For the laser wavelength, you may use the value you found in 

Problem 1 or the average value between 620 ×10−9 m and 750 ×10−9  m, the reported range 

for red in the visible spectrum. Write down the values of L  and λ  as well as the 
birefringence n1 − n2  with its uncertainty. Include the formulas that you used to calculate 

the uncertainties. (1.0 points). 



 

 

 

Answer Form 

Experimental Problem No. 2 

Birefringence of mica 

Task 2.1 a) Experimental setup for IP . (0.5 points) 

 

  

 

 

 

Task 2.1 b) Experimental setup for IO . (0.5 points) 

 

 
 

 

 

 

2.1  1.0 

 

 

 

 



 

 

 

Task 2.2 The scale for angles. 
 

2.2 The angle between two consecutive black lines is 

 
θint =  

0.25 

 

 

Tasks 2.3 Measuring IP  and IO  .Use additional sheets if necessary. 

 

TABLE I 

θ  (degrees) IP  IO  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   



 

 

 

 

 

2.3  3.0 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   



 

 

 

Task 2.4 Finding an appropriate zero for θ . 

 

2.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0 

 

 

 

 

 



 

 

 

Task 2.5 Choosing the appropriate variables. 

 

 

2.5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 

 

 

 



 

 

 

Task 2.6 Statistical analysis and the phase difference. 

 

 

2.6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.25 

 

 



 

 

 

2.6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

2.6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 

 

 

 

 



 

 

 

TABLE II  

(Use additional sheets if necessary) 

θ  (degrees)   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 



 

 

 

Task 2.7 Calculating the birefringence n1 − n2 . 

 

2.7 Write down the width of the plate of mica you used, 

 

L = 
 

Write down the wavelength you use, 

 

λ = 
  

Calculate the birefringence 

 

n1 − n2 = 
 

Write down the formulas you used for the calculation of the uncertainty of 

the birefringence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0 

 



THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

SOLUTIONS 

 

     1.  Conservation of Angular Momentum 
 

1a 
1111 MMEE IIL    0.2 

 

1b 
2222  ME IIL   0.2 

 

 

1c 
122111 LIII MMMEE    0.3 

 

2. Final Separation and Angular Frequency of the Earth-Moon System. 

 

 

2a 
EMGD 3

2

2

2  0.2 

 

 

2b 

2

2

1
2

ME MMG

L
D   

0.5 

 

 

2c 

3

1

322

2
L

MMG ME  
0.5 

 

2d The moment of inertia of the Earth will be the addition of the moment of 

inertia of a sphere with radius or  and density o  and of a sphere with 

radius ir  and density oi   : 

)]([
3

4

5

2 55

oiiooE rrI 


 . 

 

0.5 
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kg m
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2f 34

1111 104.3  MMEE IIL   kg m
2 

s
-1 0.2 

 



 

2g 8

2 104.5 D m, that is  12 4.1 DD   

 

0.3 

 

2h 6

2 106.1  s
-1

, that is, a period of 46 days. 
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2i Since 32

2 103.1 EI  kg m
2 

s
-1 

and 34

22 104.3 MI  kg m
2 

s
-1 

, the 

approximation is justified since the final angular momentum of the Earth 

is 1/260 of that of the Moon. 
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3. How much is the Moon receding per year? 

 

 

3a Using the law of cosines, the magnitude of the force produced by the mass 

m closest to the Moon will be: 

)cos(2 1
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M
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rDrD

MmG
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3b Using the law of cosines, the magnitude of the force produced by the mass 

m farthest to the Moon will be: 

)cos(2 1
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3c Using the law of sines, the torque will be 
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3d Using the law of sines, the torque will be 
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3g Since EM MGD 3

1

2

1 , we have that the angular momentum of the Moon is 

  2/1

1

2/1

3
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2

111 EM
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MMM MGDM
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The torque will be: 
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That for 7101.3 t s = 1 year, gives 034.01 D m. 

This is the yearly increase in the Earth-Moon distance. 
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3h We now use that 

t

I EE




 1

  

from where we get  

E

E
I

t



 1  

that for 7101.3 t  s = 1 year gives 
14

1 106.1  E s
-1

.  

If EP is the period of time considered, we have that: 

E

E

E

E

P

P



 1



 

since 41064.81  dayPE s, we get 
5109.1  EP s. 

This is the amount of time that the day lengthens in a year.  
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4. Where is the energy going? 

 

 

4a The present total (rotational plus gravitational) energy of the system is: 

1

2

1

2

1
2

1

2

1

D

MMG
IIE ME

MMEE   . 

Using that  

EM MGD 3

1

2

1 , we get 
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4b 
12

1

11
2

1
D

D

MMG
IE ME

EEE   , that gives 

19100.9 E J 

0.4 

 

4c 
waterowater hrM   24 kg = 17106.2  kg. 0.2 

 

 

4d 191 103.91.036525.0   daysdaymMgE waterwater J. Then, the 

two energy estimates are comparable. 
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THEORETICAL PROBLEM 2 

 

SOLUTION 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The key to this problem is the Doppler effect (to be precise, the longitudinal Doppler 

effect): The frequency of a monochromatic beam of light detected by an observer 

depends on its state of motion relative to the emitter, i.e. the observed frequency is 

 














c

v

cv

cv
1

/1

/1



 

 

where 



v  is the relative speed of emitter and observer and 



  the frequency of the 

emitter. The upper-lower signs correspond, respectively, when source and observer 

move towards or away from each other. The second equality holds in the limit of low 

velocities (non-relativistic limit). 

 

The frequency of the laser in the lab is 



L ; 



0 is the transition frequency of the atom; 

the atom moves with speed 



v  towards the incident direction of the laser: 

 

It is important to point out that the results must be given to first significant order in 



v /c  

or mvq / . 

 

PART I: BASICS OF LASER COOLING 

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  











c

v
L 10   

0.2 

 

1b Write down the momentum 



pat  of the atom after absorption, as seen in the 

laboratory 

c
mvqpp L

at


   

0.2 

 

1c Write down the energy 



at of the atom after absorption, as seen in the 

laboratory 

 

L
at

at

mv

m

p
  

22

2

0

2
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2. Spontaneous emission in the 



x  direction. 

 

 

First, one calculates the energy of the emitted photon, as seen in the lab reference frame. 

One must be careful to keep the correct order; this is because the velocity of the atom 

changes after the absorption, however, this is second order correction for the emitted 

frequency: 
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ph










 
         with 10  

thus, 

L

L

L

L

ph

c

v

mv

q

mc

q

mc

q

c

v

c

v

mc

q

c

v














































































     

1     

1     

 11     

 10









 

 

2a Write down the energy of the emitted photon, 



ph, after the emission 

process in the 



x  direction, as seen in the laboratory.  

Lph    

0.2 

 

2b Write down the momentum of the emitted photon 



pph , after the emission 

process in the 



x  direction, as seen in the laboratory. 

cp Lph /  

0.2 

 

Use conservation of momentum (see 1b): 

  

qppp phat   

 

2c Write down the momentum of the atom 



pat , after the emission process in 

the 



x  direction, as seen in the laboratory. 



pat  p mv 

0.2 

 

 

2d Write down the energy of the atom 



at, after the emission process in the 



x  direction, as seen in the laboratory. 

 



at 
p2

2m

mv2

2
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3. Spontaneous emission in the 



x  direction. 

 

The same as in the previous questions, keeping the right order 

 

3a Write down the energy of the emitted photon, 



ph, after the emission 

process in the x  direction, as seen in the laboratory. 
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LLph 211110    
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3b Write down the momentum of the emitted photon 



pph , after the emission 

process in the x  direction, as seen in the laboratory. 











c

v

c
p L

ph 21
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3c Write down the momentum of the atom 



pat , after the emission process in 

the x direction, as seen in the laboratory. 

c
mv

c

v

c
qppqpp LL

phat

 
 221 
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3d Write down the energy of the atom 



at, after the emission process in the 

x  direction, as seen in the laboratory. 











mv

qmv

m

pat
at


21

22

22
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4. Average emission after absorption. 

 

The spontaneous emission processes occur with equal probabilities in both directions. 

 

4a Write down the average energy of an emitted photon, 



ph, after the 

emission process. 









 

c

v
Lphphph 1

2

1

2

1
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4b Write down the average momentum of an emitted photon 



pph , after the 

emission process. 

order second    0
2

1

2

1
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4c Write down the average energy of the atom 



at, after the emission process. 









 

mv

qmv
atatat


1

22

1

2

1 2
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4d Write down the average momentum of the atom 



pat , after the emission 

process. 

c
pppp L

atatat


 

2

1

2
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5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser and the 

atom. 

 

5a Write down the average energy change 



 of the atom after a complete 

one-photon absorption-emission process. 

c

v
qv L

before

at

after

at  
2

1

2

1
  

0.2 

 

 

5b Write down the average momentum change 



p  of the atom after a 

complete one-photon absorption-emission process. 

c
qppp Lbefore

at

after

at


   

0.2 

 

6. Energy and momentum transfer by a laser beam along the 



x  direction. 

 

 

6a Write down the average energy change 



 of the atom after a complete 

one-photon absorption-emission process. 

c

v
qv L

before

at

after

at   
2

1

2

1
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6b Write down the average momentum change 



p  of the atom after a 

complete one-photon absorption-emission process. 

c
qppp Lbefore

at

after

at
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PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

 

Two counterpropagating laser beams with the same but arbitrary frequency 



L  are 

incident on a beam of 



N  atoms that move in the 



x  direction with (average) velocity 



v . 



7. Force on the atomic beam by the lasers. 

 

On the average, the fraction of atoms found in the excited state is given by, 

 



Pexc 
Nexc

N


R

2

0 L 
2

2

4
 2R

2

 

 

where 



0 is the resonance frequency of the atoms and 



R  is the so-called Rabi 

frequency; 



R

2  is proportional to the intensity of the laser beam. The lifetime of the 

excited energy level of the atom is



1. 

 

The force is calculated as the number of absorption-emission cycles, times the 

momentum exchange in each event, divided by the time of each event. CAREFUL! 

One must take into account the Doppler shift of each laser, as seen by the atoms: 

 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You must assume that qmv  . 

qN
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8. Low velocity limit. 

 

Assume now the velocity to be small enough in order to expand the force to first order 

in 



v . 

 

8a Find an expression for the force found in Question (7a), in this limit. 
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8b Write down the condition to obtain a positive force (speeding up the 

atom).   



0 L  

0.25 

 

 

8c Write down the condition to obtain a zero force. 



0 L  
0.25 

 

 



8d Write down the condition to obtain a negative force (slowing down the 

atom).  



0 L  … this is the famous rule “tune below resonance for cooling 

down” 

0.25 

 

 

8e Consider now that the atoms are moving with a velocity v  (in the x  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 



0 L  … i.e. independent of the direction motion of the atom. 

0.25 

 

 

9. Optical molasses 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, 0t , the gas of atoms has velocity 0v .  

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a time .  



F  v m
dv

dt
 v

 v  v0e
t /m

      



 can be read from (8a) 
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9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperature



T0 . Find the temperature 



T  after the laser beams have been 

on for a time



 . 

 

Recalling that 



1

2
mv2 

1

2
kT in 1 dimension, and using 



v  as the average 

thermal velocity in the equation of (9a), we can write down  



T T0e
2t /m  
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Answers 

Theoretical Problem No. 3 

 

Why are stars so large? 

1) A first, classic estimate of the temperature at the center of the stars. 

 

1a We equate the initial kinetic energy of the two protons to the electric 

potential energy at the distance of closest approach: 

c

rmsp
d

q
vm

0

2
2

4
)

2

1
(2


 ; and since 

2

2

1

2

3
rmspc vmTk  , we obtain 

9
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kd

q
T

c

c


K 
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          2) Finding that the previous temperature estimate is wrong.  

 

2a Since we have that 

2r

MG

r

P rr 



, making the assumptions given above, we obtain that: 

R

MG
P c

c


 . Now, the pressure of an ideal gas is 

p

cc
c

m

Tk
P

2
 , where k  is Boltzmann´s constant, cT  is the central 

temperature of the star, and pm  is the proton mass. The factor of 2 in the 

previous equation appears because we have two particles (one proton and 

one electron) per proton mass and that both contribute equally to the 

pressure. Equating the two previous equations, we finally obtain that: 

Rk

mMG
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c
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2b From section (2a) we have that: 

p

c

mG

Tk

R

M 2
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2c From section (2b) we have that, for 9105.5 cT K:  

 24104.1
2


p

c

mG

Tk

R

M
 kg m

-1
. 
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2d For the Sun we have that: 

21109.2
)(

)(


SunR

SunM
 kg m

-1
 , that is, three orders of magnitude smaller. 
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       3) A quantum mechanical estimate of the temperature at the center of the stars 

 

3a We have that 
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p
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h
 , and since 

2
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3b 
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3c From section (2b) we have that, for 6107.9 cT K:
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 kg m
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 ; while for the Sun we have that: 
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        4) The mass/radius ratio of the stars. 

 

4a Taking into account that 0.5 
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 , and that 
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5) The mass and radius of the smallest star. 
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5c We assume that 
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5d 
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5e The mass to radius ratio is: 
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, from where we derive that 

29107.1 M  kg = 0.09 )(SunM  
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6) Fusing helium nuclei in older stars. 

 

6a For helium we have that 
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; from where we get 
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We now use: 
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This value is of the order of magnitude of the estimates of stellar models. 
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 Answer Form 

Experimental Problem No. 1 

Diode laser wavelength  

 

Task 1.1 Experimental setup. 

 

 
 

 

           (0.75) 

 

 

1.1 Sketch the laser path in drawing of Task 1.1 and Write down the height h 

of the beam as measured from the table 

 

h ± ∆h = 5.0 ± 0.05( )×10−2  m   (0.25) 

1.0 



 
 

 
 

 

Experimental setup for measurement of diode laser wavelength 

Task 1.2 Expressions for optical path differences. 

 



1.2 The path differences are 

 

Case I: (0.25) 

 

∆ I(n) = (BF + FP) − BP = (Lb − L0) + L0
2 + LR

2 (n) − Lb
2 + LR

2 (n)

        = (Lb − L0) + L0 1+ LR
2 (n)
L0

2 − Lb 1+ LR
2 (n)
Lb

2

using   1+ x ≈1+ 1
2

x
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2
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 − Lb 1+ 1
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2

 

 
 

 

 
 

⇒    ∆ I(n) ≈ 1
2
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2 (n)

1
L0

− 1
Lb

 

 
 

 

 
 

 

 

Case II: (0.25) 

 

∆ II(n) = (FB + BP) − FP = (L0 − La ) + La
2 + LL

2 (n) − L0
2 + LL

2 (n)

        ≈ (L0 − La ) + La 1+ LL
2 (n)
La

2
− L0 1+ LL

2 (n)
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2

using   1+ x ≈1+ 1

2
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 − L0 1+ 1

2

LL
2 (n)

L0
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⇒    ∆ II(n) ≈ 1
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2 (n)

1
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− 1
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Task 1.3 Measuring the dark fringe positions and locations of the blade. Use 

additional sheets if necessary. 

TABLE I    

 

 

n lR (n) ± 0.1( )×10−3  m lL (n) ± 0.1( )×10−3  m  xR  xL  

0 -7.5 1.1 0.791 0.935 

1 -10.1 3.7 1.275 1.369 

2 -12.4 6.4 1.620 1.696 

3 -14.0 8.2 1.903 1.968 

4 -15.6 10.0 2.151 2.208 

5 -17.2 11.4 2.372 2.424 

6 -18.4 12.2 2.574 2.622 

7 -19.7  2.761  

8 -20.7  2.937  

9 -22.0  3.102  

10 -23.0  3.260  

11 -24.1  3.410  

     

     

     

 

 



 

1.3 Report positions of the blade and their difference with higher precision: 

 

 

Lb ± ∆Lb = (653±1) ×10−3  m   (0.25)  LABEL (I) (measuring tape) 

 

La ± ∆La = (628 ±1) ×10−3  m  (0.25) LABEL (I) (measuring tape) 

 

d = Lb − La = 24.6 ± 0.1( )×10−3   m  (0.25) LABEL (H) (caliper) 
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Task 1.4 Performing a statistical and graphical analysis. 

 



1.4 A procedure: 

 

From the condition of dark fringes and Task 1.2, we have 
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Using (1.5), LR (n) = lR (n) − l0R    and    LL (n) = lL (n) − l0Lwe can rewrite 
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and 
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 λ

⇒   lL (n) = 2LaL0

L0 − La

λ n + 7
8
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These can be cast as equations of a straight line, y = mx + b. 
 

Case I:  

yR = lR         xR = n + 5
8
         mR = 2LbL0

Lb − L0

λ         bR = l0R  

 

Case II:  

yL = lL         xL = n + 7
8
         mL = 2LaL0

L0 − La

λ         bL = l0L  

 

                                                                

 

Perform least squares analysis of above equations. In Table I, we write 

down the values xR  and xL . 

 

One finds: 

 

mR ± ∆mR = (−6.39 ± 0.07) ×10−3  m 

 

3.25 



mL ± ∆mL = (6.83 ± 0.19) ×10−3  m 

 

and (values of  
0Rl  and 

0Ll ) 

 

l0R ± ∆l0R = bR ± ∆bR = −2.06 ± 0.17( )×10−3  m 

 

l0L ± ∆l0L = bL ± ∆bL = −5.33 ± 0.36( )×10−3  m  

 

The equations used in the least squares analysis: 

 

m =
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where 

∆ = N xn
2 −

n=1

N

∑ xn

n=1

N

∑
 

 
 

 

 
 

2

 

 

with N  the number of data points. 

The uncertainty is calculated as 

 

∆m( )2 = N
σ 2

∆
   ,   ∆b( )2 = σ 2

∆
xn

2

n=1

N

∑       with, 

 

σ 2 = 1
N − 2

yn − b − mxn( )2

n=1

N

∑  

                                                                  

REFERENCE: P.R. Bevington, Data Reduction and Error Analysis for 

the Physical Sciences, McGraw-Hill, 1969. 

 

 

 

Task 1.5 Calculating λ . 
 

1.5 From any slope and the value of L0 one finds, 

 

λ = Lb − La

2LaLb

mR
2 mL

2

mR
2 + mL

2
 

 

Using the suggestion to replace d = Lb − La , we can write 

 

2.0 



λ = d

2LaLb

mR
2 mL

2

mR
2 + mL

2
 

 

 

λ ± ∆λ = (663± 25) ×10−9  m 

 

The uncertainty may range from 15 to 30 nanometers. 

 

A precise measurement of the wavelength is λ ± ∆λ = (655 ± 1) ×10−9  m . 

 

The formula for the uncertainty, 

 

∆λ = ∂λ
∂d
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one finds, 

 

∂λ
∂d

= λ
d
 ,  

∂λ
∂Lb

= λ
Lb

  , 
∂λ
∂La

= λ
La

   and    
∂λ

∂mR

= 2mL
2

mR

λ
mL

2 + mR
2
 

 

and analogously for the other slope. 

 

One can calculate directly these quantities. However, one may note that 

the errors due to La , Lb  and d are negligible. Moreover, mR
2 ≈ mL

2    and    

La ≈ Lb  . This implies, 

 

∂λ
∂mR

≈ λ
mR

≈ ∂λ
∂mL

 . Thus, 

 

∆λ ≈ 2
λ

mL

∆mL ≈ 25 ×10−9( )   m  

 



Answer Form 

Experimental Problem No. 2 

Birefringence of mica 

Task 2.1 a) Experimental setup for IP . (0.5 points) 

  
 

 

Task 2.1 b) Experimental setup for IO . (0.5 points) 

 
 

2.1  1.0 

 

 



 
 

 

 

Experimental setup for measurement of mica birefringence 

 

 

Task 2.2 The scale for angles. 
 

2.2 The angle between two consecutive black lines is 

 

θint = 3.6 degrees because there are 100 lines. 

0.25 

 

 

 

 

Tasks 2.3 Measuring IP  and IO  .Use additional sheets if necessary. 

 

TABLE I (3 points) 

θ  (degrees) IP ±1( )×10−3   V IO ±1( )×10−3   V 

-3.6 46.4 1.1 

0 48.1 0.2 

3.6 47.0 0.6 

7.2 46.0 2.0 

10.8 42.3 4.9 

14.4 38.2 9.0 

18.0 33.9 12.5 



 

 

 

 

21.6 27.7 17.9 

25.2 23.4 22.0 

28.8 17.8 27.0 

32.4 12.5 31.7 

36.0 8.8 34.8 

39.6 5.2 38.0 

43.2 3.6 39.4 

46.8 3.2 39.6 

50.4 4.5 38.7 

54.0 6.9 36.6 

57.6 10.3 33.6 

61.2 14.7 29.4 

64.8 20.1 24.7 

68.4 25.4 19.7 

72.0 30.5 14.7 

75.6 36.6 10.2 

79.2 40.7 6.1 

82.8 44.3 3.2 

86.4 46.9 1.0 

90.0 47.8 0.2 

93.6 47.0 0.4 

97.2 45.7 2.0 



 
 

Parallel IP  and perpendicular IO  intensities vs angle θ . 
 

 

 

GRAPH NOT REQUIRED! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task 2.4 Finding an appropriate zero for θ . 

 



2.4 a) Graphical analysis  

 

The value for the shift is δθ = −1.0 degrees.        
 

Add the graph paper with the analysis of this Task. 

 

b) Numerical analysis 

 

From Table I choose the first three points of θ  and IO (θ ) : 
(intensities in millivolts) 

 

x1,y1( )= −3.6,1.1( )      x2, y2( )= 0,0.2( )        x3, y3( )= 3.6,0.6( ) 
 

We want to fit y = ax 2 + bx + c . This gives three equations: 

 

1.1 = a(3.6)2 − b(3.6) + c

0.2 = c

0.6 = a(3.6)2 + b(3.6) + c

second in first ⇒    b = −0.9 + a(3.6)2

3.6
 

in third   ⇒    0.6 = a (3.6)2 + (3.6)2( )− 0.9 + 0.2

⇒   a = 0.050         b = −0.069

 

 

The minimum of the parabola is at: 

 

θ min = − b

2a
≈ 0.7  degrees 

 

Therefore, δθ = −0.7  degrees. 
 

 

 

 

 

 

 

 

 

1.0 

 

 

 

 



 
 

 

 

 

 

 

Task 2.5 Choosing the appropriate variables. 

 

 



2.5 Equation (2.4) for the perpendicular intensity is 

I O (θ) = 1
2

1− cos∆φ( )sin2(2θ)
 

 

This can be cast as a straight line y = mx + b, with 

 

y = I O (θ)    ,  x = sin2(2θ)  and m = 1

2
1− cos∆φ( ) 

from which the phase may be obtained. 

 

 

NOTE: This is not the only way to obtain the phase difference. One may, 

for instance, analyze the 4 maxima of either I P (θ)  or I O (θ) . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 

 

 

 

 

 

 

 

 

 

 

Task 2.6 Statistical analysis and the phase difference. 

 

 

2.6 To perform the statistical analysis, we shall then use 

 

y = I O (θ)    and  x = sin2(2θ)  . 
 

1.0 



Since for θ : 0 → π
4

,  x : 0 →1, we use only 12 pairs of data points to 

cover this range, as given in Table II. 

 

x may be left without uncertainty since it is a setting. The uncertainty in y 

may be calculated as 

∆I O = ∂I O
∂IO

 

 
 

 

 
 

2

∆IO
2 + ∂I P

∂IP

 

 
 

 

 
 

2

∆IP
2  and one gets 

 

∆I O =
IO

2 + IP
2

(IO + IP )2 ∆IO ≈ 0.018, approximately  the same for all values. 

 

 

 

TABLE II 

θ  (degrees) x = sin2(2θ) y = I O ± 0.018  

2.9 0.010 0.013 

6.5 0.051 0.042 

10.1 0.119 0.104 

13.7 0.212 0.191 

17.3 0.322 0.269 

20.9 0.444 0.392 

24.5 0.569 0.484 

28.1 0.690 0.603 

31.7 0.799 0.717 

35.3 0.890 0.798 

38.9 0.955 0.880 

42.5 0.992 0.916 

 

 

 

 

 

2.6 We now perform a least square analysis for the variables y vs x in Table 

II. The slope and y-intercept are: 

 

m ± ∆m = 0.913± 0.012 
 

b ± ∆b = −0.010 ± 0.008                        
 

The formulas for this analysis are: 

1.75 



m =
N xn yn −

n=1

N

∑ xn

n=1

N

∑ yn′
n′=1

N

∑

∆
 

b =
xn

2 yn′
n ′=1

N

∑ −
n=1

N

∑ xn

n=1

N

∑ xn′ yn′
n′=1

N

∑

∆
 

 

where 

∆ = N xn
2 −

n=1

N

∑ xn

n=1

N

∑
 

 
 

 

 
 

2

 

 

with N  the number of data points. 

The uncertainty is calculated as 

 

∆m( )2 = N
σ 2

∆
   ,   ∆b( )2 = σ 2

∆
xn

2

n=1

N

∑       with, 

 

σ 2 = 1

N − 2
yn − b − mxn( )2

n=1

N

∑  

 

with N = 12 in this example.  

 

Include the accompanying plot or plots.    
 

 

 

 

 

 

 

 

 

 

 



 
2.6 Calculate the value of the phase ∆φ  in radians in the interval 0,π[ ]. 

From the slope m = 1

2
1− cos∆φ( ), one finds 

∆φ ± ∆(∆φ) = 2.54 ± 0.04        

 

Write down the formulas for the calculation of the uncertainty. 

 

We see that, 

 

0.5 



∆m = ∂m

∂∆φ
∆(∆φ) = 1

2
sin(∆φ)∆(∆φ) , therefore,  ∆(∆φ) = 2∆m

sin(∆φ)
 . 

 

 

 

 

 

Task 2.7 Calculating the birefringence n1 − n2 . 

 

2.7 Write down the width of the slab of mica you used, 

 

L ± ∆L = (100 ± 1) ×10−6  m  

 

Write down the wavelength you use, 

 

λ ± ∆λ = (663± 25) ×10−9  m (from Problem 1) 

 

Calculate the birefringence 

 

n1 − n2 ± ∆ n1 − n2 = (3.94 ± 0.16) ×10−3 

 

 

The birefringence is between 0.003 and 0.005. Nominal value 0.004 

 

Write down the formulas you used for the calculation of the uncertainty of 

the birefringence. 

 

Since the width L > 82 micrometers, we use 

 

2π − ∆φ = 2πL

λ
n1 − n2  

 

The error is 

 

∆ n1 − n2 =
∂ n1 − n2

∂λ
 

 
 

 

 
 

2

∆λ2 +
∂ n1 − n2

∂L

 

 
 

 

 
 

2
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2
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2
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L

 

 
 

 

 
 

2

∆L2 + λ
2πL

 
 
 

 
 
 

2
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1.0 

 

 

 

 



 Since the data may appear somewhat disperse and/or the errors in the 

intensities may be large, a graphical analysis may be performed. 

 

In the accompanying plot, it is exemplified a simple graphical analysis: 

first the main slope is found, then, using the largest deviations one can 

find two extreme slopes. 

 

The final result is, 

 

m = 0.91± 0.08           and           b = −0.01± 0.04  
 

The calculation of the birefringence and its uncertainty follows as before. 

One now finds, 

 

n1 − n2 ± ∆ n1 − n2 = (3.94 ± 0.45) ×10−3. 

 

A larger (more realistic) error. 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 



 
 

Comparison of experimental data (normalized intensities I P  and I O) with fitting 

(equations (2.3) and (2.4)) using the calculated value of the phase difference ∆φ . 

 

 

 

GRAPH NOT REQUIRED! 
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1. Image of a charge in a metallic object 

Introduction – Method of images 
A point charge q is placed in the vicinity of a grounded metallic sphere of radius R  [see Fig. 1(a)], and 

consequently a surface charge distribution is induced on the sphere. To calculate the electric field 

and potential from the distribution of the surface charge is a formidable task. However, the 

calculation can be considerably simplified by using the so called method of images. In this method, 

the electric field and potential produced by the charge distributed on the sphere can be represented 

as an electric field and potential of a single point charge 'q placed inside the sphere (you do not have 

to prove it). Note: The electric field of this image charge 'q reproduces the electric field and the 

potential only outside the sphere (including its surface).  

(a) 

 
 

(b) 
 
 

  
 

Fig 1. (a) A point charge q in the vicinity of a grounded metallic sphere. (b) The electric field of the 

charge induced on the sphere can be represented as electric field of an image charge 'q . 

Task 1 – The image charge 
The symmetry of the problem dictates that the charge 'q should be placed on the line connecting the 

point charge q and the center of the sphere [see Fig. 1(b)]. 

a) What is the value of the potential on the sphere? (0.3 points) 

b) Express 'q  and the distance 'd of the charge 'q  from the center of the sphere, in terms of

q , d , and  R . (1.9 points) 

c) Find the magnitude of force acting on charge q . Is the force repulsive? (0.5 points) 

Task 2 – Shielding of an electrostatic field 
Consider a point charge q placed at a distance d from the center of a grounded metallic sphere of 

radius R. We are interested in how the grounded metallic sphere affects the electric field at point A 

on the opposite side of the sphere (see Fig. 2). Point A is on the line connecting charge q and the 

center of the sphere; its distance from the point charge q is r.  

a) Find the vector of the electric field at point A. (0.6 points) 



41st International Physics Olympiad, Croatia – Theoretical Competition, July 19th 2010 2/3 

 

b) For a very large distance dr  , find the expression for the electric field by using the 

approximation (1+a)-2 ≈ 1-2a, where 1a . (0.6 points) 
c) In which limit of d does the grounded metallic sphere screen the field of the charge q 

completely, such that the electric field at point A is exactly zero? (0.3 points) 
 

 

Fig 2. The electric field at point A is partially screened by the grounded sphere.  

Task 3 – Small oscillations in the electric field of the grounded metallic 

sphere 
A point charge q with mass m is suspended on a thread of length L which is attached to a wall, in the 

vicinity of the grounded metallic sphere. In your considerations, ignore all electrostatic effects of the 

wall. The point charge makes a mathematical pendulum (see Fig. 3). The point at which the thread is 

attached to the wall is at a distance l  from the center of the sphere. Assume that the effects of 

gravity are negligible.  

a) Find the magnitude of the electric force acting on the point charge q for a given angle   and  

indicate the direction in a clear diagram (0.8 points) 

b) Determine the component of this force acting in the direction perpendicular to the thread in 

terms of l , L, R, q and  . (0.8 points) 

c) Find the frequency for small oscillations of the pendulum. (1.0 points) 

 

Fig 3. A point charge in the vicinity of a grounded sphere oscillates as a pendulum.  

Task 4 – The electrostatic energy of the system 
For a distribution of electric charges it is important to know the electrostatic energy of the system. In 

our problem (see Fig. 1a), there is an electrostatic interaction between the external charge q and the 

induced charges on the sphere, and there is an electrostatic interaction among the induced charges 



41st International Physics Olympiad, Croatia – Theoretical Competition, July 19th 2010 3/3 

 
on the sphere themselves. In terms of the charge q, radius of the sphere R and the distance d 

determine the following electrostatic energies: 

a) the electrostatic energy of the interaction between charge q and the induced 
charges on the sphere; (1.0 points) 

b) the electrostatic energy of the interaction among the induced charges on the 
sphere; (1.2 points) 

c) the total electrostatic energy of the interaction in the system. (1.0 points) 
Hint: There are several ways of solving this problem: 

(1) In one of them, you can use the following integral,  

 


d
Rd

=
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xdx
22222

1

2

1
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(2) In another one, you can use the fact that for a collection of N charges iq located at points

N,=,iri 1,


, the electrostatic energy is a sum over all pairs of charges: 
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2. Chimney physics 

Introduction 
Gaseous products of burning are released into the atmosphere of temperature TAir through a high 

chimney of cross-section A and height h (see Fig. 1). The solid matter is burned in the furnace which 

is at temperature TSmoke. The volume of gases produced per unit time in the furnace is B.  

Assume that: 

 the velocity of the gases in the furnace is negligibly small 

 the density of the gases (smoke) does not differ from that of the air at the same temperature 

and pressure; while in furnace, the gases can be treated as ideal  

 the pressure of the air changes with height in accordance with the hydrostatic law; the 

change of the density of the air with height is negligible 

 the flow of gases fulfills the Bernoulli equation which states that the following quantity is 

conserved in all points of the flow:  
 

 
                     , 

where ρ is the density of the gas, v(z) is its velocity, p(z) is pressure, and z is the height  

 the change of the density of the gas is negligible throughout the chimney  

 
Fig 1. Sketch of a chimney of height h with a furnace at temperature TSmoke . 

 

Task 1 
a) What is the minimal height of the chimney needed in order that the chimney functions 

efficiently, so that it can release all of the produced gas into the atmosphere? Express your 
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result in terms of B, A, TAir, g=9.81m/s2, ΔT=TSmoke-TAir. Important: in all subsequent tasks 

assume that this minimal height is the height of the chimney. (3.5 points) 

b) Assume that two chimneys are built to serve exactly the same purpose. Their cross sections 

are identical, but are designed to work in different parts of the world: one in cold regions, 

designed to work at an average atmospheric temperature of -30 oC and the other in warm 

regions, designed to work at an average atmospheric temperature of 30 oC. The temperature 

of the furnace is 400 oC. It was calculated that the height of the chimney designed to work in 

cold regions is 100 m. How high is the other chimney? (0.5 points) 

c) How does the velocity of the gases vary along the height of the chimney? Make a 

sketch/diagram assuming that the chimney cross-section does not change along the height. 

Indicate the point where the gases enter the chimney. (0.6  points) 

d) How does the pressure of the gases vary along the height of the chimney? (0.5  points) 

Solar power plant 
 The flow of gases in a chimney can be used to construct a particular kind of solar power plant 

(solar chimney). The idea is illustrated in Fig. 2. The Sun heats the air underneath the collector of 

area S with an open periphery to allow the undisturbed inflow of air (see Fig. 2). As the heated air 

rises through the chimney (thin solid arrows), new cold air enters the collector from its surrounding 

(thick dotted arrows) enabling a continuous flow of air through the power plant. The flow of air 

through the chimney powers a turbine, resulting in the production of electrical energy. The energy of 

solar radiation per unit time per unit of horizontal area of the collector is G. Assume that all that 

energy can be used to heat the air in the collector (the mass heat capacity of the air is c, and one can 

neglect its dependence on the air temperature).  We define the efficiency of the solar chimney as the 

ratio of the kinetic energy of the gas flow and the solar energy absorbed in heating of the air prior to 

its entry into the chimney.  
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Fig 2. Sketch of a solar power plant.  

 

Task 2 
a) What is the efficiency of the solar chimney power plant? (2.0 points) 

b) Make a diagram showing how the efficiency of the chimney changes with its height. (0.4 

points) 

Manzanares prototype 
The prototype chimney built in Manzanares, Spain, had a height of 195 m, and a radius 5 m. 

The collector is circular with diameter of 244 m. The specific heat of the air under typical operational 

conditions of the prototype solar chimney is 1012 J/kg K, the density of the hot air is about 0.9 kg/m3, 

and the typical temperature of the atmosphere TAir = 295 K. In Manzanares, the solar power per unit 

of horizontal surface is typically 150 W/m2 during a sunny day. 

Task 3 
a) What is the efficiency of the prototype power plant? Write down the numerical estimate. 

(0.3 points) 

b) How much power could be produced in the prototype power plant? (0.4 points) 

c) How much energy could the power plant produce during a typical sunny day? (0.3 points) 
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Task 4 
a) How large is the rise in the air temperature as it enters the chimney (warm air) from the 

surrounding (cold air)? Write the general formula and evaluate it for the prototype chimney. 

(1.0 points) 

b) What is the mass flow rate of air through the system? (0.5 points) 
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3. Simple model of an atomic nucleus 

Introduction 
Although atomic nuclei are quantum objects, a number of phenomenological laws for their basic 

properties (like radius or binding energy) can be deduced from simple assumptions: (i) nuclei are 

built from nucleons (i.e. protons and neutrons); (ii) strong nuclear interaction holding these nucleons 

together has a very short range (it acts only between neighboring nucleons); (iii) the number of 

protons ( Z ) in a given nucleus is approximately equal to the number of neutrons ( N ), i.e. 

2/ANZ  , where A  is the total number of nucleons (   ). Important: Use these 

assumptions in Tasks 1-4 below.  

Task 1 - Atomic nucleus as closely packed system of nucleons 
In a simple model, an atomic nucleus can be thought of as a ball consisting of closely packed 

nucleons [see Fig. 1(a)], where the nucleons are hard balls of radius 85.0Nr fm (1 fm = 10-15 m). 

The nuclear force is present only for two nucleons in contact. The volume of the nucleus V  is larger 

than the volume of all nucleons NAV , where 3

3

4
NN rV  . The ratio VAVf N / is called the 

packing factor and gives the percentage of space filled by the nuclear matter.  

(a) 

 
 

(b) 

 

Fig. 1. (a) An atomic nucleus as a ball of closely packed nucleons.   
(b) The SC packing.  

 

a) Calculate what would be the packing factor f  if nucleons were arranged in a “simple cubic” 

(SC) crystal system, where each nucleon is centered on a lattice point of an infinite cubic 

lattice [see Fig. 1(b)]. (0.3 points) 

Important: In all subsequent tasks, assume that the actual packing factor for nuclei is equal to the 

one from Task 1a. If you are not able to calculate it, in subsequent tasks use 2/1f . 

b) Estimate the average mass density m , charge density c , and the radius R for a nucleus 

having A  nucleons. The average mass of a nucleon is 1.67∙10-27 kg. (1.0 points) 
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Task 2 - Binding energy of atomic nuclei – volume and surface terms 
Binding energy of a nucleus is the energy required to disassemble it into separate nucleons and it 

essentially comes from the attractive nuclear force of each nucleon with its neighbors. If a given 

nucleon is not on the surface of the nucleus, it contributes to the total binding energy with aV= 15.8 

MeV (1 MeV = 1.602∙10-13 J). The contribution of one surface nucleon to the binding energy is 

approximately aV/2. Express the binding energy bE of a nucleus with A nucleons in terms of A , Va , 

and f , and by including the surface correction. (1.9 points) 

Task 3 - Electrostatic (Coulomb) effects on the binding energy 
The electrostatic energy of a homogeneously charged ball (with radius R and total charge Q0) 

is 
R

Q
Uc

0

2

0

20

3


 , where .C 1085.8 21212

0

 mN

 

 

a) Apply this formula to get the electrostatic energy of a nucleus. In a nucleus, each proton is 

not acting upon itself (by Coulomb force), but only upon the rest of the protons. One can 

take this into account by replacing )1(2  ZZZ  in the obtained formula. Use this 

correction in subsequent tasks. (0.4 points) 

b) Write down the complete formula for binding energy, including the main (volume) term, the 

surface correction term and the obtained electrostatic correction. (0.3 points) 

 

Task 4 - Fission of heavy nuclei 
Fission is a nuclear process in which a nucleus splits into smaller parts (lighter nuclei). Suppose that a 

nucleus with A nucleons splits into only two equal parts as depicted in Fig. 2. 

a) Calculate the total kinetic energy of the fission products kinE when the centers of two lighter 

nuclei are separated by the distance  2/2 ARd  , where  2/AR  is their radius. The large 

nucleus was initially at rest. (1.3 points) 

b) Assume that )2/(2 ARd  and evaluate the expression for kinE obtained in part a) for A= 

100, 150, 200 and 250 (express the results in units of MeV). Estimate the values of A for 

which fission is possible in the model described above? (1.0 points) 

 

 

Fig. 2. A schematic description of nuclear fission in our model.  
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Task 5 – Transfer reactions 
a) In modern physics, the energetics of nuclei and their reactions is described in terms of 

masses. For example, if a nucleus (with zero velocity) is in an excited state with energy excE

above the ground state, its mass is 2

0 / cEmm exc , where 0m  is its mass in the ground 

state at rest. The nuclear reaction 16O+54Fe→
12C+58Ni is an example of the so-called “transfer 

reactions”, in which a part of one nucleus (“cluster”) is transferred to the other (see Fig. 3). In 

our example the transferred part is a 4He-cluster ( -particle). The transfer reactions occur 

with maximum probability if the velocity of the projectile-like reaction product (in our case: 
12C) is equal both in magnitude and direction to the velocity of projectile (in our case: 16O). 

The target 54Fe is initially at rest. In the reaction, 58Ni is excited into one of its higher-lying 

states. Find the excitation energy of that state (and express it units of MeV) if the kinetic 

energy of the projectile 16O is 50 MeV. The speed of light is c= 3∙108 m/s. (2.2 points) 

1. M(16O) 15.99491 a.m.u. 

2. M(54Fe) 53.93962 a.m.u. 

3. M(12C) 12.00000 a.m.u. 

4. M(58Ni) 57.93535 a.m.u. 

Table 1. The rest masses of the reactants in their ground states. 1 a.m.u.= 1.6605∙10-27 kg.  

 

b)  The 58Ni nucleus produced in the excited state discussed in the part a), deexcites into its 

ground state by emitting a gamma-photon in the direction of its motion. Consider this decay 

in the frame of reference in which 58Ni is at rest to find the recoil energy of 58Ni (i.e. kinetic 

energy which 58Ni acquires after the emission of the photon).  What is the photon energy in 

that system? What is the photon energy in the lab system of reference (i.e. what would be 

the energy of the photon measured in the detector which is positioned in the direction in 

which the 58Ni nucleus moves)? (1.6 points) 

 
Fig. 3. The schematics of a transfer reaction. 
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Please read this first: 
 

1. The time given is 5 hours.  

2. There are two experimental problems. Each experiment is awarded 10 points. 

3. Use only the provided setup, pencil, and sheets. 

4. Write your solutions in the Answer sheets. Working sheets can be used if necessary. 

All will be considered for marks.  

5. When using working sheets: 

- Use only the front side of the paper. Start each part on a fresh sheet of paper. 

- On every paper, write:  

1) the Task No. for the task attempted 

2) the Page No. - the progressive number of each sheet for that part 

3) the Total No. of Pages used for that part 

4) your Country Code and your Student Code 

- Write concisely – Limit the use of text to minimum. Use equations, numbers, 

symbols, figures and graphs as far as possible. 

- Cross out pages that you do not wish to be marked. Do not include them in your 

numbering. 

6. For each task, use the Answer Sheet to fill in your final answer in the appropriate 

box. Give the appropriate number of significant figures. Remember to state the units. 

7. When you have finished, arrange all sheets in this order for each part: 

- the Answer Sheet 

- writing sheets that you wish to be marked 

- writing sheets that you do not wish to be marked 

Place all unused sheets, graph papers and the question paper at the bottom. 

8. Clip all sheets together and leave them on your desk. 

9. You are not allowed to take any sheet of paper or any material used in the experiment 

out of the examination hall. 
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Separate instructions for using the scale 
 

 

 

 

 

 

 

The scale is turned ON-OFF by the right button.  

The middle button (Z/T) sets the digits to zero, that is, this is the TARA function.  

The left button can be used to change units.  

Instruction: Put units to grams in case it is in other units! 

 

Separate instructions for using the press 

 
The press is used in both problems. The upper part of the press is turned up-side down in 

the second experiment as compared to the first. Its position is illustrated in the tasks 

themselves. The stone is to be placed on the upper part of the press. Its weight helps the 

upper part of the press to slide down when you turn the wing-nut (if you find necessary, 

you can gently press the upper part by your hand (close to the vertical bar) while you turn 

the wing nut to ensure smooth sliding of the press). For performing measurements, you 

should use the fact that the upper part of the press moves 2 mm when the wing nut 

is rotated 360 degrees.  
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SAFETY WARNING 

 
You should be careful when playing with the wooden stick, the rod 

magnet and the hollow cylinder.  

 

Be careful not to stick the wooden stick in your eyes!!! 

 

Do not look with your eyes into the hollow cylinder when playing with 

the rod magnet inside the cylinder. It can be ejected from the cylinder 

and injure your eyes.  
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Experimental problem 1 

There are two experimental problems. The setup on your table is used for both problems. You have 5 

hours to complete the entire task (1&2).  

Experimental problem 1:  Elasticity of sheets  

Introduction 
Springs are objects made from elastic materials which can be used to store mechanical energy. The 

most famous helical springs are well described in terms of Hooke’s law, which states that the force 

with which the spring pushes back is linearly proportional to the distance from its equilibrium length: 

xkF  , where k  is the spring constant, x  is the displacement from equilibrium, and F  is the 

force [see Fig. 1(a)]. However, elastic springs can have quite different shapes from the usual helical 

springs, and for larger deformations Hooke’s law does not generally apply. In this problem we 

measure the properties of a spring made from a sheet of elastic material, which is schematically 

illustrated in Fig. 1(b).  

 

Figure 1. Illustrations of (a) a helical spring and (b) a spring made from a sheet of elastic material 
rolled up into a cylinder. When the latter spring is sufficiently compressed, its shape can be 

approximated as a stadium with two semicircles of radii 0R  (see text). 

 

Transparent foil rolled into a cylindrical spring 
Suppose that we take a sheet of elastic material (e.g. a transparent foil) and bend it. The more we 

bend it, the more elastic energy is stored in the sheet. The elastic energy depends on the curvature 

of the sheet. Parts of the sheet with larger curvature store more energy (flat parts of the sheet do 

not store energy because their curvature is zero). The springs used in this experiment are made from 

rectangular transparent foils rolled into cylinders (see Fig. 2). The elastic energy stored in a cylinder is  

A
R

E
c

el 2

1

2


 , 

(1) 
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where A denotes the area of the cylinder's side (excluding its bases), cR denotes its radius, and the 

parameter  , referred to as the bending rigidity, is determined by the elastic properties of the 

material and the thickness of the sheet. Here we neglect the stretching of the sheets.   

 

Figure 2.  A schematic picture of an elastic sheet rolled into a cylinder of radius cR and length l . 

 

Suppose that such a cylinder is compressed as in Fig. 1(b). For a given force applied by the press ( F ), 

the displacement from equilibrium depends on the elasticity of the transparent foil. For some 

interval of compression forces, the shape of the compressed transparency foil can be approximated 

with the shape of a stadium, which has a cross section with two straight lines and two semicircles, 

both of radius 0R . It can be shown that the energy of the compressed system is minimal when  

F

l
R

2

2

0


 . 

(2) 

The force is measured by the scale calibrated to measure mass m , so mgF  ,        m/s2. 

Experimental setup (1st problem) 
The following items (to be used for the 1st problem) are on your desk: 

1. Press (together with a stone block); see separate instructions if needed 

2. Scale (measures mass up to 5000 g, it has TARA function, see separate instructions if needed) 

3. Transparency foils (all foils are 21 cm x 29.7 cm, the blue foil is 200 µm thick, and the 

colorless foil is 150 µm thick); please, do ask for the extra foils if you need them. 

4. Adhesive (scotch) tape 

5. Scissors  

6. Ruler with a scale 

7. A rectangular wooden plate (the plate is to be placed on a scale, and the foil sits on the plate) 

The setup is to be used as in Fig. 3. The upper plate of the press can be moved downward and 

upward using a wing nut, and the force (mass) applied by the press is measured with the scale. 

Important: The wing nut moves 2 mm when rotated 360 degrees. (Small aluminum rod is not used 

in Experiment 1.) 
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Figure 3. The photo of a setup for measuring the bending rigidity.  

 

Tasks 
1. Roll the blue foils into cylinders, one along the longer side, and the other along its shorter side; 

use the adhesive tape to fix them. The overlap of the sheet should be about 0.5 cm. 

(a) Measure the dependence of the mass read by the scale on the separation between the 

plates of the press for each of the two cylinders. (1.9 points) 

(b) Plot your measurements on appropriate graphs. Using the ruler and eye as the guide, 

draw lines through the points and determine the bending rigidities for the cylinders. 

Mark the region where the approximate relation (the stadium approximation) holds. 

Estimate the value of 
cR

R0  below which the stadium approximation holds; here cR is the 

radius of the non-laden cylinder(s). (4.3 points) 

The error analysis of the results is not required. 

2. Measure the bending rigidity of a single colorless transparent foil. (2.8 points) 

3. The bending rigidity   depends on the Young’s modulus Y of elasticity of the isotropic 

material, and the thickness d of the transparent foil according to  
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)1(12 2

3







Yd
, 

(3) 

where  is  the Poisson ratio for the material; for most materials 3/1 . From the previous 

measurements, determine the Young’s modulus of the blue and the colorless transparent 

foil. (1.0 points) 
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Experimental problem 2 

There are two experimental problems. The setup on your table is used for both problems. You have 5 

hours to complete the entire task (1&2).  

Experimental problem 2:  Forces between magnets, concepts of 

stability and symmetry  

Introduction 

Electric current I circulating in a loop of area S creates a magnetic moment of magnitude ISm   
[see Fig. 1(a)]. A permanent magnet can be thought of as a collection of small magnetic moments of 

iron (Fe), each of which is analogous to the magnetic moment of a current loop. This (Ampère’s) 

model of a magnet is illustrated in Fig. 1(b). The total magnetic moment is a sum of all small magnetic 

moments, and it points from the south to the northern pole.  

(a) 
 
 
 
 
 
 

(b) 
 
 
 

Figure 1. (a) Illustration of a current loop and the produced magnetic field. (b) Ampère’s model of a 
magnet as a collection of small current loops.  

 

Forces between magnets 
To calculate the force between two magnets is a nontrivial theoretical task. It is known that like poles 

of two magnets repel, and unlike poles attract. The force between two current loops depends on the 

strengths of the currents in them, their shape, and their mutual distance. If we reverse the current in 

one of the loops, the force between them will be of the same magnitude, but of the opposite 

direction.  

In this problem you experimentally investigate the forces between two magnets, the ring-magnet 

and the rod-magnet. We are interested in the geometry where the axes of symmetry of the two 

magnets coincide (see Fig. 2). The rod-magnet can move along the z - axis from the left, through the 

ring-magnet, and then towards the right (see Fig. 2). Among other tasks, you will be asked to 

measure the force between the magnets as a function of z . The origin     corresponds to the 

case when the centers of the magnets coincide.  
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Figure 2. The rod- and the ring-magnet are aligned. The force between them changes as the rod-
magnet moves along the z - axis.   

 

To ensure motion of the rod-magnet along the axis of symmetry ( z - axis), the ring-magnet is firmly 

embedded in a transparent cylinder, which has a narrow hole drilled along the z - axis. The rod-

magnet is thus constrained to move along the z - axis through the hole (see Fig. 3). The 

magnetization of the magnets is along the z - axis. The hole ensures radial stability of the magnets.  

  

Figure 3. Photo of two magnets and a transparent hollow cylinder; the rod-magnet moves through 
the cylinder’s hole.  

 

Experimental setup (2nd problem) 
The following items (to be used for the 2nd problem) are on your desk: 

1. Press (together with a stone block); see separate instructions if needed 

2. Scale (measures mass up to 5000 g, it has TARA function, see separate instructions if needed) 

3. A transparent hollow cylinder with a ring-magnet embedded in its side.  

4. One rod-magnet. 

5. One narrow wooden stick (can be used to push the rod magnet out of the cylinder).  

The setup is to be used as in Fig. 4 to measure the forces between the magnets. The upper plate of 

the press needs to be turned up-side-down in comparison to the first experimental problem. The 

narrow Aluminum rod is used to press the rod-magnet through the hollow cylinder. The scale 

measures the force (mass).  The upper plate of the press can be moved downwards and upwards by 

using a wing nut. Important: The wing nut moves 2mm when rotated 360 degrees.  
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Figure 4. Photograph of the setup, and the way it should be used for measuring the force between 
the magnets.  

 

Tasks 
1. Determine qualitatively all equilibrium positions between the two magnets, assuming that 

the z - axis is positioned horizontally as in Fig. 2 , and draw them in the answer sheet. Label 

the equilibrium positions as stable (S)/unstable (U), and denote the like poles by shading, as 

indicated for one stable position in the answer sheet. You can do this Task by using your 

hands and a wooden stick. (2.5 points) 

2. By using the experimental setup measure the force between the two magnets as a function 

of the z - coordinate. Let the positive direction of the z - axis point into the transparent 

cylinder (the force is positive if it points in the positive direction). For the configuration when 

the magnetic moments are parallel, denote the magnetic force by )(zF


, and when they 

are anti-parallel, denote the magnetic force by )(zF


.  Important: Neglect the mass of the 

rod-magnet (i.e., neglect gravity), and utilize the symmetries of the forces between 

magnets to measure different parts of the curves. If you find any symmetry in the forces, 

write them in the answer sheets. Write the measurements on the answer sheets; beside 

every table schematically draw the configuration of magnets corresponding to each table (an 

example is given). (3.0 points) 

3. By using the measurements from Task 2, use the millimeter paper to plot in detail the 

functional dependence )(zF


for 0z . Plot schematically the shapes of the curves

)(zF


 and )(zF


 (along the positive and the negative z - axis). On each schematic graph 
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denote the positions of the stable equilibrium points, and sketch the corresponding 

configuration of magnets (as in Task 1). (4.0 points) 

4. If we do not neglect the mass of the rod magnet, are there any qualitatively new stable 

equilibrium positions created when the z - axis is positioned vertically? If so, plot them on 

the answer sheet as in Task 1. (0.5 points) 
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Solution - Image of a charge 

Solution of Task 1 
Task 1a) 

As the metallic sphere is grounded, its potential vanishes, V=0. 

Task1b) 

Let us consider an arbitrary point B on the surface of the sphere as depicted in Fig. 1.  

 

Fig 1. The potential at point B is zero.  

 

The distance of point B from the charge q' is 

 
 
 

(1) 

whereas the distance of the point B from the charge q is given with the expression 

                                   
                                       (2)  

The electric potential at the point B is  

                                  
                                          (3) 

This potential must vanish,  

 
 
 

                                  
                                          (4) 

  i.e. its numerical value is 0 V. 
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Combining (1), (2) and (3) we obtain 

        
                          (5) 

 

As the surface of the sphere must be equipotential, the condition (5) must be satisfied for every 

angle α what leads to the following results 

                                     
 

                                       (6) 

and 

                                       
                                       (7) 

By solving of (6) and (7) we obtain the expression for the distance d' of the charge q' from the center 

of the sphere  

 
 
 
 

                                       
                                       (8) 

and the size of the charge q' 

 
 
 

                                       
                                        (9) 

 

Task 1c) 

Finally, the magnitude of force acting on the charge q is  

 222

2

04

1

Rd

Rdq
F





 

                                        
                                         (10) 

The force is apparently attractive. 

Solution of Task 2 
Task 2a) 

The electric field at the point A amounts to 
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                                    (11) 

 

Task 2b) 

For very large distances r we can apply approximate formula (1+a)-2 ≈ 1-2a to the expression (11) 

what leads us to 

                     
 

                    (12)                   

In general a grounded metallic sphere cannot completely screen a point charge q at a distance d 

(even in the sense that its electric field would decrease with distance faster than 1/r2) and the 

dominant dependence of the electric field on the distance r is as in standard Coulomb law. 

 

Task 2c) 

In the limit d → R the electric field at the point A vanishes and the grounded metallic sphere screens 

the point charge completely.  

 

Solution of Task 3 
 

Task 3a) 

Let us consider a configuration as in Fig. 2.  

 

Fig 2. The pendulum formed by a charge near a grounded metallic sphere.  

The distance of the charge q from the center of the sphere is 
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                                       (13) 

The magnitude of the electric force acting on the charge q is 

 
 
 
 

                                      (14) 

From which we have 

 2222
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                                      (15) 

 

Task 3b) 

The direction of the vector of the electric force (17) is described in Fig. 3. 

 

Fig 3. The direction of the force F.  

 

The angles α and β are related as  

 
 

                                      (16) 

whereas for the angle γ the relation γ=α+β is valid. The component of the force perpendicular to the 

thread is F sin γ, that is ,        
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Task 3c) 

The equation of motion of the mathematical pendulum is 

 FmL                                        (18) 

 

As we are interested in small oscillations, the angle  α  is small, i.e. for its value in radians we have α 

much smaller than 1. For a small value of argument of trigonometric functions we have approximate 

relations sin x  ≈ x and cos x ≈ 1-x
2
/2. So for small oscillations of the pendulum we have 

)/( LlL     and )/( Lll   .                     

Combining these relations with (13) we obtain 
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Where Lld  what leads to  
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(20) 

 

 

Solution of Task 4 
First we present a solution based on the definition of the electrostatic energy of a collection of 

charges. 

Task 4a) 

The total energy of the system can be separated into the electrostatic energy of interaction of the 

external charge with the induced charges on the sphere, Eel,1, and the electrostatic energy of mutual 

interaction of charges on the sphere, Eel,2, i.e. 

 

                                     (21) 

 Let there be N charges induced on the sphere. These charges jq are located at points 

Njrj ,,1, 


  on the sphere. We use the definition of the image charge, i.e., the potential on the 

surface of the sphere from the image charge is identical to the potential arising from the induced 

charges: 
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 where r


is a vector on the sphere and 'd


denotes the vector position of the image charge. When r


coincides with some ir


, then we just have
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 (23) 

 

From the requirement that the potential on the surface of the sphere vanishes we have 

0
'

'





 dr

q

dr

q
 , 

 

                           (24) 

where d


denotes the vector position of the charge q


( r


 is on the sphere).  

For the interaction of the external charge with the induced charges on the sphere we have  

22

2

001 00

1,
4

1

'

'

4

1

'

'

4

1

4 Rd

Rq

dd

qq

dd

qq

dr

qq
E

N

i i

i
el











 

 
  

                                     

(25) 

Here the first equality is the definition of this energy as the sum of interactions of the charge q with 

each of the induced charges on the surface of the sphere. The second equality follows from (21). 

In fact, the interaction energy 1,elE

 

follows directly from the definition of an image charge.  

Task 4b) 

The energy of mutual interactions of induced charges on the surface of the sphere is given with 
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 Here the second line is obtained using (22). From the second line we obtain the third line applying 

(23), whereas from the third line we obtain the fourth using (22) again. 

 

Task 4c) 

Combining expressions (19) and (20) with the quantitative results for the image charge we finally 

obtain the total energy of electrostatic interaction 

22

2

04

1

2

1
)(

Rd

Rq
dEel





 

 

                                        (27) 

 

 An alternative solution follows from the definition of work. By knowing the integral 

 





d
RdRx

xdx
22222

1

2

1
 

                                        (28) 

We can obtain the total energy in the system by calculating the work needed to bring the charge q 

from infinity to the distance d from the center of the sphere: 

 

22

2

0

222

2

0

4

1

2

1

4

1
)(

)()()(

Rd

Rq

dx
Rx

Rxq

xdxFxdxFdE

d

d

d

el


























 

                                        (29) 

This solves Task 4c).  

The electrostatic energy between the charge q and the sphere must be equal to the energy between 

the charges q and q’ according to the definition of the image charge: 
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22

2

00

1,
4

1

)'(

'

4

1

Rd

Rq

dd

qq
Eel








 

                                        (30)                                      

This solves Task 4a).  

From this we immediately have that the electrostatic energy among the charges on the sphere is: 

22

2

0

2,
4

1

2

1

Rd

Rq
Eel





. 

                                        (31)                                      

This solves Task 4b).  
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Solution - Chimney physics 

This problem was inspired and posed by using the following two references: 

 W.W. Christie, Chimney design and theory, D. Van Nostrand Company, New York, 1902. 
 J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Design of Commercial Solar Updraft 

Tower Systems — Utilization of Solar Induced Convective Flows for Power Generation, Journal 
of Solar Energy Engineering 127, 117 (2005). 

 

Solution of Task 1 
a) What is the minimal height of the chimney needed in order that the chimney functions 

efficiently, so that it can release all of the produced gas in the atmosphere? 

Let )(zp denote the pressure of air at height z; then, according to one of the assumptions

gzpzp Air )0()( , where )0(p is the atmospheric pressure at zero altitude.  

Throughout the chimney the Bernoulli law applies, that is, we can write  

.)()(
2

1 2 constzpgzz SmokeSmokeSmoke   , 
(1) 

where )(zpSmoke is the pressure of smoke at height z, Smoke  is its density, and )(zv denotes the 

velocity of smoke; here we have used the assumption that the density of smoke does not vary 

throughout the chimney. Now we apply this equation at two points, (i) in the furnace, that is at point 

z , where  is a negligibly small positive number, and (ii) at the top of the chimney where hz 

to obtain: 

)()()(
2

1 2   SmokeSmokeSmokeSmoke phpghh  
(2) 

On the right hand side we have used the assumption that the velocity of gases in the furnace is 

negligible (and also 0  gSmoke ).  

We are interested in the minimal height at which the chimney will operate. The pressure of smoke at 

the top of the chimney has to be equal or larger than the pressure of air at altitude h ; for minimal 

height of the chimney we have )()( hphpSmoke  . In the furnace we can use )0()( ppSmoke  . The 

Bernoulli law applied in the furnace and at the top of the chimney [Eq. (2)] now reads 

)0()()(
2

1 2 phpghh SmokeSmoke   . 
(3) 

 From this we get 











 12)(

Smoke

Airghh



 . 

(4) 

The chimney will be efficient if all of its products are released in the atmosphere, i.e.,  
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A

B
h )( , 

(5) 

from which we have 

1

1

2

1
2

2





Smoke

AirgA

B
h




. 

(6) 

We can treat the smoke in the furnace as an ideal gas (which is at atmospheric pressure )0(p and 

temperature SmokeT ). If the air was at the same temperature and pressure it would have the same 

density according to our assumptions. We can use this to relate the ratio SmokeAir  / to AirSmoke TT /

that is,  

Air

Smoke

Smoke

Air

T

T





, and finally 

(7) 

T

T

gA

B

TT

T

gA

B
h Air

AirSmoke

Air







2

1

2

1
2

2

2

2

. 
(8) 

 For minimal height of the chimney we use the equality sign.  

b) How high should the chimney in warm regions be? 

mh

TT

T

TT

T

h

h

Smoke

Smoke 145)30(;

)30(

)30(

)30(

)30(

)30(

)30(










. 

(9) 

 

c) How does the velocity of the gases vary along the height of the chimney? 

The velocity is constant,  

AirAir

Smoke

Smoke

Air

T

T
gh

T

T
ghgh
























 21212




 . 

(10) 

This can be seen from the equation of continuity .constAv  ( Smoke  is constant). It has a sudden 

jump from approximately zero velocity to this constant value when the gases enter the chimney from 

the furnace. In fact, since the chimney operates at minimal height this constant is equal to B , that is 

ABv / .  

d) At some height z, from the Bernoulli equation one gets 

gzghpzp SmokeSmokeAirsmoke   )()0()( . (11) 

Thus the pressure of smoke suddenly changes as it enters the chimney from the furnace and acquires 

velocity. 
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Solution of Task 2 

a) The kinetic energy of the hot air released in a time interval t  is 

Atm

HotHotkin
T

T
ghtAvvtAvE


  2)(

2

1
, 

(12) 

Where the index “Hot” refer to the hot air heated by the Sun. If we denote the mass of the air that 

exits the chimney in unit time with HotAvw   , then the power which corresponds to kinetic 

energy above is  

Air

kin
T

T
wghP


 . 

(13) 

This is the maximal power that can be obtained from the kinetic energy of the gas flow.  

The Sun power used to heat the air is  

TwcGSPSun  . (14) 

The efficiency is evidently 

.
AtmSun

kin

cT

gh

P

P
  

(15) 

 

b) The change is apparently linear. 

Solution of Task 3 
a) The efficiency is 

%64.00064.0 
AtmcT

gh
 . 

(16) 

b) The power is 

45)2/( 2   DGGSP kW. (17) 

c) If there are 8 sunny hours per day we get 360kWh.  

Solution of Task 4 
The result can be obtained by expressing the mass flow of air w as 

Hot

Air

Hot
T

T
ghAAvw 


 2  

(18) 

Tc

GS
w


  

(19) 

which yields 

1.9)
2

( 3/1

222

22


ghcA

TSG
T

Hot

Atm


K. 

(20) 
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From this we get 

760w kg/s. (21) 
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Solution - model of an atomic nucleus 

Solution of Task 1  
a) In the SC-system, in each of 8 corners of a given cube there is one unit (atom, nucleon, etc.), 

but it is shared by 8 neighboring cubes – this gives a total of one nucleon per cube. If 

nucleons are touching, as we assume in our simplified model, then Nra 2 is the cube edge 

length a. The volume of one nucleon is then 

3
33

3

683

4

23

4

3

4
a

aa
rV NN


 











  

(1) 

from which we obtain  

52.0
63




a

V
f N  

(2) 

 

b) The mass density of the nucleus is: 

  3

17

315

27

m

kg
 1040.3

1085.03/4

1067.1
52.0 













N

N

m
V

m
f . 

(4) 

c) 
Taking into account the approximation that the number of protons and neutrons is 

approximately equal, for charge density we get:

 

  3

25

315

19

m

C
 1063.1

1085.03/4

106.1

2

52.0

2














N

c
V

ef
 

(5) 

The number of nucleons in a given nucleus is A. The total volume occupied by the nucleus is: 

f

AV
V N , 

(6) 

which gives the following relation between radii of nucleus and the number of nucleons: 

3/13/1

3/1

3/1

3/1

3/1

 fm 06.1
52.0

85.0
AAA

f

r

f

A
rR N

N 







 . 

(7) 

The numerical constant (1.06 fm) in the equation above will be denoted as r0 in the sequel.  

 

 

Solution of Task 2 
First one needs to estimate the number of surface nucleons. The surface nucleons are in a 

spherical shell of width Nr2 at the surface. The volume of this shell is  
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)
3

4
2(8

8
3

4
28

8
3

4
43

3

4
23

3

4

3
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3

4
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3

4

3

4

322

3

32233

33

NNN

NNN

NNN

Nsurface

rRrrR

rrRRr

rrRrRRR

rRRV

















 

(8) 

 

The number of surface nucleons is:  

.19.480.784.4

3

4
626

8126

3

4
26

3

4
26

3

4

)
3

4
2(8

3/13/2

3/13/23/13/23/13/2

3/13/23/23/1

3/13/2

2

3

322





















































































AA

AA

fAfAf

f

A

f

A
f

r

R

r

R
f

r

rRrrR

f
V

V
fA

NN

N

NNN

N

surface

surface







 

(9) 

The binding energy is now: 

 

 MeV09.3358.6120.388.15

463

)463(

2

2

3/13/2

3/13/23/23/1

3/13/23/23/1











AAA

faaAfaAfAa

afAfAfAa

a
AAa

a
AaAAE

VVVV

VV

V
surfaceV

V
surfaceVsurfaceb

 

(10) 

 

Solution of Task 3 - Electrostatic (Coulomb) effects on the binding energy 
a) Replacing Q0 with Ze gives the electrostatic energy of the nucleus as:  

 
R

eZ

R

Ze
U c

0

22

0

2

20

3

20

3


  

(12) 

The fact that each proton is not acting upon itself is taken into account by replacing Z2 with 

Z(Z-1): 
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R

eZZ
U c

0

2

20

)1(3




  

(13) 

 

b) In the formula for the electrostatic energy we should replace R with 
3/13/1 AfrN


 to obtain  

MeV 0.409AMeV-0.204AMeV  815.0
)1(

J 1031.1
)1()1(

20

3

2/35/3

3/1

13

3/13/1

0

3/12












 

A

ZZ

A

ZZ

A

ZZ

r

fe
E

N

b


 

(14) 

where Z≈A/2 has been used. The Coulomb repulsion reduces the binding energy, hence the 

negative sign before the first (main) term. The complete formula for binding energy now 

gives: 











2420

3
463

3/23/5

0

3/12
3/13/23/23/1 AA

r

fe
faaAfaAfAaE

N

VVVVb


 
(15) 

 

Solution of Task 4 - Fission of heavy nuclei 
a) The kinetic energy comes from the difference of binding energies (2 small nuclei – the 

original large one) and the Coulomb energy between two smaller nuclei (with Z/2=A/4 

nucleons each):  

 

   

d

eA

AA

r

fe
fa

aAfaAf

d

eA
AE

A
EdE

N

V

VV

bbkin

164

1

12
2

12
420

3
4

)12(6)12(3

444

1

2
2)(

22

0

3/1
3/2

3/2
3/5

0

3/12

3/23/13/23/13/23/1

22

0



































 

(16) 

(notice that the first term, Aav, cancels out). 

 

b) The kinetic energy when )2/(2 ARd 
 
is given with: 

 

MeV)091.33175.360365.1002203.0(

)12(
40

3

128

2
)12(

80

3
4

)12(6)12(3

216

2

4

1

2
2

3/13/23/5

3/23/1

0

3/12
3/5

3/1
3/2

0

3/12

3/23/13/23/13/23/1

3/13/1

223/1

0
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fe
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r

fe
fa

aAfaAf

fAr

eA
AE

A
EE

NN

V

VV

N

bbkin





 

(17) 

 

Numerically one gets: 

 A=100 … Ekin= -33.95 MeV,  

 A=150 … Ekin= -30.93 MeV,  
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 A=200 … Ekin= -14.10 MeV,   

 A=250 … Ekin= +15.06 MeV. 

 

In our model, fission is possible when 0))2/(2(  ARdEkin . From the numerical 

evaluations given above, one sees that this happens approximately halfway between A=200 

and A=250 – a rough estimate would be A≈225.  Precise numerical evaluation of the 

equation: 

0MeV)091.33175.360365.1002203.0( 3/13/23/5  AAAEkin  (18) 

gives that for 227A  fission is possible. 

 

 

Solution of Task 5 – Transfer reactions 
Task 5a) This part can be solved by using either non-relativistic or relativistic kinematics.  

 Non-relativistic solution 

First one has to find the amount of mass transferred to energy in the reaction (or the energy 

equivalent, so-called Q-value): 

 

   

kg. 103616.1

a.m.u. 00082.0

a.m.u. )99491.1593962.53(a.m.u. )00000.1293535.57(

mass totalmass total

30

reaction beforereactionafter 







m

 

(19)

 

Using the Einstein formula for equivalence of mass and energy, we get: 

   

J 102237.1299792458103616.1

energy kinetic totalenergy kinetic total

13230

2

reaction beforereactionafter 

 





cm

Q

 

(20)

 

Taking into account that 1 MeV is equal to 1.602∙10-13 J, we get: 

MeV 761.0101.602 / 102237.1 1313  Q

 

(21) 
 

This exercise is now solved using the laws of conservation of energy and momentum. The 

latter gives (we are interested only for the case when 12C and 16O are having the same 

direction so we don’t need to use vectors): 

           NiNiCCOO 585812121616 vmvmvm   
(22) 

while the conservation of energy gives: 

       NiNiCO 58581216

xkkk EEEQE   
(23)
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where Ex(
58Ni) is the excitation energy of 58Ni, and Q is calculated in the first part of this task. 

But since 12C and 16O have the same velocity, conservation of momentum reduced to: 

          NiNiOCO 5858161216 vmvmm 

 

 (24) 

Now we can easily find the kinetic energy of 58Ni: 

          
 

       
 

      
   ONi
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O

Ni2

OCO

Ni2
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2
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Ni

1658

21216
16

58

2161216

58

2585858258
58

mm
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E

m

vmm

m

vmvm
E

k

k











 

(25)

 

and finally the excitation energy of  58Ni: 
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(26)

 

Note that the first bracket in numerator is approximately equal to the mass of transferred 

particle (the 4He nucleus), while the second one is approximately equal to the mass of target 

nucleus 54Fe. Inserting the numbers we get: 

    

MeV 866.10

99491.1593535.57

.1299491.1593535.57.1299491.15
50761.0Ni58







xE

 

(27)

 

 

 

Relativistic solution 

In the relativistic version, solution is found starting from the following pair of equations (the 

first one is the law of conservation of energy and the second one the law of conservation of 

momentum): 

   
 

 
 

 
  2582
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2212

221

2612

261
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/Ni1

Ni

/C1

C

/O1

O
Fe

cv

cm

cv

cm

cv

cm
cm














  

(28)
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  2582

5858*

2212
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2612

6161

/Ni1

NiNi

/C1

CC

/O1

OO

cv

vm

cv

vm

cv

vm















 
All the masses in the equations are the rest masses; the 58Ni is NOT in its ground-state, but in 

one of its excited states (having the mass denoted with m*). Since 12C and 16O have the same 

velocity, this set of equations reduces to:  

     
 

 
  2582

58*

2612

2161
54

/Ni1

Ni

/O1

CO
Fe

cv

m

cv

mm
m







  

      
 

   
  2582

5858*

2612

612161

/Ni1

NiN

/O1

OCO

cv

vim

cv

vmm









 

 

(29)

 

 

Dividing the second equation with the first one gives: 

        
         2612542161

612161
58

/O1FeCO

OCO
Ni

cvmmm

vmm
v




  

(30)

 

 

The velocity of projectile can be calculated from its energy: 
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261
16 O

/O1

O
O cm

cv

cm
Ekin 




  

   
    26116
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2612

OO

O
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kin 




 

   
   

2
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kin  

   
   

c
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2
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261
61
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O
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(31)

 

 

For the given numbers we get: 

   
 

km/s 104498.208172.099666.01

109979.2 15.9949110602.150

109979.2106605.115.99491
1O

72

2

2813

2827
61



























cc

cv
 

(32)

 

 

Now we can calculate: 

   

 
km/s 106946.1

08172.0193962.530.1299491.15

km/s 104498.20.1299491.15
Ni 6

2

7
58 




v  

(33)
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The mass of 58Ni in its excited state is then: 

 

        
 

 
 

 

a.m.u.  9470.57

a.m.u. 
106945.1

104498.2

08172.01

109979.2/106945.11
)0.1299491.15(

Ni

O

/O1

/Ni1
CON

6

7

2

286

58

61

2612

2582
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v

v

cv

cv
mmim

 

(34)

 

 

The excitation energy of 58Ni is then: 

        
MeV 8636.10MeV/J 10602.1/1000722.2

109979.2 101.660593535.579470.57NiNi

1312

2827-25858*







cmmEx

 

(35)

 

 

The relativistic and non-relativistic results are equal within 2 keV so both can be considered 

as correct –we can conclude that at the given beam energy, relativistic effects are not 

important. 

 

Task 5b) For gamma-emission from the static nucleus, laws of conservation of energy and 

momentum give: 

  recoil

58 Ni EEEx    

recoilpp   

(36)

 

Gamma-ray and recoiled nucleus have, of course, opposite directions. For gamma-ray 

(photon), energy and momentum are related as: 

cpE    (37)

  

 In part a) we have seen that the nucleus motion in this energy range is not relativistic, so we 

have: 

      258

2

58

2

58

2

recoil
Ni2Ni2Ni2

recoil

cm

E

m

p

m

p
E





 

(38)

 

Inserting this into law of energy conservation Eq. (36), we get: 

 
  258

2

recoil

58

Ni2
Ni

cm

E
EEEEx






  
(39)

 

This reduces to the quadratic equation: 
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      0NiNi2Ni2 582582582  xEcmEcmE   (40)

  which gives the following solution: 

        

         258582582258

582582258258

NiNiNi2Ni

2

NiNi8Ni4Ni2

cmEcmcm

Ecmcmcm
E

x

x






  

(41)

 

 Inserting numbers gives: 

MeV 8633.10E  (42)

  The equation (37) can also be reduced to an approximate equation before inserting numbers: 

 
MeV 8633.10

Ni2
1

258











cm

E
EE x

x
 

(43)

 

 The recoil energy is now easily found as: 

  keV 1.1Ni58

recoil  EEE x  (44)

  

Due to the fact that nucleus emitting gamma-ray (58Ni) is moving with the high velocity, the 

energy of gamma ray will be changed because of the Doppler effect. The relativistic Doppler 

effect (when source is moving towards observer/detector) is given with this formula: 











1

1
emitted,detector ff  

(45)

 

and since there is a simple relation between photon energy and frequency (E=hf), we get the 

similar expression for energy: 











1

1
emitted,detector EE  

(46)

 

where =v/c and v is the velocity of emitter (the 58Ni nucleus). Taking the calculated value of 

the 58Ni velocity (equation 29) we get: 

MeV 925.10
00565.01

00565.01
863.10

1

1
emitted,detector 














EE  

(47)

 

 

 



41st International Physics Olympiad, Croatia – Experimental Competition, July 21st, 2010 1 / 7 

 

Solution: Exp. problem 1 

 

Task 1   Points 

(a) m[g] R0[mm] 

21 40.5 

25 39.5 

29 38.5 

31 37.5 

34 36.5 

36 35.5 

39 34.5 

43 33.5 

46 32.5 

50 31.5 

53 30.5 

57 29.5 

62 28.5 

67 27.5 

73 26.5 

79 25.5 

86 24.5 

94 23.5 

102 22.5 

113 21.5 

124 20.5 

137 19.5 

150 18.5 

168 17.5 

189 16.5 

212 15.5 

274 13.5 

417 10.5 
 

0.95 
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Task 1   Points 

(a)  
 

m[g] R0[mm] 

40 29.9 

42 29.8 

45 29.6 

47 29.4 

50 29.3 

52 29.1 

54 28.9 

57 28.8 

59 28.6 

61 28.4 

64 28.3 

71 27.8 

78 27.3 

92 26.3 

105 25.3 

118 24.3 

129 23.3 

143 22.3 

157 21.3 

171 20.3 

189 19.3 

211 18.3 

235 17.3 

259 16.3 

293 15.3 

336 14.3 

386 13.3 

449 12.3 
 

0.95 
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Task 1   Points 

(b) 

 
 
 
 

a = 50000 g mm2
 

1.4 
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Task 1   Points 

(b) 

 
 

a = 70000 g mm2 

1.4 
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Task 1   Points 

(b)  


l

ag




2
1.5 mJ 

0.5 


l

ag




2
1.5 mJ 

0.5 


cR

R0

 0.70                                                                         


cR

R0

0.77 0.5 

Task 2   Points 

  
m[g] R0[mm] 

6 42.5 

7 42. 

9 41. 

12 39.5 

15 37.5 

19 35.5 

20 34.5 

21 33.5 

24 32.5 

26 31.5 

28 30.5 

30 29.5 

33 28.5 

36 27.5 

40 26.5 

44 25.5 

48 24.5 

53 23.5 

58 22.5 

66 21.5 

73 20.5 

82 19.5 

92 18.5 

104 17.5 

116 16.5 

127 15.5 

145 14.5 

168 13.5 
 

0.9 
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Task 2   Points 

 

 
 

a = 27000 g mm2
 

0.9 
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Task 2   Points 

  

 0.8 mJ 
1.0 

Task 3   Points 

 Young modulus of the blue foil: 
 

Y=2.0 GPa                                       Y=2.0 GPa 
 

0.6 

 Young modulus of the colorless foil: 
 
 

Y=2.5 GPa 

0.4 

Total:  10 
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Solution - Exp. Problem 2 

 

Task 1  Points 

 

 

0.25 

 

 

0.45 

 

 

0.45 

 

 

0.45 
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0.45 

 

 

0.45 

Task 2  Points 

 Symmetries that should be utilized in the measurements: 

)()( zFzF 


 

)()( zFzF


  

From the two above one gets also )()( zFzF 


 

  

0,6 

By using the setup as it is, the whole curve can be measured by starting the 
measurements from three stable equilibrium points; the equilibrium point 
(z0) can be measured also by using the setup.  
Configuration:  

 
 
Measurements: 
 

z0=0mm m [g] Δz [mm] 

  0 0 

  31 1 

  55 2 

  75 3 

  97 4 

0,8 
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  119 5 

  140 6 

  158 7 

  171 8 

  170 9 

  118 10 

  85 10,25 

  50 10,5 

  10 10,75 
 

 
Configuration:  

 
 
Measurements: 
 

z0=10.8mm m [g] Δz [mm] 

  0 0 

  233 1 

  538 2 

  927 3 

  996 3,5 

  1124 4 

  1154 4,5 

  1213 5 

  1212 5,5 

  1120 6 

  873 6,5 

  284 7 

  36 7,5 

         
 

0,8 
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Configuration:  

 
 
Measurements: 
 

z0=18.6mm m [g] Δz [mm] 

  0 0 

  116 1 

  170 2 

  186 3 

  184 4 

  169 5 

  150 6 

  116 8 

  89 10 

  67 12 

  53 14 

  36 16 

  27 18 

  23 20 

  14 22 

  9 24 

  5 26 

  3 28 

   
 

0,8 

Task 3  Points 

  
Due to symmetry, it is sufficient to plot e.g., the following graph in detail: 

2 
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1 

 

 

1 
 

Task 4  Points 
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0,5 

  

OR 
 

 

 

Total:  10.0 
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